SkyBlue:
A Multi-Way Local Propagation Constraint Solver
for User Interface Construction

Michael Sannella
Department of Computer Science
and Engineering, FR-35
University of Washington
Seattle, Washington 98195
E-mail: sannella@cs.washington.edu

ABSTRACT

Many user interface toolkits use constraint solvers to
maintain geometric relationships between graphic ob-
Jjects, or to connect the graphics to the application data
structures. One efficient and flexible technique for main-
taining constraints is multi-way local propagation, where
constraints are represented by sets of method proce-
dures. To satisfy a set of constraints, a local propagation
solver executes one method from each constraint.

SkyBlue is an incremental constraint solver that uses lo-
cal propagation to maintain a set of constraints as indi-
vidual constraints are added and removed. If all of the
constraints cannot be satisfied, SkyBlue leaves weaker
constraints unsatisfied in order to satisfy stronger con-
straints (maintaining a constraint hierarchy). SkyBlue
is a more general successor to the DeltaBlue algorithm
that satisfies cycles of methods by calling external cycle
solvers and supports multi-output methods. These fea-
tures make SkyBlue more useful for constructing user in-
terfaces, since cycles of constraints can occur frequently
in user interface applications and multi-output methods
are necessary to represent some useful constraints. This
paper discusses some of the applications that use Sky-
Blue, presents times for some user interface benchmarks
and describes the SkyBlue algorithm in detail.

KEYWORDS: SkyBlue, constraints, local propagation,
constraint hierarchies, user interface implementation.

1 INTRODUCTION

User interface toolkits can use constraint solvers to im-
plement the connection between application data and
a display of that data, to maintain consistency among
multiple views of data, and to establish geometric rela-
tionships among graphical objects. By giving the solver

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct com-
mercial advantage, the ACM copyright notice and the title of the pub-
lication and its date appear, and notice is given that copying is by
permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

© 1984 ACM 0-89791-657-3/94/0011....$3.50

responsibility for maintaining the various relationships
in a user interface, the programmer is freed from the
tedious and error-prone task of maintaining these re-
lationships by hand, making it easier to develop and
maintain complex graphical user interfaces. Many user
interface development systems have provided integrated
constraint solvers, including Garnet [10], Rendezvous
[8], and ThingLab II [9]. References [2, 6] contain addi-
tional references to constraint-based systems.

One efficient and flexible technique for maintaining con-
straints is multi-way local propagation. In this tech-
nique, each constraint is represented by a set of method
procedures that read the values of some of the con-
strained variables, and calculate values for the remain-
ing constrained variables that satisfy the constraint. A
set of such constraints can be maintained by a con-
straint solver that chooses one selected method for each
constraint so that no variable is set by more than one
selected method (i.e., there are no method conflicts).
If there are no cycles in the selected methods, the sol-
ver can sort and execute them to satisfy all of the con-
straints. For example, given the constraint A+ B = C
(represented by three methods C := A+ B, A .= C — B,
and B := C'— A) and the constraint B+ C = D (repre-
sented by three analogous methods), the two constraints
could be satisfied by executing the methods C := A+ B
and D := B + C in this order. If there is a cycle among
the selected methods (such as the cycle formed by the
two methods C := A+ B and B := D — () then local
propagation may not be able to satisfy the constraints.

For a given set of constraints, there may be multiple
ways to select methods to satisfy the constraints. It is
also possible that there is no way for the solver to se-
lect methods for all of the constraints so there are no
method conflicts. The theory of constraint hierarchies
[2] offers a way to control the behavior of a constraint
solver in these situations. Given a constraint hierarchy,
a set of constraints where each constraint has an as-
sociated strength, a constraint solver can leave weaker
constraints unsatisfied in order to satisfy stronger con-
straints.

November 24, 1994

UIST 94 137

The DeltaBlue algorithm is an incremental algorithm for
maintaining constraint hierarchies using local propaga-
tion [9, 15]. The ThingLab II user interface development
environment was based on DeltaBlue, demonstrating its
feasibility for constructing user interfaces [9]. However,
DeltaBlue has two significant limitations: cycles in the
graph of constraints and variables are prohibited (if a
cycle is found, the cycle is broken by removing a con-
straint), and constraint methods can only have one out-
put variable. The SkyBlue algorithm presented in this
paper is a successor to the DeltaBlue algorithm that
supports cycles and multi-output methods [12, 13].

Cycles of constraints can occur frequently in user inter-
face applications, particular when geometric constraints
are created among graphic objects. DeltaBlue’s prohi-
bition of cycles places an undue burden on the program-
mer who has to worry about inadvertently introducing
cycles. Several local propagation constraint solvers han-
dle cycles by executing the methods “once around the
cycle,” but this technique is unreliable-——the cycle con-
straints may or may not be satisfied, and the program-
mer has to examine the entire cycle to determine which
is the case. SkyBlue maintains the constraints in a cy-
cle by passing them to specialized cycle solvers. For
example, if all of the constraints in a cycle are linear
equations, our SkyBlue implementation calls a solver
based on Gaussian elimination to satisfy the constraints
around the cycle, and uses local propagation to satisfy
the rest of the constraints. If the available cycle solvers
can’t satisfy the constraints in a cycle, the variables are
marked invalid, so the programmer can tell when the
cycle constraints are not satisfied.

SkyBlue supports constraints with multi-output meth-
ods that set the values of multiple output variables. Al-
though most constraints in user interface applications
can be represented with single-output methods, multi-
output methods are necessary to represent some useful
constraints. For example, suppose the variables X and
Y represent the Cartesian coordinates of a point, and
the variables p and 8 represent the polar coordinates of
the same point. To keep these two representations con-
sistent, one can define a constraint with one method cal-
culating X and Y from p and 8, and another method cal-
culating p and 6 from X and Y. Multi-output methods
are also useful for accessing the elements of compound
data structures. For example, one could unpack a com-
pound Cartesian point object into two variables using a
constraint with methods (X,Y) := (Point.X, Point.Y)
and Point := CreatePoint(X,Y).

Support for cycles and multi-output methods introduces
a performance issue. Given a set of constraints with
no cycles or multi-output methods, the worst-case time
complexity of SkyBlue for adding or removing a con-
straint is linear in the number of constraints in the set
(assuming that the number of constraint strengths, the
number of variables per constraint, and the number of
methods per constraint are all bounded by small con-
stants). However, it has been proven that supporting

cycles and multi-output methods is NP-complete [9].
Special examples have been constructed where the time
for SkyBlue to add or remove a particular constraint
is exponential in the number of constraints in the set.
These test cases are highly unusual, and it is unlikely
that similar sets of constraints would be constructed in
a real application. In actual use, SkyBlue typically ex-
amines only a small subset of the constraints when a
constraint is added or removed, and the performance is
sub-linear in the number of constraints in the set.

The following sections list some of the applications built
using SkyBlue and describes user interface benchmarks
comparing SkyBlue to another solver. The rest of this
paper presents the details of the SkyBlue algorithm.
The author’s dissertation describes SkyBlue in more de-
tail [12]. Contact the author for information about im-
plementations of SkyBlue.

2 SKYBLUE APPLICATIONS

SkyBlue has been used in a number of applications pro-
duced by different research groups:

o The Multi-Garnet package [14] uses SkyBlue to add
support for multi-way constraints and constraint hier-
archies to Garnet [10], a user interface toolkit built on
Common Lisp and X windows. Multi-Garnet constraints
support many of the useful features of Garnet’s one-way
constraints (formulas), including indirect references to
constrained object slots though a series of other slots
and inheritance of constraints in Garnet’s prototype-
based object system. Multi-Garnet allows the SkyBlue
constraint solver to coexist with the Garnet constraint
solver. It is possible to run existing Garnet programs
without change and build Multi-Garnet applications us-
ing Garnet’s library of widgets.

e The CoolDraw constraint-based drawing program [5]
uses an extended version of SkyBlue to maintain geo-
metric relationships between graphic objects in a two-
dimensional plane.

e TBAG is a toolkit for creating interactive 3D graphics
[3] that uses SkyBlue to maintain relationships between
time-varying properties of graphic objects such as their
positions and the derivatives of their positions.

e The VB2 virtual reality system [7] uses SkyBlue to
maintain connections between 3D input devices and ob-
jects in the virtual world, and to attach virtual tools to
objects that the user is editing. These constraints are
added and removed as the user manipulates different
objects in the virtual world.

e The Kaleidoscope language [4] integrates constraints
and imperative, object-oriented programming. The cur-
rent implementation of this language (Kaleidoscope’93)
uses SkyBlue to maintain primitive constraints.

o The Pika simulation systern [1] constructs simulations
in domains such as electronics or thermodynamics by
collecting algebraic and differential equations represent-
ing relationships between object attributes. Pika uses
SkyBlue to process the equations for a numerical inte-
grator that maintains the equations during the simula-
tion.

138 UIST 94

Marina del Rey, California

100.00 |>° ° 100.00 LO ° 272.56
° Y- ° Y
“g ° “g °
° (")
° o
B B {1735 A i 117.35 B
° ° o
o °)
o o ©Q °° °8 0&
o o &
o o ° °
0.00 O 0.00 o 0.00 L0 o
0.00 A 100.00 0.00 A 81.89

(a)

(b)

(c)

Figure 1: Three views of a scatterplot built in Multi-Garnet. (a) The initial scatterplot. (b) After moving the X-axis. (c) After

scaling the point cloud by moving a point.

Figure 1 shows three pictures of a graphic user interface
constructed in Multi-Garnet: A scatterplot displaying
a set of points. SkyBlue constraints are used to spec-
ify the relationship between the screen position of each
point, the corresponding data value, and the positions
and range numbers of the axes. As the points and axes
are moved with the mouse, SkyBlue maintains the con-
straints so that the plot continues to display the same
data. When an object is moved there may be many
possible ways to satisfy the constraints. The scatter-
plot program specifies the behavior of the user interface
by adding stay constraints to variables that should not
be changed by the solver. For example, in Figure 1b
stays are added to the positions of the data points, so
only way to maintain the constraints when the axis is
moved is to change the axis range numbers. Each inter-
action is implemented by adding a different set of stay
constraints.

The scatterplot program exploits many of the features
of SkyBlue. SkyBlue resatisfies the constraints quickly
enough to allow continuous interaction. The constraints
operate in multiple directions during different interac-
tions. Some of the constraints have multi-output meth-
ods. While this application could have been written en-
tirely in Garnet using one-way constraints, for each dif-
ferent interaction mode the programmer would have had
to enable exactly the right set of one-way constraints to
propagate the values correctly. In contrast, the Multi-
Garnet scatterplot program declares the relationships
between the scatterplot elements once, and SkyBlue de-
termines which methods to execute to maintain the con-
straints (influenced by the stay constraints).

3 GARNET AND MULTI-GARNET PERFORMANCE

In order to compare the performance of Multi-Garnet to
Garnet, several benchmark programs were implemented
in Garnet and Multi-Garnet. Demo-Manyobjs displays
a chain of boxes connected by lines positioned with one-
way constraints. The Demo-Manyobjs benchmark mea-
sures the time to move a box, resatisfy the constraints
and reposition the connecting lines. Each update exe-
cutes 16 constraint methods (16 formulas in the Gar-
net version), mostly performing fast integer arithmetic,
and redisplays a single box and two lines. The Move-
Axis benchmark measures the time to move the scat-

terplot X-axis once in Figure 1b. Each update executes
22 methods (23 Garnet formulas), including methods
that perform floating-point arithmetic and string for-
matting, and redisplays the axis line, the range num-
bers, and any points overlapping the axis. There are
more formulas than methods because one multi-output
method performs the same calculation as two formulas.
The Scale-Points benchmark measures the time to scale
the point cloud by moving a point once in Figure lc.
Each update executes 112 methods (178 Garnet formu-
las), including many methods performing floating-point
arithmetic to calculate the position of each scaled point,
and redisplays all of the points.

The Garnet versions of the scatterplot benchmarks are
implemented with one-way constraints, so they only sup-
port a small part of the functionality of the Multi-Garnet
versions. For example, the Garnet version of the Scale-
Points benchmark only allows one particular point to be
moved to scale the point cloud, whereas any point could
be moved in the Multi-Garnet version.

Figure 2 presents times measured running the bench-
marks using Garnet v2.2 and Franz Allegro Common
Lisp v4.1 on a Sun Microsystems SPARCstation IPX.
The total Garnet and Multi-Garnet numbers indicate
the time (in milliseconds) to perform the sequence: move
a constrained element, resatisfy the constraints, and up-
date the display. This figure shows that the Multi-
Garnet versions of the benchmark programs are some-
what slower than the Garnet ones. However, it should
be emphasized that Multi-Garnet can do much more
than Garnet. The important question is whether the
difference in execution time is significant.

The Multi-Garnet benchmark times are divided into the
portions of the total time spent updating the graph-
ics, executing the method procedures, and updating the
constrained Garnet object slots with the new values (an
expensive operation which involves running demons as-
sociated with the objects). It is difficult to directly mea-
sure the components of the Garnet benchmark times,
since Garnet intertwines the different operations, but
the Garnet versions of the benchmarks should use ap-
proximately the same amount of time to perform the
first three components.

November 2—4, 1994

UIST 94

139

Garnet Total

Update Display
. Execute Methods

Set Object Slots
D Other

0 10 20 30 40 50 60 70 8 90 100
Time Per Update (Milliseconds)
Garnet | Multi- || Update | Ezecute | Sel Object | Other
Garnet || Display | Methods Slots
Demo-Manyobjs 13.3 15.0 9.3 1.4 1.8 2.5
Move-Axis 24.6 28.2 13.0 6.3 4.8 4.1
Scale-Points 88.2 100.1 31.1 24.9 214 22.7

Figure 2: Garnet and Multi-Garnet benchmark timings. All times are in milliseconds.

The remainder of the Multi-Garnet time (“other”) is
divided between sorting the selected methods to be exe-
cuted and performing other tasks that integrate SkyBlue
into the Garnet system. This time could be reduced by
extracting and reusing a plan containing the sorted list
of methods to execute., The Multi-Garnet benchmark
figures do not include the time to add the original con-
straint to inject the mouse positions into the network—
this time is dominated by the time to repeatedly execute
the methods and update the display when dragging the
constrained object.

The graphics redisplay and method execution time would
be essentially the same no matter how the application
was implemented, whether a constraint solver was used
or the relationships were maintained explicitly (integrat-
ing the method procedures into an imperative program).
This is typical in interactive systems using local prop-
agation, and suggests that constraint solvers such as
SkyBlue can be used to construct interactive systems
without significantly impacting performance.

4 THE SKYBLUE ALGORITHM

Externally, SkyBlue is similar to the older DeltaBlue
algorithm. Both algorithms are called using the same
entries, and they represent constraints and variables in
similar ways. However, support for multi-output meth-
ods and cycles requires the SkyBlue implementation to
be substantially different from DeltaBlue. The major
differences between the implementations of DeltaBlue
and SkyBlue are: (1) SkyBlue uses a backtracking search
when selecting methods to execute (Section 5), (2) Sky-
Blue generalizes the concept of walkabout strengths used
in DeltaBlue (Section 7), and (3) SkyBlue provides a
mechanism for calling external constraint solvers to sat-
isfy constraints in cycles (Section 8).

SkyBlue has two entries, add_constraint to add a con-
straint to the set of constraints that SkyBlue is main-

taining, and remove_constraint to remove a constraint.
When either of these is called, SkyBlue determines which
constraint methods to use to maintain the new set of
constraints, and executes them. SkyBlue maintains a
data structure known as a method graph (or mgraph)
consisting of a set of constraints along with the selected
method for each of the constraints. If a constraint has a
selected method in the mgraph, it is enforced, otherwise
it is unenforced. Enforcing (unenforcing) a constraint
means assigning a selected method (no selected method)
to a constraint. When a constraint is added or removed,
SkyBlue incrementally updates the mgraph by enforcing
stronger constraints and unenforcing weaker constraints,
and sorts and executes the selected methods, calling cy-
cle solvers to handle cycles.

Formally, SkyBlue constructs a Method-Graph-Better (or
MGB) mgraph, where mg is an MGB mgraph if it has no
method conflicts and for each unenforced constraint cn
in mg there exists no conflict-free mgraph for the same
constraints where cn is enforced and all of the enforced
constraints of mg with the same or stronger strength
as cn are enforced. By constructing MGB mgraphs,
SkyBlue ensures that weaker constraints are left unen-
forced if necessary to enforce stronger constraints. How-
ever, weaker constraints can influence which selected
methods are used to enforce stronger constraints. MGB
mgraphs are similar to the Locally-Graph-Better graphs
constructed by DeltaBlue [9]. The variable values pro-
duced by executing the enforced constraints are usually
(but not always) Locally-Predicate-Better solutions as
defined by the theory of constraint hierarchies [2, 12].
SkyBlue can handie any number of different constraint
strengths. Examples in this paper use the strengths
maz, strong, medium, weak (strongest to weakest).

As an example, consider the mgraphs in Figure 3. Black
boxes are constraints, white circles are variables, and
arrows specify the outputs of the selected method for

140

UIST 94

Marina del Rey, California

(3} C2 c3 C4

weak V1 strong V2 medium V3 weak
(a) E—=0O--1---
c1 c2 c3 ca
weak V1 strong V2 medium V3 weak
) B=O—8—>0O - 8-
Ct C2 C3 C4
weak Vi strong V2 medium V3 weak

© BI=—O—E—=0—a—=0--n

c1 C2 c3 Cc4
weak V1 strong V2 medium V3 weak

(a) M-

C1 C2 C3 C4
strong V1 strong V2 medium V3 weak

¢ BI=—O—l—=0—8-=0--N

Figure 3: MGB and non-MGB Method Graphs.

the constraint. Dashed lines indicate unenforced con-
straints. Figure 3a is not an MGB mgraph because
the strong constraint C'2 could be enforced by choos-
ing the method that outputs to V2 and unenforcing the
medium constraint C3, producing Figure 3b. Actually,
this mgraph is not MGB either since C3 could be en-
forced by unenforcing C4, producing Figure 3c. This
mgraph is MGB since the only unenforced constraint
(C4) cannot be enforced without introducing a method
conflict or unenforcing equal-strength or stronger con-
straints. There may be multiple MGB mgraphs for
a given set of constraints. Figure 3d shows another
MGB mgraph for the same constraints. Given these
constraints, SkyBlue could construct either one of these
mgraphs. The constraint strengths could be modified to
favor one alternative over the other. For example, if the
strength of C1 were changed to strong, the only MGB
mgraph would be the one in Figure 3e.

5 BUILDING METHOD VINES

SkyBlue updates the mgraph to be MGB by repeat-
edly calling the procedure build_mvine, the heart of
the SkyBlue algorithm. This procedure tries to enforce
an unenforced constraint root by selecting a method
for root, unenforcing constraints that are weaker than
root, and switching methods for other enforced con-
straints. If it is unable to construct a conflict-free m-
graph where root is enforced, it leaves the mgraph un-
changed. It has been proven that if none of the un-
enforced constraints are muine-enforcible (i.e., can be
enforced by build_mvine), then the mgraph must be
an MGB mgraph [12].

The procedure build_mvine tries to enforce root by the
following process: root is enforced with one of its meth-
ods. If this method has a method conflict with the se-
lected methods of other enforced constraints, these con-
flicting constraints are unenforced. If a conflicting con-
straint is equal-strength or stronger than root, then it
is enforced with a different selected method. If the new
selected methods for the conflicting constraints conflict

with yet other enforced constraints, these new conflict-
ing constraints are handled in the same way, and so on.
This process extends through the mgraph, building a
“vine” of newly-chosen selected methods growing from
root.

If build_mvine processes a conflicting constraint that
is equal-strength or stronger than root (so it must be
enforced), and all of the methods of this constraint con-
flict with other newly-selected methods, then the mvine
construction process backtracks: Previously-processed
constraints are unenforced and the mvine is extended
using other selected methods for these constraints. This
backtracking process may unwind the search all the way
to the beginning, choosing another selected method for
root. If no method can be chosen for root that allows
a complete conflict-free mvine to be constructed, then
build_mvine fails and the mgraph is not changed.

Figure 4 shows an example of constructing an mvine to
enforce C'1. The newly-selected methods are drawn with
thicker lines. The arrows below C2 indicate C'2’s possi-
ble methods—all other constraints have a single-output
method for each variable. Suppose SkyBlue starts with
the mgraph of Figure 4a. First, C1 is enforced with its
only method so it determines V1, and C2 is unenforced
and added to the mvine (4b). Since C?2 is stronger than
the root constraint C'1, it will have to be enforced in the
mvine. The method that outputs to V1 conflicts with
C1, so C2 is enforced with its other method, and C4 is
unenforced and added to the mvine (4¢). Since C4 is
stronger than the root, it will have to be enforced. Sup-
pose SkyBlue enforces C4 with the method that sets V4,
unenforcing C3 (4d). Since C3 is stronger than the root,
it will have to be enforced. Both of its methods conflict
with other constraints in the mvine (C2 and C4), so
SkyBlue backtracks, removing C3 from the mvine, en-
forcing it with its original method, and unenforcing C4.
It is still necessary to enforce C4, so SkyBlue enforces
C4 with another method, unenforcing C5 and adding
it to the mvine (4¢). Now, C5 is the only unenforced
constraint in the mvine, and it is weaker than the root
constraint, so SkyBlue has successfully constructed an
mvine.

The backtracking search in build_mvine is pruned by
the use of walkbounds (Section 7) associated with the
variables that allow build_mvine to predict that partic-
ular methods cannot be used to enforce an mvine con-
straint. If there are no cycles or constraints with multi-
output methods in the mgraph, then build_mvine will
never backtrack. In the example of Figure 4 (containing
a multi-output method), walkbounds do not affect the
search.

Figure 5 contains pseudocode for an implementation of
build_mvine. The recursive procedure extend_mvine
is called with the root constraint and the set of con-
straints in the mvine. This set initially contains just
the unenforced root constraint, but it is extended on re-
cursive calls with conflicting constraints that have been
added to the mvine.

November 2—4, 1994

UIST 94 141

C3
V2 gtrong

c1 c2 V4

medium V1

weak

(a)

c *
medium V1 max ¢

(b) ~<<"

(o3
weak

V2 gtrong

(d)

(¢)

Figure 4: Constructing an mvine.

If there are no unenforced constraints in the mvine with
strength equal or stronger than the root constraint, then
a complete mvine has been successfully constructed, and
extend_mvine returns true. Otherwise, extend_mvine
chooses a constraint from the mvine that needs to be
enforced (new_cn), selects a method for it, unenforces
any conflicting constraints, and calls itself recursively
{adding the unenforced conflicting constraints to the
mvine). Note that this procedure never enforces any
constraint with a method that conflicts with other en-
forced constraints in the mvine.

If the recursive call returns true, indicating that the rest
of the mvine constraints have been handled successfully,
then extend_mvine returns true itself. If the recursive
call returns false, then it must not be possible to con-
struct the rest of the mvine. In this case, the selected
methods for new_cn and the conflicting constraints are
reset, and the next method for new_cn is examined.

There are three situations where a particular method
cannot be used to enforce a constraint: (1) The method
conflicts with an enforced constraint in the mvine. (2)

The walkbounds of the method’s outputs are too strong
as determined by check_walks (described in Section 7).
In the example of Figure 4, check_walks always returns
true. (3) After setting the selected method, the recursive
call to extend_mvine cannot successfully construct the
rest of the mvine. If none of a constraint’s methods
is acceptable, then extend_mvine leaves the constraint
unenforced, and returns false, backtracking.

build_mvine(root): boolean
Return extend mvine(root, {root})

extend_mvine(root, mvine_cns): boolean
new_cn := choose any unenforced constraint
in mvine_cns with strength equal
or stronger than root.strength
If there is no such constraint then
Return true
For new_mt in new_cn.methods do
conflict_cns := all constraints whose
selected method conflicts with new_mt
If (conflict_cns N mvine_cns = {}) and
check_walks(new_cn, new_mt, root) then
;; unenforce conflict_cns, enforce new—cn
For cn in conflict_cns do
cn.original_mt := cn.selected_mt
cn.selected_mt := nil
new_cn.selected_mt := new_mt
;5 try consiructing the rest of the mvine
next_cns := mvine_cns U conflict_cns
If extend_mvine(root, next_cns) then
Return true
;; can’t build rest of mvine, undo changes

new_cn.selected_mt := nil
For cn in conflict_cns do
cn.selected_mt := cn.original_mt

;; new—cn can’t be enforced; backirack
Return false

Figure 5: Pseudocode for building an mvine.

6 UPDATING THE MGB METHOD GRAPH

SkyBlue could update the mgraph by calling build-
mvine repeatedly on all of the unenforced constraints,
until none of them can be enforced. However, often
it is not necessary to test all of the unenforced con-
straints. For example, suppose that the constraints de-
fine two completely disjoint networks of constraints and
variables. If a constraint is removed from one of the net-
works, this cannot affect whether unenforced constraints
in the other network are mvine-enforcible.

SkyBlue manages the unenforced constraints by main-
taining the set *pmec#* (containing the Possibly Mvine-
Enforcible Constraints). Every time that the mgraph is
changed by adding or removing a constraint or apply-
ing an mvine, this set is updated to include any newly
mvine-enforcible constraints. When an unenforced con-
straint in *pmec* is enforced (by building an mvine),
or when it is determined that it is not mvine-enforcible

142 UIST "94

Marina del Rey, California

(when build_mvine fails), it is removed from *pmec#.
When *pmec* is empty, then none of the unenforced
constraints in the mgraph are mvine-enforcible, and the
mgraph must be MGB.

Now, the problem has been transformed to that of up-
dating *pmec* whenever the mgraph is changed so that
it always contains all mvine-enforcible constraints. Sky-
Blue uses several techniques to update *pmec* when the
mgraph is changed. It has been proven that these tech-
niques will collect all of the newly mvine-enforcible con-
straints (in addition to some constraints that are not
mvine-enforcible) whenever the mgraph is changed [12].

e The Collect Local Unenforced Technique. Whenever
an unenforced constraint is added to the mgraph, it
must be added to *pmec*. Whenever the mgraph is
changed in any other way, the only constraints in the
mgraph that need to be added to *pmec* are the unen-
forced constraints whose variables include redetermined
variables, or variables downstream of the redetermined
variables. The redetermined variables are defined as
those variables whose determining method in the mgraph
has been changed. Downstream variables are found by
following the links in the directed graph formed by the
selected methods (with directed links from a selected
method to its outputs, and from a variable to the se-
lected methods that input it). Note that no constraints
have to be added to *pmec* when an unenforced con-
straint is removed, since no variables are redetermined.
e The Removed Constraint Strength Technique. When-
ever an enforced constraint is removed from the mgraph,
only unenforced constraints with the same strength or
weaker than the removed constraint need to be added
to *pmec#*.

o The Mvine Root Strength Technique. Whenever an
mvine is successfully built, only unenforced constraints
that are strictly weaker than the mvine root constraint
need to be added to *pmec*.

Figure 6 contains pseudocode for adding or removing
a constraint from the mgraph, updating the mgraph
to be MGB, updating the variable walkbounds (Sec-
tion 7) and executing the selected methods (Section 8).
This pseudocode incorporates all of the techniques men-
tioned above to update *pmec*. Note that the proce-
dure update_method_graph always removes and pro-
cesses the strongest constraint in *pmec*, and only adds
constraints strictly weaker than the root of the mvine
when one is constructed, so no constraint will be pro-
cessed more than once during a single call to this pro-
cedure.

7 CALCULATING AND USING WALKBOUNDS

Consider the situation where build_mvine is about to
choose a new selected method for C'1 that determines
V1, currently determined by the selected method of C2
(Figure 7a). In order to construct a complete conflict-
free mvine, build_mvine changes the mgraph so that C2
no longer determines V1 by unenforcing C2 (7b), adding
it to the mvine, and trying to enforce it with another
method (if it is not weaker than the root constraint).

add_constraint(cn)
add cn to the method graph (unenforced)
pmec := {cn}
update_method_graph()
execute_selected_methods()

remove_constraint(cn)

pmec := {}
If cn is enforced then
out_vars := cn.selected_mt.outputs

add to *pmec* all unenforced constraints
with variables in or downstream
of out_vars and strength equal
to or weaker than cn.strength
cn.selected mt := nil
update_walkbounds(old_outputs)
remove cn from the method graph
update_method_graph()
execute_selected_methods()

update_method_graph()
Loop until *pmec*={} do
cn_to_enforce := choose the strongest
unenforced constraint in *pmec*
#+pmec* := *pmec* ~ {cn_to_enforce}
If build_mvine(cn_to_enforce) then
redetermined_vars := all variables
redetermined by the mvine
add to *pmec* all unenforced
constraints with variables in or
downstream of redetermined_vars
and strength weaker than
cn_to_enforce.strength
update_walkbounds (redetermined_vars)

Figure 6: Pseudocode for adding or removing a con-
straint and updating the method graph to be MGB.

In this situation, build_mvine assumes that it will be
possible to change the mgraph so that C2 no longer de-
termines V1, without unenforcing any constraints that
are equal-strength or stronger than the mvine root. If
this assumption is wrong, it will eventually backtrack
to this point, and choose another selected method for
C1. If build_mvine could predict that this assumption
is wrong, then it could immediately reject C1’s new se-
lected method without trying to extend the mvine. This
would reduce the amount of searching done while build-
ing an mvine.

Figure 7: Enforcing C'1 and unenforcing C2.

The DeltaBlue algorithm introduced the idea of associ-
ating a walkabout sirength with each variable that spec-
ifies the strength of the strongest constraint that would
have to be unenforced to allow a different method to de-
termine that variable. If a variable is undetermined, or

November 2—4, 1994

UIST 94 143

the mgraph could be modified so the variable is no longer
determined without unenforcing any constraints, then
its walkabout strength is defined as min, which is a spe-

cial strength weaker than any constraint. For DeltaBlue check_valks(cn, new_mt, root): boolean

constraints (no cycles or multi-output methods) it is not If cn = root then

difficult to calculate these strengths and incrementally old_outputs := {}

update them whenever the mgraph is changed. Else

If an mgraph contains cycles and multi-output methods, old_outputs := cn.original_mt.outputs

it is hard to calculate walkabout strengths efficiently. For var in new_mt.outputs - old_outputs do
SkyBlue calculates lower bounds to the walkabout stren- It var.walkbound is equal or stronger
gths called walkbounds. Using the variable walkbounds, than root.strength then

SkyBlue can reduce the amount of searching it performs, Return false

but cannot eliminate it completely. Figure 8 shows pseu- Return true

docode for check_walks, called by extend_mvine to de-
termine whether a method can be used to extend the
mvine. This is only possible if all of the output vari-
ables of the new method have walkbounds weaker than

update_walkbounds(redetermined_vars)
For var in redetermined_vars do
If var is undetermined then

the root of the mvine. var.valkbound := min

downstream_cns := all enforced constraints
Figure 8 also shows pseudocode for update_walkbounds, that determine or are downstream
which is called to update the walkbounds whenever the of redetermined_vars
mgraph is modified. It has been proven that the only cn_and_cycle_list := topological_sort(
walkbounds that need to be updated after the mgraph is collapse_cycles(downstream_cns))
changed are the walkbounds of the redetermined vari- For x in cn_and_cycle_list do
ables and downstream variables [12]. This procedure If x is a constraint then
takes all of the constraints that determine these vari- set_walkbounds (x)
ables, and collapses all constraint cycles into collapsed ElseIf x is a collapsed cycle then
cycle methods (as described in Section 8). Then, the update_walkbounds_in_cycle(x)
collapsed cycle methods and the other selected methods
are topologically sorted and processed in order. Meth- update_walkbounds_in_cycle(cycle)
ods are passed to set_walkbounds, which sets the walk- cycle_cns := the constraints in cycle
bounds of the outputs of an enforced constraint’s se- For cn in cycle_cns do
lected method, given the walkbounds of the method’s For var in cn.selected_mt.outputs do
inputs. Collapsed cycle methods are processed by set- var.walkbound := min
ting the walkbounds of all variables set by the cycle con- For cn in cycle_cns do
straints min (a correct walkbound for any variable), and set_walkbounds(cn)

then passing each cycle constraint to set_walkbounds.

. set_walkbounds(cn)
For each selected method output variable, set_walk-

. - out_vars := cn.selected_mt.outputs
bounds examines the alternate methods of the constraint For out var in out vars do
that don’t output to it (and thus could be used to en- new walk := cn.;trength

force the constraint while leaving this variable undeter-
mined). For each of these methods the strongest walk-
bound among the method’s outputs is found (by calling

For mt in cn.methods do
If out_var ¢ mt.outputs then

: new_walk := the weaker of new_walk
max_out). If a selected method has multiple outputs, and max_out(mt, out_vars)
this may calculate different walkbounds for the differ- out var.walkbound := new walk’ -

ent output variables.

Both check_walks and max_out include code to handle max_out(mt, current_outputs): Strength

the special case where two methods for the same con- max_strength := min

straint output to the same variable. In check_walks, For var in mt.outputs do
it is not necessary to check the walkbound of a vari- If var ¢ current_outputs then

able that is output by the constraint’s current selected max_strength := the stronger of
method, since no additional constraints need to be un- max_strength and var.walkbound
enforced to switch to another selected method that out- Return max_strength

puts to the same variable. Likewise, in max_out the

walkbounds of any variables output by the constraint’s Figure 8: Pseudocode for using and recalculating
original selected method can be ignored. walkbounds.

144 UIST 94 Marina del Rey, California

Figure 9: A method graph with walkbounds.

Figure 9 demonstrates how SkyBlue calculates walk-
bounds. The variables are labeled with walkbounds
calculated by setting V' 1’s walkbound to min, process-
ing C1-C3 by calling set_walkbounds, and handling
the cycle by setting the walkbounds of V5 and V7 to
min and calling set_walkbounds to process C4 and C5.
Note that the walkbound of V4 is maz because the unse-
lected method for C2 also outputs to this variable. Also
note that the walkbound of V7 would be set to weak
rather than min if C5 had been processed before C4,
but in either case these are correct walkbounds.

8 EXECUTING SELECTED METHODS

Figure 10 contains pseudocode that executes the se-
lected methods in the mgraph to satisfy the enforced
constraints. It is only necessary to execute “new” se-
lected methods (ones that weren’t selected the last time
methods were executed) and selected methods down-
stream of those methods [12]. If there are no directed
cycles in the mgraph, the selected methods are executed
in topological order.

If there are directed cycles in the mgraph, it is not pos-
sible to topologically sort them. In this case, the cy-
cles (actually, the strongly-connected components) are
collapsed to produce collapsed cycle methods. For ex-
ample, in Figure 11a, the selected methods for C2 and
C3 form a directed cycle. These constraints are treated
as If they were a single method that reads V2 and sets
V3 and V4 to values that satisfy constraints C'2 and
C3 (Figure 11b). Once the cycles are collapsed, the
regular methods and collapsed cycles are processed in
topological order. Regular constraint methods are ex-
ecuted. When a cycle is encountered in the order, a
series of external cycle solvers are called that try to
find values for the cycle output variables to satisfy the
constraints. For example, if all of the constraints are
linear equations, a cycle solver incorporating a simulta-
neous linear equation solver could produce values that
satisfy the constraints. After a cycle is solved, down-
stream methods and cycles are processed. Note that
there is a difference between a cycle solver that returns
that it cannot solve the cycle (as a linear equation sol-
ver would do when passed a cycle with non-linear con-
straints) and a cycle solver that returns that the cycle
cannot be solved (as a linear equation solver would do

execute_selected_methods()
exec_cns := all enforced constraints
whose selected method has changed since
execute_selected_methods was last called,
and all downstream enforced constraints
cn_and_cycle_list := topological_sort(
collapse_cycles(exec_cns))
For x in cn_and_cycle_list do
If x is a constraint then
execute x.selected_mt
Elself x is a collapsed cycle then
call_cycle_solvers(x)

call_cycle_solvers{cycle): boolean
For cycle_solver in *cycle_solvers#* do
call cycle_solver to solve cycle
If cycle_solver solved cycle then
Return true
If cycle_solver determined that cycle
cannot be solved then
Return false
;; none of the solvers could satisfy the cycle
Return false

Figure 10: Pseudocode for executing the selected
methods and calling cycle solvers.

when passed inconsistent linear equations). In the for-
mer case, call_cycle_solvers will try the rest of the
cycle solvers, whereas in the latter case no other cycle
solvers will be called.

Vi ct v2 Sc2: va ca V5

v3

(b)

Figure 11: Collapsing a directed cycle of methods.

If none of the cycle solvers can solve a cycle, or a cycle
solver determines that the cycle cannot be solved, the
cycle variable values are left unchanged, and the down-
streamn methods (and cycles) are not executed (this is
not shown in the pseudocode). The variables down-
stream of the unsolved cycles are also marked, so the
programmer can determine that the variable values do
not satisfy the constraints.

9 CONCLUSIONS
This paper has described how SkyBlue can be used to
maintain relationships in user interface construction, and

November 2—4, 1994

UIST 94 145

presented the details of the algorithm. There are many
ways that SkyBlue could be improved, for example the
procedure call_cycle_solvers could be modified to
keep track of which cycle solvers are more successful at
solving a given cycle, and use this information to call
more promising cycle solvers first. One direction for fu-
ture work is to extend SkyBlue to support inequalities.
The CoolDraw system used an extended version of Sky-
Blue to support some inequalities [5].

Another area of active research is building debugging
tools to help the programmer examine the constraint
network, determine why a given solution is produced,
and change the network to produce the desired solu-
tion. A system has been developed for interactively con-
structing graphical user interfaces based on constraints
(maintained by SkyBlue), and debugging the constraint
networks [11]. This debugging system uses a new algo-
rithm for generating all of the MGB mgraphs for a set
of constraints. This algorithm is the basis for a powerful
debugging tool that allows the programmer to explore
the different behaviors that can be produced by a set of
constraints.

ACKNOWLEDGEMENTS
Thanks to Alan Borning for useful comments on this
paper. This work was supported in part by National
Science Foundation grants IRI-9102938, IRI-9302249,
and CCR-9402551, and by Academic Equipment Grants
from Sun Microsystems.

REFERENCES
1. Franz G. Amador, Adam Finkelstein, and Daniel S.
Weld. Real-Time Self-Explanatory Simulation. In
Proceedings of the Eleventh National Conference
on Artificial Intelligence, pages 562-567. AAAI
Press/The MIT Press, July 1993.

2. Alan Borning, Bjorn Freeman-Benson, and Molly
Wilson. Constraint Hierarchies. Lisp and Symbolic
Computation, 5(3):223~270, September 1992.

3. Conal Elliott, Greg Schechter, Ricky Yeung, and
Salim Abi-Ezzi. TBAG: A High Level Framework
for Interactive, Animated 3D Graphics Applica-
tions. In SIGGRAPH ’94 Conference Proceedings,
pages 421-434, Orlando, Florida, July 1994. ACM.
Also in Computer Graphics 28(2), July 1994.

4. Bjorn Freeman-Benson. Constraint Imperative Pro-
gramming. PhD thesis, University of Washington,
Department of Computer Science and Engineering,
July 1991. Published as UW CSE Technical Report
91-07-02.

5. Bjorn Freeman-Benson. Converting an Existing
User Interface to Use Constraints. In Proceedings of
the ACM SIGGRAPH Symposium on User Inter-
face Software and Technology, pages 207-215, At-
lanta, Georgia, November 1993.

10.

11.

12.

13.

14.

15.

. John Maloney.

Bjorn Freeman-Benson, John Maloney, and Alan
Borning. An Incremental Constraint Solver. Com-
munications of the ACM, 33(1):54-63, January
1990.

. Enrico Gobbetti and Jean-Francis Balaguer. VB2:

An Architecture for Interaction in Synthetic
Worlds. In Proceedings of the ACM SIGGRAPH
Symposium on User Interface Software and Tech-
nology, pages 167~178, Atlanta, Georgia, November
1993.

Ralph D. Hill, Tom Brinck, Steven L. Rohall,
John F. Patterson, and Wayne Wilner. The Ren-
dezvous Architecture and Language for Construct-
ing Multi-User Applications. ACM Transactions
on Computer-Human Interaction, 1(2), 1994. To
appear.

Using Constraints for User In-
terface Construction. PhD thesis, Department of
Computer Science and Engineering, University of
Washington, August 1991. Published as UW CSE
Technical Report 91-08-12.

Brad A. Myers, Dario A. Giuse, Roger B. Dan-
nenberg, Brad Vander Zanden, David S. Kosbie,
Ed Pervin, Andrew Mickish, and Philippe Mar-
chal. Garnet: Comprehensive Support for Graphi-
cal, Highly-Interactive User Interfaces. IEEE Com-
puter, 23(11):71-85, November 1990.

Michael Sannella. Analyzing and Debugging Hi-
erarchies of Multi-way Local Propagation Con-
straints. In Borning, editor, Proceedings of the 1994
Workshop on Principles and Practice of Constraint
Programmang. Springer-Verlag, 1994. To appear.

Michael Sannella. Constraint Satisfaction and De-
bugging for Interaclive User Interfaces. PhD thesis,
Department of Computer Science and Engineering,
University of Washington, 1994.

Michael Sannella. The SkyBlue Constraint Solver
and Its Applications. In Saraswat and van Hen-
tenryck, editors, Proceedings of the 1993 Workshop

on Principles and Practice of Constraint Program-
mang. MIT Press, 1994. To appear.

Michael Sannella and Alan Borning. Multi-Garnet:
Integrating Multi-Way Constraints with Garnet.
Technical Report 92-07-01, Department of Com-
puter Science and Engineering, University of Wash-
ington, September 1992,

Michael Sannella, John Maloney, Bjorn Freeman-
Benson, and Alan Borning. Multi-way versus One-
way Constraints in User Interfaces: Experience
with the DeltaBlue Algorithm. Software—Practice
and Ezperience, 23(5):529-566, May 1993.

146

UIST 94

Marina del Rey, California

