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Abstract

A constraint describes a relationship that should be maintained, for example that the equality

A + B = C holds between three variables, that a set of displayed objects are aligned, or that the

elements in a data structure are consistent with a graphic display of this structure. Constraint

solvers have been successfully applied to problems in computer graphics including geometric design

and user interface construction. This paper presents the SkyBlue constraint solver, an e�cient

incremental algorithm that uses local propagation to maintain sets of required and preferential

constraints. SkyBlue is a successor to the DeltaBlue algorithm, which was used as the constraint

solver in the ThingLab II user interface development environment. DeltaBlue has two limitations:

cycles of constraints are prohibited, and the procedures used to satisfy a constraint can only have

a single output. SkyBlue relaxes these restrictions, allowing cycles of constraints to be constructed

(although SkyBlue may not be able to satisfy all of the constraints in a cycle) and supporting multi-

output methods. The SkyBlue algorithm has been incorporated into Multi-Garnet, an extended

version of the Garnet user interface development system that supports multi-way constraints. Multi-

Garnet has been used to build several user interfaces exploiting the features of SkyBlue that would

have been di�cult to build within Garnet. This paper describes the basic SkyBlue algorithm and

outlines several techniques that signi�cantly improve its performance for large constraint graphs.

Performance measurements are presented demonstrating that SkyBlue is e�cient enough to use in

interactive user interfaces.

Keywords: constraints, constraint hierarchies, local propagation, user interfaces, interactive tech-

niques.
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1 Introduction

User interface toolkits can use constraint solvers to maintain consistency between application data

and a display of that data, to maintain consistency among multiple views of data, and to maintain

layout relationships among graphical objects. By giving the system responsibility for maintaining

the various relationships in a user interface, the programmer is freed from the tedious and error-

prone task of maintaining these relationships by hand, making it easier to develop and maintain

complex graphical user interfaces. Many user interface development systems have provided inte-

grated constraint solvers, including GROW [2], Garnet [14], Rendezvous [9], and ThingLab II [13].

References [3, 6] contain additional references to constraint-based systems.

One important class of constraint solvers accepts a set of mathematical equations between variables,

and uses symbolic or numerical techniques to �nd variable values that satisfy the equations. These

solvers have been used in many computer graphics applications, including surface modeling tools

[20] and constraint-based graphic editors [8]. However, mathematical constraint solvers are limited

to problems where the constraints can be expressed as mathematical equations.

At the other end of the complexity spectrum, many user interface systems include simple facilities for

maintaining the connection between the user interface and the application program. For example, a

user interface system may allow procedures to be designated as callback procedures, which are called

when particular events occur. These can be used to update the application data structures when the

user manipulates the interface. Systems with such facilities include GROW [2], Interviews [12], and

the Smalltalk Model-View-Controller [11]. These facilities can be di�cult to use if there are multiple

callbacks that access the same data structures: the programmer may need to understand the internal

details of the consistency mechanism to prevent undesirable interactions. This undermines a major

advantage of constraint solvers, namely that they provide a declarative way to state relationships

that should be maintained. Another limitation of many simple consistency mechanisms is that they

only allow constraints to be satis�ed in one direction. User interface applications often require

information to 
ow in multiple directions. For example, a user interface may include multiple views

of the same data structure that must be kept consistent as edits are made within any view.

The SkyBlue algorithm lies between these two extremes in terms of complexity and expressiveness.

General constraints between variables (containing arbitrary data, not just numbers) are represented

by short procedures (methods) that satisfy the constraints. A constraint may have multiple meth-

ods that allow it to be satis�ed in multiple directions. When variable values are changed, local

propagation is used to quickly resatisfy the constraints. SkyBlue incrementally resatis�es the set

of constraints as new constraints are added and existing constraints are removed, which is partic-

ularly useful for applications where the constraint set may change during user interactions. For

example, a drawing program based on SkyBlue could allow the user to add geometric constraints

between graphic objects, and resatisfy these constraints immediately as the user moves elements of

the drawing.

SkyBlue has several features that distinguish it from simple local propagation solvers, and that

expand the range of user interface problems where it is applicable. First, SkyBlue uses strengths

associated with constraints to control which solution is produced if all of the constraints cannot be

satis�ed, or if there is more than one possible solution. Second, SkyBlue allows cycles of constraints

as well as constraint solving procedures with multiple outputs. Despite its additional power, SkyBlue

is competitive in performance with simpler constraint maintenance systems. It has been integrated
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into a user interface toolkit (Multi-Garnet) that has been used to develop interactive applications

(Section 9.4 presents performance �gures comparing Multi-Garnet to Garnet for one application).

1.1 Local Propagation

One of the simplest and most general ways to solve constraints is by local propagation. For this

technique each constraint is represented by a set of methods, procedures that access some of the

constraint's variables and calculate values for the remaining variables that satisfy the constraint.

Once some variable values are known, a local propagation solver can execute methods to calculate

values for other variables, then it can execute methods that use these variables to calculate values

for further variables, and so forth until all of the constraints have been satis�ed. For example, given

the constraints A + B = C and C + D = E, if the values of A, B, and E are known, the two

constraints can be satis�ed by executing the methods C  A+ B and D  E �C in this order. A

variety of local propagation algorithms have been developed that use di�erent techniques to choose

which methods should be executed [17, 18].

Local propagation solvers cannot solve all possible sets of constraints, such as sets of simultaneous

equations. However, local propagation solvers have the advantage that they are very general, since a

method can perform an arbitrary computation. In particular, such solvers can handle non-numeric

constraints. For example, in a user interface system one might want to maintain the relationship

between a string naming a font, and an object representing the font. One method for this constraint

could scan �le directories and read font de�nition �les while creating a new font object that cor-

responds to a given font name string. In the other direction, another method could extract a �eld

from the font object to update the font name string.

Local propagation also allows incrementally resatisfying a set of constraints when some of the variable

values are changed. This can be very e�cient if only a few of the variables need to be updated.

For example, if the constraints A + B = C and C +D = E are satis�ed by executing C  A+B

and D  E �C, and then the value of E is changed, only the second method needs to be evaluated

again.

1.2 Constraint Hierarchies and DeltaBlue

An important issue when using constraint solvers in user interfaces is the behavior of the solver when

the set of constraints is overconstrained (i.e., there is no solution that satis�es all of the constraints).

It is not acceptable for the solver to signal an error and halt while controlling a user interface. A

related problem is how to deal with underconstrained systems (i.e., there are multiple solutions).

For example, given the constraint A + B = C, if the value of C is changed the constraint could be

resatis�ed by changing the value of A or B (or both). In a user interface, di�erent alternatives may

correspond to di�erent visible behaviors of the interface, and the programmer may want to control

which behavior is chosen. The constraint hierarchy theory presented in [3] provides a way to specify

declaratively how these situations should be handled. A constraint hierarchy is a set of constraints,

each labeled with a strength, indicating how important it is to satisfy each constraint. Given an

overconstrained constraint hierarchy, a constraint solver may leave weaker constraints unsatis�ed

in order to satisfy stronger constraints. If a hierarchy is underconstrained, the user can add weak
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constraints to control which solution is chosen.

Another important issue is e�ciency. When using a constraint solver in a user interface, user

interactions may cause variables to be changed and constraints to be added and removed, and the

solver must quickly resatisfy the constraints. To support interactive performance in this situation,

the constraint solver must use incremental algorithms that produce new solutions without examining

all of the constraints in the network.

The DeltaBlue algorithm, an incremental algorithm for maintaining constraint hierarchies using

local propagation, was developed to address these issues [6, 13, 16]. The ThingLab II user interface

development environment was based on DeltaBlue, demonstrating its feasibility for constructing

user interfaces [13]. However, DeltaBlue has two signi�cant limitations: cycles in the graph of

constraints and variables are prohibited (if a cycle is found, an error is signaled and the cycle is

broken by removing a constraint) and constraint methods can only have one output variable.

1

It is not always possible to solve cycles of constraints using local propagation. However, there

are several reasons why it is desirable to allow constructing such constraint graphs. First, when

constructing a constraint graph, cycles may be introduced by mistake. It may be appropriate to

generate a warning in this situation, but the constraint solver should try to solve the rest of the

constraints even if the cycle cannot be solved. Second, in some situations it may be possible to solve

the subgraph containing the cycle by calling a more powerful solver.

DeltaBlue's requirement that methods have only one output variable restricts the types of constraints

that can be represented. There are many situations where it would be convenient to create constraint

methods with multiple outputs. For example, suppose the variablesX and Y represent the Cartesian

coordinates of a point, and the variables � and � represent the polar coordinates of this same point.

To keep these two representations consistent one would like to de�ne a constraint with a two-

output method (X;Y ) (� cos �; � sin �), and another two-output method in the other direction:

(�; �) (

p

X

2

+ Y

2

; arctan(Y;X)). It would be possible to create a set of four constraints, each

with one single-output method (X  � cos �, etc.), but this set would contain cycles. Multi-output

methods are also useful for accessing the elements of compound data structures. For example, one

could unpack a compound CartesianPoint object into two variables using a constraint with methods

(X;Y ) (Point:X; Point:Y ) and Point CreatePoint(X;Y ).

1.3 SkyBlue

The SkyBlue algorithm was developed to remove the limitations of DeltaBlue by supporting cycles of

constraints and allowing methods to have any number of outputs. Whereas DeltaBlue would signal

an error and remove constraints when a cycle was detected, SkyBlue allows cycles to be constructed.

SkyBlue cannot satisfy the constraints around a cycle, but it correctly maintains the non-cyclic

constraints elsewhere in the graph. Future work will extend SkyBlue to call a specialized constraint

solver to solve the constraints around a cycle, and continue using local propagation to satisfy the

rest of the constraints.

SkyBlue is currently being used as the constraint solver in Multi-Garnet [15], a package that ex-

1

Reference [7] presents another algorithm that solves constraint hierarchies, with roughly the same power and

limitations as DeltaBlue.
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Figure 1: A scatterplot built using SkyBlue constraints: The initial scatterplot, the initial scatterplot

after moving the X-axis, and the initial scatterplot after scaling the point cloud by moving a point.

tends the Garnet user interface construction system [14] with support for hierarchies of multi-way

constraints. Figure 1 shows three views of a graphic user interface constructed in Multi-Garnet: a

scatterplot displaying a set of points. SkyBlue constraints are used to specify relationships between

the data values, the screen positions of the points, and the positions and range numbers of the X

and Y-axes. As the scatterplot points and axes are moved with the mouse, SkyBlue maintains the

constraints so that the graph continues to display the same data.

The scatterplot application exercises many of the features of SkyBlue. SkyBlue resatis�es the con-

straints quickly enough to allow continuous interaction (Section 9.4 gives some performance �gures).

Weak constraints are added during di�erent interactions to specify variables that should not be

changed during the interaction. Multi-way constraints allow any of the scatterplot points to be se-

lected and moved, which changes the positions of the other points and reshapes or moves the point

cloud. Finally, the scatterplot uses constraints with multi-output methods, such as a constraint with

three two-output methods that maintains the relationship between the X-coordinates of the ends

of the X-axis, the range values at the ends of the axis, and the scale and o�set variables used to

position points relative to the axis. It would be di�cult to build this application in Garnet (which

only supports one-way single-output constraints) without maintaining some of the relationships by

mechanisms other than the constraint solver.

Multi-Garnet and SkyBlue implementations are available (contact the author for more information).

SkyBlue is also currently being used as the constraint solver in an implementation of the Kaleidoscope

language [5] and as an equation manipulation tool in the Pika simulation system [1].

2 Method Graphs

A SkyBlue constraint is represented by one or more methods. Each method is a procedure that reads

the values of a subset of the constraint's variables (the method's input variables) and calculates values

for the remaining variables (the method's output variables) that satisfy the constraint. For example,

the constraint A + B = C could be represented by three methods: C  A+ B, A C �B, and

B  C � A. If the value ofA or B were changed, SkyBlue could maintain the constraint by executing
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C  A +B to calculate a new value for C.

The meaning of a SkyBlue constraint is speci�ed entirely by its methods. By de�nition a constraint

is satis�ed from the moment one of its methods is executed until one of its variables is changed.

SkyBlue does not check that the methods of a constraint are de�ned consistently to implement a

particular relation. Method procedures should be de�ned as functions without side-e�ects from the

input variables to the output variables, so that SkyBlue may execute them at arbitrary times to

satisfy the constraints.

2

V3

C2

V6

V7

V1
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C4 V5
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C3

Figure 2: A method graph with an unenforced constraint (C5), a method con
ict (at V 5), and a

directed cycle (between C1 and C2).

To satisfy a set of constraints, SkyBlue chooses one method to execute from each constraint, known

as the selected method of the constraint. The set of constraints and variables form an undirected

constraint graph with edges between each constraint and its variables. The constraint graph, together

with the selected methods, form a directed method graph. In this paper, method graphs are drawn

with circles representing variables and squares representing constraints (Figure 2). Lines are drawn

between each constraint and its variables. If a constraint has a selected method, arrows indicate the

outputs of the selected method. If a constraint has no selected method, it is linked to its variables

with dashed lines. Small diagrams beneath each constraint square indicate the unselected methods

for the constraint (if any). These diagrams are particularly useful when a constraint doesn't have

methods in all possible directions or has multi-output methods (such as C1).

The following terminology will be used in this paper. If a constraint has a selected method in the

current method graph the constraint is enforced, otherwise it is unenforced. Assigning a method

as the selected method of a constraint is known as enforcing the constraint. Assigning no method

as the selected method of a constraint is known as revoking the constraint. A variable that is an

output of a constraint's selected method is determined by that constraint. A variable that is not

an output of any selected method is undetermined. Following the selected method's output arrows

leads to downstream variables and constraints. Following the arrows in the reverse direction leads

to upstream variables and constraints.

If a method graph contains two or more selected methods that output to the same variable, this is

called a method con
ict. In Figure 2, there is a method con
ict between the selected methods of

2

Sometimes, it may be useful to de�ne SkyBlue methods that are not functions or that have side-e�ects. See

Section 7 for more information.
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Figure 3: A method graph where all of the constraints can be satis�ed.

C3 and C4. SkyBlue prohibits method con
icts because they prevent satisfying both constraints

simultaneously. If we satisfy C3 by executing its selected method (setting V 5), and then satisfy

C4 by executing its selected method (again setting V 5), then C3 might no longer be satis�ed. If

a method graph has no method con
icts and no directed cycles, then it can be used to satisfy the

enforced constraints by executing the selected methods so any determined variable is set before it

is read (i.e., executing the methods in topological order). For example, Figure 3 shows a method

graph for the same constraints where all of the constraints can be satis�ed by executing the selected

methods for C1, C2, C3, C4, and C5, in this order. Note that the method graph speci�es how to

satisfy the enforced constraints, regardless of the particular values of the variables.

If a method graph contains directed cycles, such as the one between C1 and C2 in Figure 2, it is not

possible to �nd a topological sort of the selected methods. SkyBlue may produce method graphs

with cycles. Section 4.5 discusses how SkyBlue executes methods and handles cycles of methods.

3 Constraint Hierarchies

If there is no con
ict-free method graph that enforces every constraint in a constraint graph, then

the solver has to choose which constraints to enforce. Alternatively, if there are multiple possible

method graphs for a given constraint graph, the solver will have to choose between them. The

programmer can in
uence these choices by organizing the constraints into a constraint hierarchy.

A constraint hierarchy is a set of constraints where each constraint is labeled with one of an ordered

list of strengths. In this paper, strengths will be written using the symbolic names required,

strong, medium, weak, and weakest, in order from strongest to weakest. When solving a constraint

hierarchy it is permitted to leave a weaker constraint unsatis�ed, if this is necessary to satisfy a

stronger constraint. If there are two or more con
icting constraints with the same strength, one is

chosen to be satis�ed arbitrarily.

3

3

Constraint hierarchies are usually de�ned with the additional condition that all required constraints must be

satis�ed. The SkyBlue algorithm does not enforce this condition. See Section 4.3 for more information.
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weak weak
C3
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(a) A non-LGB method graph.

V1
C2C1 C4

weak weak
C3
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(b) Another non-LGB method graph.

V1
C2C1 C4

weak weak
C3

V2 V3mediumstrong

(c) An LGB method graph.

V1
C2C1 C4

weak weak
C3

V2 V3mediumstrong

(d) Another LGB method graph for the same constraints.

V1
C2C1 C4

weak
C3

V2 V3mediumstrongmedium

(e) This is the only LGB method graph if C1 has medium strength.

Figure 4: LGB and non-LGB Method Graphs.

The SkyBlue solver uses the constraint strengths to construct locally-graph-better (or LGB) method

graphs [13]. A method graph is LGB if there are no method con
icts and there are no unenforced

constraints that could be enforced by revoking one or more weaker constraints (and possibly changing

the selected methods for other enforced constraints with the same or stronger strength).

4

For

example, consider the method graph in Figure 4a. This graph is not LGB because the strong

constraint C2 could be enforced by choosing the method that outputs to V 2 and revoking the

medium constraint C3, producing Figure 4b. Actually, this method graph is not LGB either since

C3 could be enforced by revoking C4, producing Figure 4c. This method graph is LGB since there

are no unenforced constraints that could be enforced by revoking a weaker constraint.

There may be multiple LGB method graphs for a given constraint graph. Figure 4d shows another

LGB method graph which is neither better nor worse than Figure 4c. Given these constraints,

SkyBlue would construct one of these two method graphs arbitrarily. The constraint strengths

4

Reference [13] de�nes \locally-graph-better" such that directed cycles are prohibited. As used in this paper, LGB

method graphs may include cycles.
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could be modi�ed to favor one alternative over the other. For example, if the strength of C1 was

changed to medium, the only LGB method graph would be the one in Figure 4e. One way for the

programmer to control the method graphs constructed is to add stay constraints that have a single

null method with no inputs and a single output. A stay constraint speci�es that its output variable

should not be changed. A similar type of constraint is a set constraint, which sets its output to a

constant value. Set constraints can be used to inject new variable values into a constraint graph. In

Figure 4, C1 and C4 are stay or set constraints.

Reference [3] presents several di�erent ways to de�ne which variable values \best" satisfy a constraint

hierarchy. The concept of read-only variables extends this theory to constraints that may not be able

to set some of their variables, such as SkyBlue constraints without methods in all possible directions.

For many constraint graphs, LGB method graphs compute \locally-predicate-better" solutions to

the constraint hierarchy as de�ned in the theory. Reference [13] examines the relation between LGB

method graphs and locally-predicate-better solutions.

4 The SkyBlue Algorithm

The SkyBlue constraint solver maintains the constraints in a constraint graph by constructing an

LGB method graph and executing the selected methods in the method graph to satisfy the enforced

constraints. Initially, the constraint graph and the corresponding LGB method graph are both

empty. SkyBlue is invoked by calling two procedures, add-constraint to add a constraint to the

constraint graph, and remove-constraint to remove a constraint. As constraints are added and

removed, SkyBlue incrementally updates the LGB method graph and executes methods to resatisfy

the enforced constraints.

The complete SkyBlue algorithm is rather complex so the explanation is divided into several sections.

Sections 4.1 and 4.2 present an overview of add-constraint and remove-constraint. Section 4.4

describes how a constraint is enforced by constructing a method vine, the basic operation of the

SkyBlue algorithm. Section 4.5 explains how SkyBlue executes the selected methods of the enforced

constraints and how cycles are handled. The algorithm described in these sections produces correct

results, but its performance su�ers as the constraint graph becomes very large. Section 5 presents

several techniques used in the complete algorithm that signi�cantly improve the e�ciency of SkyBlue

for large constraint graphs.

These sections are meant to present a high-level view of SkyBlue, so they do not give all of the

low-level details of the SkyBlue algorithm. More detailed information on SkyBlue is included along

with complete pseudocode for the algorithm in Section 6.

4.1 Adding Constraints

When a new constraint is added to the constraint graph it may be possible to alter the method graph

to enforce it by selecting a method for the constraint, switching the selected methods of enforced

constraints with the same or stronger strength, and possibly revoking one or more weaker constraints.

This process is known as constructing a method vine or mvine (this is described in Section 4.4). If

constraints are revoked during this process, this may enable other unenforced constraints to be
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enforced by constructing additional mvines. add-constraint adds a new constraint cn to the

constraint graph by performing the following steps:

1. Add cn to the constraint graph (unenforced) and try to enforce cn by constructing an

mvine. If it is not possible to construct such an mvine, leave cn enenforced and return from

add-constraint. In this case, the method graph is unchanged (it is still LGB).

2. Repeatedly try to enforce all of the unenforced constraints in the constraint graph by con-

structing mvines until none of the remaining unenforced constraints can be enforced. Note

that each time an unenforced constraint is successfully enforced, one or more weaker con-

straints may be revoked. These newly-unenforced constraints must be added to the set of

unenforced constraints.

3. Execute all of the selected methods in the method graph to satisfy the constraints (see Sec-

tion 4.5).

The second step must terminate because there are a �nite number of constraints. Each time an

unenforced constraint is enforced, one or more weaker constraints may be added to the set of unen-

forced constraints. These additional constraints may be enforcible, adding still weaker constraints

to the set of unenforced constraints, but this process cannot go on inde�nitely. Eventually the pro-

cess will stop with a set of unenforcible constraints. When the second step terminates the method

graph must be LGB. If it was not LGB then there would be an unenforced constraint that could

be enforced by setting its selected method, switching the selected methods of constraints with the

same or stronger strengths, and possibly revoking one or more weaker constraints. This is precisely

the case when it is possible to construct an mvine. If no more mvines can be constructed then the

method graph must be LGB.

As an example, suppose that add-constraint has just added C2 to the constraint graph and the

current method graph is shown in Figure 4a. One way that an mvine could be constructed is by

enforcing C2 with the method that outputs to V 2 and revoking C3 (Figure 4b). Given this method

graph, the second step would try constructing an mvine to enforce C3, possibly by revoking C4

(Figure 4c). At this point it is not possible to construct an mvine to enforce C4 so the second step

terminates. This method graph is LGB. Alternatively, if the �rst mvine had been constructed by

revoking C1 then the LGB method graph of Figure 4d would have been produced immediately and

the second step would not have been able to enforce C1.

4.2 Removing Constraints

remove-constraint is very similar to add-constraint. When an enforced constraint is removed

this may allow some unenforced constraints to be enforced, which leads to the same process of

repeatedly constructing mvines as in add-constraint. remove-constraint removes a constraint

cn from the constraint graph by performing the following steps:

1. If cn is currently unenforced, simply remove it from the constraint graph and return from

remove-constraint. Removing an unenforced constraint cannot make any other constraints

enforcible so the method graph is still LGB.
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2. Repeatedly try enforcing all of the unenforced constraints in the constraint graph by construct-

ing mvines (adding revoked constraints to the set of unenforced constraints) until none of the

unenforced constraints can be enforced. As in add-constraint this step eventually terminates

with an LGB method graph.

3. Execute all of the selected methods in the method graph to satisfy the constraints (see Sec-

tion 4.5).

4.3 required Constraints

The strongest strength, required, is typically used for constraints that must always be enforced.

This raises the issue of how to handle two required constraints that con
ict (i.e., both constraints

cannot be enforced without causing a method con
ict). Some solvers handle this situation by

automatically removing one of the con
icting required constraints. This is not a very satisfactory

solution, because it removes control from the application over which constraints are in the constraint

graph.

SkyBlue addresses this issue by treating the required strength the same as any other strength.

The SkyBlue algorithm does not guarantee that all required constraints in the constraint graph

are enforced. If two con
icting required constraints are added, one will be enforced, and the other

will be left unsatis�ed. Later, if the enforced con
icting constraint is removed, then the unsatis�ed

required constraint will be enforced.

If an application using SkyBlue requires that all required constraints must always be satis�ed,

then this application will have to do a little extra work to detect and handle con
icts between

required constraints. Speci�cally, after add-constraint is called to add a required constraint, the

application can detect whether the newly-added constraint is enforced, and call remove-constraint

to remove this constraint if it is not enforced. This will guarantee that all required constraints in

the constraint graph are enforced. Note that SkyBlue will never revoke a required constraint once

it is enforced, except when the constraint is removed by an explicit call to remove-constraint. This

is true because the only other time that constraints are revoked is when mvines are constructed.

Since required is the strongest strength, and constructing an mvine can only revoke constraints

weaker than the root constraint of the mvine, then required constraints cannot be revoked while

constructing an mvine.

4.4 Constructing Method Vines

The SkyBlue algorithm is based on repeatedly trying to enforce an unenforced constraint by changing

the selected methods of constraints with the same or stronger strength and possibly revoking one or

more constraints with weaker strengths. There are many ways this could be implemented, including

trying all possible assignments of selected methods without method con
icts. The technique used in

SkyBlue, known as constructing a method vine (or mvine), uses a backtracking depth-�rst search.

An mvine is constructed by selecting a method for the constraint we are trying to enforce (the root

constraint) and adding it to the mvine. If this method has a method con
ict with the selected

methods of other enforced constraints, we select new methods for these other constraints and add
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them to the mvine. These new selected methods may con
ict with yet other selected methods, and so

on. This process extends through the method graph, which builds a \vine" of newly-chosen selected

methods growing from the root constraint. This growth process may terminate in the following

ways:

1. If a newly-selected method in the mvine outputs to variables that are not currently determined

by any constraint, then this branch of the mvine is not extended any further.

2. If a newly-selected method in the mvine con
icts with a selected method whose constraint is

weaker than the root constraint, then the weaker constraint is revoked, rather than attempting

to �nd an alternative selected method for it. As a result, all of the methods in the mvine will

belong to constraints with equal or stronger strengths than the root constraint.

3. If an alternative selected method is chosen for a constraint and there is a method con
ict with

another selected method in the mvine, then we cannot add this method to the mvine and

must try another method. If all of the methods of this constraint con
ict with other selected

methods in the mvine, then the mvine construction process backtracks: previously-selected

methods are removed from the mvine and the mvine is extended using other selected methods

for these constraints. If no method can be chosen for the root constraint that allows a complete

con
ict-free mvine to be constructed, then the root constraint cannot be enforced.

Figure 5 presents an example demonstrating the process of constructing an mvine.

A complete mvine is a connected subgraph of the method graph. If all of the constraint methods in

the mvine have a single output, then an mvine will have the structure of a single stalk leading from

the root constraint through a series of other constraints with changed selected methods. If there is

a method with multiple outputs in the mvine, the mvine will divide into multiple branches with one

branch for each output. The di�erent branches cannot be extended independently since methods

in one branch prevent choosing methods in another branch that output to the same variables.

The backtracking search must take this into account by trying all possible combinations of selected

methods for the constraints in the di�erent branches (see Section 6.3 for pseudocode that implements

this search).

An mvine is not necessarily a tree: separate branches may merge and it may contain directed cycles.

The mvine construction process ensures that there are no method con
icts in an mvine, but it is

possible for one mvine method to output to one of the inputs of another mvine method.

4.5 Executing Methods

Given a method graph without method con
icts or directed cycles, the enforced constraints can be

satis�ed by executing the selected methods in order so any determined variable is set before it is

read (i.e., executing the methods in topological order). If there is a directed cycle, it is not possible

to �nd a topological sort of the selected methods. In this case, SkyBlue sorts and executes only

the selected methods upstream of cycles. Any methods in a cycle or downstream of a cycle are

not executed and their output variables are marked to specify that their values do not necessarily

satisfy the enforced constraints. If a cycle is later broken the methods in the cycle and downstream
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requiredV1 V2

V3

V5

V6V4

required
C2C1 C4

required
C3

C5
weak

strong

Suppose we start with this method graph, and we

want to enforce the strong constraint C1 by build-

ing an mvine.

requiredV1 V2

V3

V5

V6V4

required
C2C1 C4

required
C3

C5
weak

strong

First, C1's selected method is set to its only

method so it determines V 1.

requiredV1 V2

V3

V5

V6V4

required
C2C1 C4

required
C3

C5
weak

strong

This causes a method con
ict with C2 so we have

to enforce C2 with its other method.

requiredV1 V2

V3

V5

V6V4

required
C2C1 C4

required
C3

C5
weak

strong

This causes method con
icts with C3 and C4.

Suppose we process C4 �rst: we can simply switch

its selected method so it determines V 5. V 5 is not

determined by any other constraints so we don't

have to extend this branch of the mvine.

requiredV1 V2

V3

V5

V6V4

required
C2C1 C4

required
C3

C5
weak

strong

Now, we have to process C3 by choosing another

method. Suppose we try the method that deter-

mines V 2. This is not permitted because it causes

a method con
ict with C2, which is already in the

mvine.

requiredV1 V2

V3

V5

V6V4

required
C2C1 C4

required
C3

C5
weak

strong

Therefore, we have to backtrack and try another

method for C3. Suppose we now try the method

that determines V 4 (causing a method con
ict

with C5).

requiredV1 V2

V3

V5

V6V4

required
C2C1 C4

required
C3

C5
weak

strong

Now we need to handle C5. Because it is weaker

than C1 we don't have to �nd an alternative

method but can simply revoke it, producing this

�nal method graph.

Figure 5: Constructing an mvine. Methods in the mvine are drawn with thicker lines.
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are executed correctly. SkyBlue will be extended in the future to call more powerful solvers to �nd

values satisfying a cycle of constraints and then propagate these values downstream.

For more detailed information, see Section 6.6 for pseudocode used in SkyBlue to execute methods.

One particular optimization SkyBlue does not currently implement is detecting when a method

calculates an output value that is the same as the current value. In this case, it may be possible to

avoid executing downstream methods. Algorithms that implement this optimization are described

in references [10, 19].

5 Performance Techniques

The SkyBlue algorithm as presented in Section 4 works correctly, but its performance su�ers as the

constraint graph becomes very large. This happens for two reasons: First, larger constraint graphs

may contain greater numbers of unenforced constraints that SkyBlue has to try enforcing by con-

structing mvines. Second, each attempt to construct an mvine may involve searching through more

enforced constraints. The following subsections describe techniques used in SkyBlue to improve its

performance with larger constraint graphs. Section 9.2 presents performance �gures demonstrating

that these techniques improve SkyBlue's performance.

These techniques use two strategies. One strategy is to avoid mvine construction whenever possible.

In many cases it is possible to determine that an unenforced constraint cannot be enforced without

actually trying to construct an mvine. Rather than considering the set of all of the unenforced

constraints in the constraint graph, a much smaller set of unenforced constraints can be collected

and processed until none of them can be enforced. Sections 5.1 and 5.2 present techniques based on

this strategy.

The second strategy is to reduce backtracking while constructing mvines by rejecting some of the

alternative selected methods without trying to construct the rest of the mvine. Section 5.3 discusses

a technique based on this strategy.

5.1 The Collection Strength Technique

When SkyBlue is started, the initial empty method graph is LGB. Every call to add-constraint

or remove-constraint leaves an LGB method graph. Therefore, the current method graph must

be LGB whenever add-constraint or remove-constraint is called. This fact can be used to avoid

collecting and trying to enforce some of the unenforced constraints.

Whenever add-constraint is called to add a constraint cn to the constraint graph, it is impossible

to enforce any unenforced constraints with the same or stronger strength than cn, other than cn

itself. If it was possible to enforce any such constraint after cn was added, then it would have been

possible to enforce it before cn was added and the previous method graph would not have been

LGB.

Whenever remove-constraint is called to remove an enforced constraint cn, it is impossible to
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enforce any constraints that are stronger than cn. If it was possible to enforce any stronger constraint

after cn was removed, then it would have been possible to enforce it before cn was removed and

the previous method graph would not have been LGB. Note that unlike add-constraint, removing

a constraint may allow unenforced constraints with the same strength to be enforced, as well as

weaker ones.

5.2 The Local Collection Technique

If the method graph is LGB and a constraint is added or removed from the constraint graph,

any unenforced constraints in a subgraph unconnected to the added or removed constraint clearly

cannot be enforced. It is possible to be more selective: Whenever add-constraint is called to

add a constraint cn and an mvine is successfully constructed to enforce it, it is su�cient to collect

unenforced constraints that constrain variables downstream in the method graph from all of the

\redirected variables" whose determining constraint has changed. Whenever remove-constraint

is called to remove a constraint cn, it is su�cient to collect unenforced constraints that constrain

variables downstream from the variables previously determined by cn.

Whenever SkyBlue successfully constructs an mvine, additional unenforced constraints can be added

to the set of collected unenforced constraints by scanning downstream from the redirected variables.

As each of these constraints is processed it can be removed from the set. When the set is empty

there are no more unenforced constraints that can be enforced.

(a)

V1 weakV2 V3strong
C1 C3

V4

(b)

V1 weakV2 V3mediumstrong
C1 C2 C3

V4

Figure 6: Method graphs before and after adding C2.

A similar technique can be used to reduce the number of methods executed. Rather than executing

the selected methods of all enforced constraints in the constraint graph, it is only necessary to

collect and execute the selected methods of newly-added constraints, and methods downstream of

redirected variables. For example, suppose a constraint graph is satis�ed using the method graph

in Figure 6a. If C2 is added, producing the LGB method graph in Figure 6b, then only the selected

methods for C2 and C3 would have to be executed (in that order). The selected method for C1

does not have to be re-executed.

5.3 Walkabout Strengths

An mvine is constructed by repeatedly choosing a new selected method for a constraint and then

trying to extend the mvine from the outputs of the new selected method. It will be possible to

complete the mvine below the outputs only if the mvine eventually encounters undetermined variables
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or constraints weaker than the root constraint, and there are no method con
icts between di�erent

branches of the mvine. If SkyBlue could predict that one of these conditions was untrue then the

selected method could be rejected immediately without trying to extend the mvine.

The DeltaBlue algorithm predicts whether a constraint can be enforced by using the concept of

walkabout strengths [6]. A variable's walkabout strength is the strength of the weakest constraint

that would have to be revoked to allow that variable to be determined by a new constraint. This

could be the strength of the constraint that currently determines the variable or the strength of a

weaker constraint elsewhere in the method graph that could be revoked after switching the selected

methods of intermediate constraints. If the variable is not currently determined by any constraint

then the walkabout strength is de�ned as weakest, which is a special strength weaker than any

constraint. A variable will also have a walkabout strength of weakest if it can be left undetermined

by switching selected methods without revoking any constraints.

5

One important property of DeltaBlue's walkabout strengths is that they can be calculated using local

information. The walkabout strength of a variable determined by a constraint can be calculated from

the constraint's strength, its methods, and the walkabout strengths of the rest of the constraint's

variables. If the method graph has no cycles (required for DeltaBlue), all of the variable walkabout

strengths can be updated by setting the walkabout strengths of all undetermined variables to weakest

and processing each enforced constraint in topological order to set the walkabout strengths of the

determined variables.

requiredV2

required

required

V1

V3

V4

V5

V6
C1

C2

C3

C4

C5

weakest

weakestweakest

weakest weakest

required
requiredweakest

Figure 7: Method graph with a possible con
ict.

There is a problem with using walkabout strengths in SkyBlue because methods may have multiple

outputs. Consider the method graph of Figure 7. DeltaBlue would correctly calculate the walkabout

strengths of V 2{V 6 to be weakest. But what about V 1? The walkabout strengths of V 2 and V 3

imply that V 1 should have a walkabout strength of weakest, since the alternative (multi-output)

method can be chosen that outputs to V 2 and V 3, which both have weakest walkabout strengths.

However, it is not possible for a method to set both V 2 and V 3 simultaneously, without revoking

one of the required constraints. Simply switching methods would lead to a method con
ict with

both C4 and C5 determining V 6. However, this cannot be detected without exploring the graph,

which would remove one of the bene�ts of walkabout strengths (i.e., they can be calculated using

local information).

In SkyBlue, the de�nition of walkabout strength is modi�ed. A variable's walkabout strength is

de�ned as a lower bound on the strength of the weakest constraint in the current method graph

that would need to be revoked to allow the variable to be determined by a new constraint. SkyBlue

5

Another interpretation of the weakest strength is that each variable has an implicit stay constraint with a strength

of weakest, which speci�es that the variable value doesn't change unless a stronger constraint determines it.
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uses the modi�ed de�nition of walkabout strengths to reject methods when constructing an mvine:

if any of the outputs of a method have walkabout strengths equal to or stronger than the root

constraint, then it is not possible to complete the mvine using this method. Walkabout strengths

cannot eliminate all of the backtracking during mvine construction but it can reduce it considerably.

Whenever SkyBlue successfully constructs an mvine it modi�es the method graph, so the walka-

bout strengths must be updated to correspond to the new method graph. This could be done by

processing all of the enforced constraints in the constraint graph (in topological order) and recal-

culating the walkabout strengths of the determined variables. It is possible to apply the technique

from Section 5.2 in this situation by processing only the enforced constraints downstream of the

redetermined variables. See Section 6.4 for pseudocode implementing this.

compute-walkabout-strengths(cn: Constraint)

current-outputs := cn.selected-method.outputs

For all variables out-var in current-outputs do

min-strength := cn.strength

For all methods mt in cn.methods do

If not(member(out-var, mt.outputs)) then

;; mt doesn't output to out-var, so it

;; is a possible alternative method.

max-strength := max-out(mt, current-outputs)

If weaker(max-strength, min-strength) then

min-strength := max-strength

out-var.walk-strength := min-strength

;; max-out returns the strongest walkabout strength among

;; mt's outputs, ignoring any variables in current-outputs.

max-out(mt: Method, current-outputs: List of Variables): Strength

max-strength := *weakest-strength*

For all variables var in mt.outputs do

If not(member(var, current-outputs)) then

If weaker(max-strength, var.walk-strength) then

max-strength := var.walk-strength

Return max-strength

Figure 8: Pseudocode for recomputing walkabout strengths.

SkyBlue uses the modi�ed de�nition of walkabout strengths to simplify the processing of cycles.

If there are directed cycles in the method graph, it is not possible to calculate the walkabout

strengths for all inputs of the selected methods in the cycle before processing their constraints. This

could be handled by examining all of the constraints in the cycle, but this would require non-local

computation. Instead, SkyBlue breaks the cycle by choosing a selected method in the cycle and

calculating the walkabout strengths of its outputs as if all of its input variables in the cycle had

walkabout strengths of weakest. This is guaranteed to be a correct lower bound. This simpli�es the

updating of walkabout strengths at the cost of increasing the search when constructing an mvine,

because the walkabout strengths in a cycle and downstream may be weaker than necessary.
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Figure 8 shows pseudocode for setting the walkabout strengths of the outputs of an enforced con-

straint's selected method, once the walkabout strengths of the method's inputs are known. For

each of these output variables, compute-walkabout-strengths examines the alternative methods

of the constraint that don't output to it (and thus could be used to enforce this constraint if another

constraint determined this variable). For each of these methods the strongest walkabout strength

among the method's outputs is found (by calling max-out). When examining the outputs of an

alternative method some of the outputs may be ignored: if an alternative method output is already

being determined by the constraint then no additional constraints would need to be revoked for the

constraint to determine this variable.

required
C1

medium
C2

C3

C4

required

medium

medium

medium

strong

weak

weak

V1 V2

V3

V4

V5

V6weakest

Figure 9: Method graph with an multi-output method.

The walkabout strengths in Figure 9 could be calculated by setting V 1's walkabout strength to

weakest and then calling compute-walkabout-strengths to process C1, C2, C3, and C4 in that

order. Note that C1 is only a one-way constraint: if it had another method that set V 1, then

the walkabout strength of V 2 would be weakest. Note also that the walkabout strength of V 4 is

required because the unselected method for C2 also outputs to this variable.

6 SkyBlue Pseudocode

This section presents pseudocode for the SkyBlue algorithm, derived from the original Common Lisp

implementation. It is detailed enough to be used to implement SkyBlue in a variety of languages.

It has been used to develop implementations in Smalltalk and C++. Contact the Author for the

availability of implementations of SkyBlue in various languages.

6.1 SkyBlue Data Structures

This section presents the data structures used in the pseudocode. Record �elds are accessed using

\dot" notation. For example, the mark �eld of a constraint cn is referenced by cn.mark, and set by

cn.mark := value.

17



6.1.1 Variables

�eld name type description

value Any the value of this variable

constraints List of Constraints all constraints that reference this variable

determined-by Constraint the constraint that determines this variable, or nil

walk-strength Strength the walkabout strength of this variable

mark Mark this variable's mark

valid Boolean true if this variable value is valid

One variable record is used to represent each constrained variable. In addition to its value, a

variable record has a list of all the constraints in the constraint graph that refer to it (constraints)

and a pointer to the enforced constraint that determines its value in the current method graph

(determined-by). If no constraint determines the variable's value, the determined-by �eld is set

to nil. The walk-strength �eld speci�es the walkabout strength of the variable (as de�ned in

Section 5.3). The variable mark �eld is used when building method vines (see Section 6.3). The

valid �eld is used when executing methods to satisfy constraints. This is false if this variable is

in a cycle or downstream of a cycle, otherwise it is true (see Section 6.6).

Variables are initialized at creation time as if they were determined by a virtual stay constraint with

a strength of weakest.

create-variable(initial-value: Any): Variable

var := new Variable

var.value := initial-value

var.constraints := fg

var.determined-by := nil

var.walk-strength := *weakest-strength*

var.mark := nil

var.valid := true

Return var

Note that the constraints �eld only includes those constraints that have been added to the

constraint graph. Each time a constraint is added or removed from the constraint graph, the

constraints �elds of its variables are modi�ed.

6.1.2 Constraints

�eld name type description

strength Strength this constraint's level in the constraint hierarchy

variables List of Variables the variables constrained by this constraint

methods List of Methods the possible methods for enforcing this constraint

selected-method Method the method used to enforce this constraint, or nil

mark Mark this constraint's mark

A constraint record represents a constraint with the strength speci�ed by strength that constrains

the variables in variables. The mark �eld is used throughout the SkyBlue algorithm to mark
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constraints while traversing the constraint graph. The methods �eld contains the alternative methods

that could be executed to satisfy the constraint. The selected-method �eld records which of these

methods is used to enforce the constraint in the current method graph. If the constraint is not

enforced, the selected-method �eld is set to nil. The enforced function is used to test if a

constraint is enforced:

enforced(cn: Constraint): Boolean

If cn.selected-method 6= nil then

Return true

Else

Return false

Constraints are initialized at creation time by specifying their strength, variables, and methods:

create-constraint(str: Strength,

vars: List of Variables,

mts: List of Methods): Constraint

cn := new Constraint

cn.strength := str

cn.variables := vars

cn.methods := mts

cn.selected-method := nil

cn.mark := nil

Return cn

6.1.3 Methods

�eld name type description

code Procedure a procedure that calculates the method outputs

inputs List of Variables the input variables of this method

outputs List of Variables the output variables of this method

A method record represents one of the possible ways to enforce a constraint. A method has an

enforcement procedure (code) and �elds containing the constrained variables that it reads (inputs)

and writes (outputs).

Methods are initialized at creation time by specifying their code procedure, inputs, and outputs:

create-method(proc: Procedure,

input-vars: List of Variables,

output-vars: List of Variables): Methods

mt := new Method

mt.code := proc

mt.inputs := input-vars

mt.outputs := output-vars

Return mt

The inputs and outputs lists must not contain any duplicates. These two �elds must also partition
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the variables of the constraint. This means that for any method mt or a constraint cn, all variables

of the constraint must be included in the inputs or outputs lists (i.e, mt.inputs[ mt.outputs =

cn.variables), and no variable can be in both the inputs or outputs lists (i.e., mt.inputs \

mt.outputs= ;).

In the pseudocode below, a method is executed by calling execute-method. This procedure should

call the method's code procedure to read the values of the input variables and set the output variable

values such that the constraint is satis�ed. The exact details of how the code procedure is invoked

depend on the implementation language. One possibility would be to call the code procedure passing

its method record as a single argument, and let the procedure explicitly extract the input and output

variables from the method record.

6.1.4 Strengths

Strengths are data objects representing the di�erent constraint hierarchy levels. These have been

represented as Lisp atoms or integers in di�erent implementations of SkyBlue. The implementation

must provide some way for the programmer to access particular strength objects when creating

constraints. The SkyBlue pseudocode references the following function and variable:

weaker(s1: Strength, s2: Strength) is a function that returns true if strength s1 is strictly

weaker than strength s2, false otherwise. Strengths must be totally ordered: for any two strengths

s1 and s2, either weaker(s1,s2) or weaker(s2,s1) or s1=s2 must be true.

*weakest-strength* is a global variable containing the weakest strength. This strength is used as

the strength of undetermined variables, which implicitly have a stay constraint with the weakest

strength. This should not be used as the strength of any constraint created by the programmer.

SkyBlue assumes that the list of strengths is �xed, and does not support changing or reordering

the list of strengths while maintaining the constraint graph. An implementation could allow the

user to initialize the list of strengths to an arbitrary list of strength objects, before any constraints

are added to the constraint graph. In this case, *weakest-strength* must be set to the weakest

constraint strength.

In examples in this paper, the strength levels are referred to by the symbolic names required,

strong, medium, and weak, and weakest, in order from strongest to weakest.

6.1.5 Marks

Both variable and constraint records contain a mark �eld. The mark �eld is used throughout the Sky-

Blue pseudocode in procedures that construct method vines, traverse the constraint graph structure,

and topologically sort enforced constraints in the method graph.

The function new-mark() is a primitive function that returns a new and unique mark value. Current

implementations of SkyBlue use monotonically increasing 32-bit integers and assume that the counter

will never over
ow.
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In the pseudocode, nil is also used as a mark value to un-mark variables and constraints. Any value

that would never be returned by new-mark could also be used.

6.1.6 Lists and Stacks

The SkyBlue pseudocode uses various types of collections of objects. A List is an ordered list which

may contain duplicates. A Stack is a normal �rst-in-�rst-out stack. The order of the elements is

maintained and objects may appear in the stack multiple times. The functions push(obj: Any,

st: Stack) and pop(st: Stack) are used to add an element on the top of the stack, and remove

(and return) the top element of the stack. Elements are added to a list using phrases such as \Add

cn to var.constraints". If the position (at the beginning or end) of the new element in the list

is not speci�ed, then it doesn't matter.

Both lists and stacks allow iterating through all of the elements without changing the collection. The

function member(obj: Any, lst: List or Stack of Any) returns true if the object is present

in the list, false otherwise. All operations that add or remove elements to lists or stacks are

destructive operations. For example, a list can be passed to a subprocedure which adds some more

elements to the list, and these new elements can later be accessed by the calling procedure.

6.2 SkyBlue Entry Points: add-constraint and remove-constraint

add-constraint and remove-constraint are the entry points for SkyBlue. At any moment there

is a set of constraints considered to be in the constraint graph. add-constraint adds a constraint

to the constraint graph. remove-constraint removes a constraint from the constraint graph.

add-constraint must not be called on a constraint that is already in the constraint graph, and

remove-constraint must not be called on a constraint that is not in the constraint graph.

add-constraint adds the constraint cn to the constraint graph, updates the LGB method graph,

and executes the selected methods in the method graph. add-constraint �rst initializes the

�elds of the constraint and updates the constraints �elds of its variables. Then, it calls

update-method-graph to update the LGB method graph to include the unenforced constraints in the

list unenforced-cns (initially just cn), accumulating any redetermined variables and newly-added

constraints in exec-roots. Finally, exec-from-roots is called to execute the selected methods

downstream of these roots, to satisfy the constraints in the method graph.

It is possible that add-constraintwill not be able to enforce the constraint cn, if there are stronger

constraints in the graph. In this case, update-method-graph will not change the method graph,

and exec-roots will be empty (and exec-from-roots will do nothing).
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add-constraint(cn: Constraint)

unenforced-cns := new empty List of Constraints

exec-roots := new empty List of Any

;; initialize cn's �elds, and register cn with its variables

cn.selected-method := nil

cn.mark := nil

For all variables var in cn.variables do

Add cn to var.constraints

;; add cn to method graph (if possible), collecting exec-roots.

Add cn to unenforced-cns

update-method-graph(unenforced-cns, exec-roots)

;; satisfy method graph constraints by executing methods.

exec-from-roots(exec-roots)

remove-constraint removes the constraint cn from the constraint graph, updates the LGB method

graph, and executes the selected methods in the method graph. remove-constraint �rst unregisters

cn by removing it from the lists of constraints maintained by its variables. If cn is not enforced,

then nothing else needs to be done. However, if cn is enforced, then it may be possible to enforce

other constraints when it is removed. In this case, remove-constraint sets the determined-by and

walk-strength �elds of cn's output variables to indicate that these variables are determined by

an implicit weakest stay constraint, and calls propagate-walk-strength to propagate these new

walkabout strengths downstream.

Next, remove-constraint calls collect-unenforced to collect any unenforced constraints down-

stream of cn's old outputs that may be enforcible now that cn is removed. As discussed in Section 5.1,

the only unenforced constraints that could possibly be enforced when cn is removed are those with

the same strength, or weaker. The last two arguments to collect-unenforced specify that only

constraints with these strengths should be collected.

Once the unenforced constraints are collected, update-method-graph is called to try to include them

in the LGB method graph, accumulating any redetermined variables and newly-added constraints

in exec-roots. Finally, exec-from-roots is called to execute constraint methods downstream of

these roots, to satisfy the constraints in the method graph.
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remove-constraint(cn: Constraint)

;; unregister cn from variables

For all variables v in cn.variables do

Remove cn from v.constraints

If enforced(cn) then

unenforced-cns := new empty List of Constraints

exec-roots := new empty List of Any

cn-old-outputs := cn.selected-method.outputs

;; unenforce cn, and undetermine cn's output vars

cn.selected-method := nil

For all variables var in cn-old-outputs do

var.determined-by := nil

var.walk-strength := *weakest-strength*

;; save newly-undetermined variables as possible exec-roots

Add all variables in cn-old-outputs to exec-roots

;; propagate walkabout strength from undetermined vars

propagate-walk-strength(cn-old-outputs)

;; collect unenforced constraints downstream of undetermined

;; variables with the same or weaker strength than cn

collect-unenforced(unenforced-cns, cn-old-outputs, cn.strength, true)

;; update method graph to include the unenforced constraints

update-method-graph(unenforced-cns, exec-roots)

;; satisfy method graph constraints by executing methods.

exec-from-roots(exec-roots)

update-method-graph updates the current method graph to be locally-graph-better, by trying to

enforce the constraints in unenforced-cns. Each constraint cn in unenforced-cns is processed by

calling build-mvine (Section 6.3) to try to build an mvine that enforced cn. When build-mvine

succeeds (returning true), it adds any redetermined variables (variables whose determined-by

�eld has been changed) to redetermined-vars. In this case, we call propagate-walk-strength

to update the walkabout strengths downstream of cn and the redetermined variables and call

collect-unenforced to add any additional unenforced constraints downstream of the redetermined

variables to unenforced-cns. Finally, update-method-graph updates exec-roots by adding any

constraints that were successfully enforced, as well as any redetermined variables that are now un-

determined. This loop iterates, removing constraints from unenforced-cns (and adding constraints

to unenforced-cns in collect-unenforced) until unenforced-cns is empty. Section 4.1 discusses

why this process must terminate. Note: As a heuristic, we always try removing and enforcing the

strongest unenforced constraint in unenforced-cns.

Section 5.1 discusses the \collection strength" performance technique, which justi�es ignoring any

unenforced constraints with the same strength or stronger than a newly-added constraint, because

they cannot possibly be enforced. update-method-graph uses an extended version of this technique:

when collecting unenforced constraints after an mvine is successfully constructed, it is only necessary

to collect unenforced downstream constraints that are weaker than the root constraint of the mvine.

Note that the root constraint may be weaker than the original constraint being added or removed by

add-constraint or remove-constraint, so this allows discarding more constraints. The last two

arguments to collect-unenforced specify that only constraints weaker than cn should be collected.
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update-method-graph(unenforced-cns: List of Constraints,

exec-roots: List of Any)

While unenforced-cns 6= fg do

;; remove the strongest constraint from unenforced-cns

cn := the strongest constraint from unenforced-cns

Remove all constraints equal to cn from unenforced-cns

;; try building mvine, collecting redetermined vars

redetermined-vars := new empty List of Variables

ok := build-mvine(cn, redetermined-vars)

If ok then

;; we found an mvine: propagate walkabout strengths

;; down the mvine, and from redetermined vars

propagate-walk-strength( f cn and all variables in redetermined-vars g )

;; collect any cns strictly weaker than cn that may now be enforcible

collect-unenforced(unenforced-cns, redetermined-vars, cn.strength, false)

;; add newly-added cn and undetermined vars to exec-roots

Add cn to exec-roots

For all variables var in redetermined-vars do

If var.determined-by = nil then

Add var to exec-roots

6.3 Building Method Vines: build-mvine

build-mvine tries to enforce cn by constructing a \method vine" (or mvine) starting with cn (as

de�ned in Section 4.4). build-mvine tries to �nd a way to enforce the unenforced constraint cn,

by changing the selected methods of stronger constraints, and revoking weaker constraints in the

network. If it is successful, then it modi�es the method graph and returns true. If build-mvine

cannot �nd a way to construct an mvine, then it returns false and the method graph is not changed.

If build-mvine successfully enforces cn, it may change some of the selected methods of en-

forced constraints. Whenever the selected method of a constraint is changed, the determined-by

�elds of the variables are changed appropriately, and any redetermined variables are added

to redetermined-vars, which can be used later when collecting unenforced constraints. If

build-mvine cannot enforce cn, nothing is added to redetermined-vars.

build-mvine performs a backtracking search when assigning new selected methods to constraints.

This can get complicated if a method in the mvine has multiple outputs, because each output

may cause another branch in the mvine, and it may be necessary to try all possible combinations

of methods in the di�erent branches to �nd one without con
ict. build-mvine handles this by

using mvine-stack, a stack of constraints that need to have their selected methods changed. Fig-

ures 10 and 11 show how mvine-stack is modi�ed during backtracking.

Rather than actually changing the selected-method �elds of constraints during the search,

build-mvinemarks the constraints in the mvine, along with the variables that will be determined by

these constraints. Once a complete mvine is found, the constraint selected-method �elds and the

variable determined-by �elds are changed. At this same time, any redetermined variables are added

to redetermined-vars. If no complete mvine is found, then the root constraint is left unenforced
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V1

V2 V3

V5

V4

V6 V7

C1

C2 C3

C4 C5

mvine-stack= fC2; C4g. We have just selected a

method for C1, added it to the mvine, and added

the con
icting constraints C2 and C4 to the stack

(with C2 on the top of the stack).

V1

V2 V3

V5

V4

V6 V7

C1

C2 C3

C4 C5

mvine-stack = fC3; C4g. We have popped C2

from the top of the stack, selected a new method

for it, and pushed the con
icting constraint C3 on

the stack.

V1

V2 V3

V5

V4

V6 V7

C1

C2 C3

C4 C5

mvine-stack = fC4g. We have processed C3.

V1

V2 V3

V5

V4

V6 V7

C1

C2 C3

C4 C5

mvine-stack = fC5g. We have processed C4. At

this point, we try to process C5, and discover that

it has no methods that do not con
ict with meth-

ods in the mvine. So we backtrack and restore the

stack to fC4g.

Figure 10: Using mvine-stack while constructing an mvine with backtracking. All constraints are

required. Methods in the mvine are drawn with thicker lines. (Continued in next �gure)

and the method graph is not changed.

The procedure build-mvine allocates a new mark to use during the search, initializes mvine-stack,

and then calls mvine-enforce-cn to start building the mvine starting with cn as a branch.

mvine-grow, mvine-revoke-cn, and mvine-enforce-cn are three mutually recursive procedures

that perform the backtracking search. All of these procedures (along with build-mvine) return

true if a complete mvine was found, false otherwise.

build-mvine(cn: Constraint,

redetermined-vars: List of Variables): Boolean

mvine-stack := new empty stack of Constraints

done-mark := new-mark()

;; try to build an mvine, starting by enforcing the root cn

Return mvine-enforce-cn(cn, cn.strength, done-mark,

mvine-stack, redetermined-vars)

25



V1

V2 V3

V5

V4

V6 V7

C1

C2 C3

C4 C5

mvine-stack = fC4g. C4 has no other methods

to try, so we backtrack and restore the stack to

fC3; C4g.

V1

V2 V3

V5

V4

V6 V7

C1

C2 C3

C4 C5

mvine-stack = fC4g. We have processed C3

again, and found another method to try.

V1

V2 V3

V5

V4

V6 V7

C1

C2 C3

C4 C5

mvine-stack = fC5g. We have processed C4.

V1

V2 V3

V5

V4

V6 V7

C1

C2 C3

C4 C5

mvine-stack = fg. We have processed C5 suc-

cessfully, without adding any more con
icting con-

straints to the stack. The stack is empty, so we

have �nished extending the mvine.

Figure 11: Using mvine-stack while constructing an mvine with backtracking. (continued from

previous �gure)

mvine-grow pops the next constraint cn from mvine-stack, and determines whether it should be

enforced (by selecting another method for the constraint, and adding it to the mvine), or simply

revoked. mvine-enforce-cn or mvine-revoke-cn is called to handle cn, and process the rest of the

constraints in mvine-stack. If these functions return false, then we backtrack by restoring cn to

mvine-stack and returning false.

It is possible that a given constraint may appear multiple times in mvine-stack, because it was

added multiple times when processing di�erent constraints. Whenever a constraint is processed in

mvine-enforce-cn or mvine-revoke-cn, its mark �eld is set to done-mark. mvine-grow detects

when the next constraint in mvine-stack is marked, and calls itself to process the rest of the

constraints.
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mvine-grow(root-strength: Strength,

done-mark: Mark,

mvine-stack: Stack of Constraints,

redetermined-vars: List of Variables): Boolean

If mvine-stack = fg then

;; no more constraints to process: we have found a complete mvine!

Return true

Else

cn := Pop(mvine-stack)

If cn.mark = done-mark then

;; cn has already been marked: process other constraints

ok := mvine-grow(root-strength, done-mark,

mvine-stack, redetermined-vars)

ElseIf weaker(cn.strength, root-strength) then

;; cn is weaker than the root constraint: revoke it

ok := mvine-revoke-cn(cn, root-strength, done-mark,

mvine-stack, redetermined-vars)

Else

;; try to �nd an alternative method for cn

ok := mvine-enforce-cn(cn, root-strength, done-mark,

mvine-stack, redetermined-vars)

;; if backtracking, restore the popped constraint to mvine-stack

If not(ok) then push(cn, mvine-stack)

Return ok

mvine-revoke-cn revokes the constraint cn by marking the constraint, and calling mvine-grow to

handle the rest of the constraints in mvine-stack. If a complete mvine is not found, then we back-

track by unmarking the constraint. If a complete mvine is found, then we reset the determined-by

and walk-strength �elds of any of the old method's outputs that are unmarked. If they are marked,

then this means that they are determined by a method in the mvine, and they will be reset when this

method is processed in mvine-enforce-cn. Whenever any variable determined-by �eld is changed,

the variable is added to redetermined-vars. Finally, we set cn.selected-method to nil to revoke

the constraint.
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mvine-revoke-cn(cn: Constraint,

root-strength: Strength,

done-mark: Mark,

mvine-stack: Stack of Constraints,

redetermined-vars: List of Variables): Boolean

;; mark this cn. we will process it by revoking it.

cn.mark := done-mark

;; try building rest of mvine

ok := mvine-grow(root-strength, done-mark,

mvine-stack, redetermined-vars)

If ok then

;; we found the entire mvine!

;; undetermine unmarked outputs, and add to redetermined-vars

For all variables var in cn.selected-method.outputs do

If var.mark 6= done-mark then

var.determined-by := nil

var.walk-strength := *weakest-strength*

Add var to redetermined-vars

;; set selected-method for this cn

cn.selected-method := nil

Return true

Else

;; no mvine found: we are backtracking.

cn.mark := nil

Return false

mvine-enforce-cn tries to enforce the constraint cn by marking it, and examining each of the

methods that this constraint might be enforced with (as determined by possible-method). It

tries enforcing cn with each method, by marking the output variables of the method, and calling

mvine-grow to construct the rest of the mvine. When we choose a method, we add any constraints

that determine the method's outputs to mvine-stack, to be processed (either revoked or given an

alternative selected method) when extending the mvine.

If a consistent mvine is found, then we reset the determined-by and walk-strength �elds of any

of the old method's inputs that are unmarked, just as in mvine-revoke-cn. If the constraint didn't

have a selected-method, then cn must be the unenforced root, so we don't have to do this. Finally,

the selected-method �eld is set to the method chosen, and the determined-by �elds of the method

outputs are updated. Whenever any variable determined-by �eld is changed, the variable is added

to redetermined-vars.

If no consistent mvine is found, then we unmark the method outputs, restore mvine-stack to its

initial state (by popping the constraints that we added), and try the next method. If we have run

out of methods to try, then we unmark the constraint and backtrack.
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mvine-enforce-cn(cn: Constraint,

root-strength: Strength,

done-mark: Mark,

mvine-stack: Stack of Constraints,

redetermined-vars: List of Variables): Boolean

;; mark this constraint: we will try making it a branch

cn.mark := done-mark

;; try each possible method: return if one allows building mvine

For all methods mt in cn.methods do

If possible-method(mt, cn, root-strength, done-mark) then

;; collect other constraints to process in mvine

next-cns := f all constraints that determine a variable in mt.outputs g

For all constraints new-cn in next-cns do push(new-cn, mvine-stack)

;; let's try to build the mvine using this method: mark the output vars

For all variables var in mt.outputs do var.mark := done-mark

;; try building rest of mvine

ok := mvine-grow(root-strength, done-mark,

mvine-stack, redetermined-vars)

If ok then

;; we found the entire mvine!

;; If cn.selected-method=nil, cn is the unenforced root of the mvine.

;; Otherwise, undetermine unmarked outputs of old method,

;; and add them to redetermined-vars.

If cn.selected-method 6= nil then

For all variables var in cn.selected-method.outputs do

If var.mark 6= done-mark then

var.determined-by := nil

var.walk-strength := *weakest-strength*

Add var to redetermined-vars

;; set the selected method for cn, redetermine the outputs of

;; new method, and add the outputs to redetermined-vars.

cn.selected-method := mt

For all variables var in mt.outputs do

var.determined-by := cn

Add var to redetermined-vars

Return true

Else

;; no mvine found: try next method.

;; undo current method choice by unmarking method outputs.

For all variables var in mt.outputs do var.mark := nil

;; pop constraints we added to mvine-stack

For all constraints new-cn in next-cns do Pop(mvine-stack)

;; no more methods to try: unmark cn and backtrack

cn.mark := nil

Return false

possible-method returns true if the method mt is a method that could be used for enforcing cn.

For a method to be a possible candidate, it must be true that (1) it doesn't output to any marked

variables (set by methods already in the mvine), and (2) all the walkabout strengths of the method
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outputs are weaker than the mvine root constraint's strength (ignoring outputs of cn's current

selected method, if any).

The second condition allows us to use the walkabout strengths of the variables to exclude methods

that we know we cannot use without revoking a constraint of the same strength or stronger than the

mvine root constraint somewhere down the mvine. When examining a potential method, we don't

have to worry about the walkabout strengths of variables that cn currently determines, since we can

switch to a new method that outputs to these variables without revoking any constraints.

possible-method(mt: Method, cn: Constraint,

root-strength: Strength,

done-mark: Mark): Boolean

For all variables var in mt.outputs do

;; if an output variable is marked, we can't use this method.

If var.mark = done-mark then

Return false

;; if an output variable's walkabout strength is too strong,

;; and it is not currently determined by the constraint,

;; then we can't use this method.

If not(weaker(var.walk-strength, root-strength)) then

If cn.selected-method = nil then

Return false

If not(member(var, cn.selected-method.outputs)) then

Return false

Return true

6.4 Propagating Walkabout Strengths: propagate-walk-strength

propagate-walk-strength recalculates the walkabout strengths of all variables downstream of the

variables and constraints speci�ed by roots. First, pplan-add (Section 6.7) is called to create an

ordered pplan walk-pplan containing the enforced constraints downstream of the roots, and marking

all of the constraints with prop-mark. Then, propagate-walk-strength examines each constraint

in order, recalculating the walkabout strengths of the constraint's output variables, and unmarking

the constraint.

If none of the \immediate upstream constraints" of a constraint (the constraints determining the in-

put variables of the constraint) are marked with prop-mark, then we know that all of the constraint's

inputs have correct walkabout strength, and we can simply calculate the walkabout strengths for

the output variables.

On the other hand, if any of the immediate upstream constraints are marked with prop-mark, this

indicates that there is a cycle of constraints in walk-pplan. In this case, rather than attempting

to analyze the cycle to �nd the \real" walkabout strengths, we set the walkabout constraints of any

input variables determined by marked constraints to the weakest strength, and calculate the output

variable walkabout strengths from these values. Since the walkabout strength is only guaranteed to

be a lower bound, it is always safe to use the weakest strength.
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propagate-walk-strength(roots: List of Any)

prop-mark := new-mark()

;; make pplan to propagate downstream from roots

walk-pplan := new empty Stack of Constraints

pplan-add(walk-pplan, roots, prop-mark)

;; scan through pplan

While walk-pplan 6= fg do

cn := pop(walk-pplan)

If any-immediate-upstream-cns-marked(cn, prop-mark) then

;; Some of cn's upstream constraints have not been processed:

;; there must be a cycle. Set any inputs determined by

;; unprocessed constraints to the weakest walkabout strength

For all variables var in cn.selected-method.inputs do

If var.determined-by 6= nil then

If var.determined-by.mark = prop-mark then

var.walk-strength := *weakest-strength*

;; compute walkabout strengths for output variables ofcn, and mark it done

compute-walkabout-strengths(cn)

cn.mark := nil

any-immediate-upstream-cns-marked returns true if any of the constraints determining the inputs

of cn are marked with the given mark.

any-immediate-upstream-cns-marked(cn: Constraint, mark: Mark): Boolean

For all variables var in cn.selected-method.inputs do

If var.determined-by 6= nil then

If var.determined-by.mark = mark then

Return true

Return false

compute-walkabout-strengths calculates the walkabout strength of the variables which are cur-

rently determined by the constraint cn, as described in Section 5.3. A variable's walkabout strength

is de�ned as a lower bound on the strength of the weakest constraint in the current method graph

that would need to be revoked to allow the variable to be determined by a new constraint. Initially,

the candidate strength min-strength is set to the strength of cn, since one possibility would be

to simply revoke cn. Then, all of the methods of cn that do not output to var are examined,

to �nd any which cn could switch to while revoking a weaker constraint. For each such method,

the maximum walkabout strength of the method outputs is found, ignoring any variables that cn

already determines (since no additional constraints would have to be revoked for cn to determine

these variables). If this maximum walkabout strength is weaker than min-strength, then it appears

that we could switch cn to use this method while only revoking one or more constraints with this

weaker strength. The walkabout strength of out-var is set to the minimum of cn.strength and

the \maximum method output walkabout" strengths.

Note that the output variables of a multi-output method may have di�erent walkabout strengths,

since there may be di�erent sets of candidate methods that don't output to each variable.

compute-walkabout-strengths correctly handles the case where one method's output variables are

a subset of another method's output variables. In particular, it returns *weakest-strength* if
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there is a method whose outputs are a subset of the selected method. Normally, one wouldn't de�ne

such a constraint, but it is possible to get into this situation in Multi-Garnet [15] when using indirect

variable paths.

compute-walkabout-strengths(cn: Constraint)

current-outputs := cn.selected-method.outputs

For all variables out-var in current-outputs do

min-strength := cn.strength

For all methods mt in cn.methods do

If not(member(out-var, mt.outputs)) then

;; mt doesn't output to out-var, so it

;; is a possible alternative method.

max-strength := max-out(mt, current-outputs)

If weaker(max-strength, min-strength) then

min-strength := max-strength

out-var.walk-strength := min-strength

;; max-out returns the strongest walkabout strength among

;; mt's outputs, ignoring any variables in current-outputs.

max-out(mt: Method, current-outputs: List of Variables): Strength

max-strength := *weakest-strength*

For all variables var in mt.outputs do

If not(member(var, current-outputs)) then

If weaker(max-strength, var.walk-strength) then

max-strength := var.walk-strength

Return max-strength

6.5 Collecting Unenforced Constraints: collect-unenforced

collect-unenforced examines all constraints that access the variables in vars (and vari-

ables downstream from these variables). Any of these constraints that are unenforced and

weaker than collection-strength are added to unenforced-cns. If collect-equal-strength

is true, collect-unenforced also collects unenforced constraints with the same strength as

collection-strength.

collect-unenforced itself simply allocates a new mark, and calls collect-unenforced-mark on

each of the variables to do the actual work. collect-unenforced-mark examines the constraints

in var.constraints, and calls itself recursively on the downstream variables (the outputs of each

enforced constraint using var as an input). As each enforced constraint is traced through, or each

unenforced constraint is examined, it is marked with done-mark, so it won't be processed again.

This also prevents an in�nite loop if there is a cycle of constraints.

Note: collect-unenforced could be written to call pplan-add (Section 6.7) to construct

an ordered list of the downstream constraints, rather than performing the recursion in

collect-unenforced-mark. However, this isn't worth the additional storage and time cost, since

it doesn't matter what order the unenforced constraints are collected.
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collect-unenforced(unenforced-cns: List of Constraints,

vars: List of Variables,

collection-strength: Strength,

collect-equal-strength: Boolean)

done-mark := new-mark()

For all variables var in vars do

collect-unenforced-mark(unenforced-cns, var, collection-strength,

collect-equal-strength, done-mark)

collect-unenforced-mark(unenforced-cns: List of Constraints,

var: Variable,

collection-strength: Strength,

collect-equal-strength: Boolean,

done-mark: Mark)

For all constraints cn in var.constraints do

If cn 6= var.determined-by and cn.mark 6= done-mark then

;; cn uses var, and we haven't processed it yet: process it now

cn.mark := done-mark

If enforced(cn) then

;; cn is an enforced constraint that consumes var:

;; collect constraints downstream of cn's outputs.

For all variables out-var in cn.selected-method.outputs do

collect-unenforced-mark(unenforced-cns, out-var, collection-strength,

collect-equal-strength, done-mark)

ElseIf weaker(cn.strength, collection-strength) or

( collect-equal-strength and (cn.strength = collection-strength) )

then

;; cn is an unenforced cn that is weak enough to collect.

Add cn to unenforced-cns

6.6 Executing Methods: exec-from-roots

exec-from-roots takes a list of redetermined variables and newly-added constraints, and executes

methods for the constraints, and downstream constraints, to update the variable values to satisfy

all of the enforced constraints.

If there are cycles, it may not be possible to satisfy all of the enforced constraints just by executing

methods. The current version of SkyBlue doesn't even try. If a cycle is found, none of the methods

are executed for the constraints in the cycle and downstream. If the cycle is later broken, then the

methods are executed correctly. Future enhancements to SkyBlue may call more powerful solvers to

�nd values satisfying a cycle of constraints, and then propagate these values downstream.

Method execution is controlled by the valid variable �eld. This �eld should be false whenever a

variable is in a method graph cycle, or downstream of one, otherwise it is true. If all of a constraint

method's inputs are valid (i.e., their valid �elds are true), then it is acceptable to execute the

method, and validate all of the method outputs. Otherwise, the method should not be executed,

and all of its outputs should be invalidated.
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Maintaining the valid �elds makes exec-from-roots a little complicated. Given an acyclic con-

straint graph, it is only necessary to execute methods downstream from newly-enforced constraints.

However, if there are cycles, and downstream variables are invalidated, then we also need to handle

the case where a variable is invalid, and then becomes undetermined (due to a constraint being

removed, or constraint methods being changed). By de�nition, any undetermined variable should

be valid, so we must validate it, and try evaluating downstream constraint methods that use it. This

is implemented in update-method-graph by adding all variables that became undetermined when

the mvine is built to exec-roots along with the newly-enforced constraints. If any of these variables

are still undetermined and invalid, then exec-from-roots can validate them and execute methods

downstream. Note that if a newly-undetermined variable is already valid, we don't necessarily have

to execute downstream methods.

exec-from-roots works by constructing a pplan (Section 6.7), an ordered list of the constraints

whose selected methods need to be executed. This pplan contains all of the constraints downstream of

the constraints in exec-roots, as well as those downstream of the invalid undetermined variables in

exec-roots (which we now validate). exec-from-roots takes advantage of the fact that pplan-add

can be called multiple times to add more constraints to the pplan.

Next, exec-from-roots scans through the constraints in exec-pplan. If all of the up-

stream constraints that determine the constraint's inputs have been processed (as deter-

mined by calling any-immediate-upstream-cns-marked, de�ned in Section 6.4), then we call

execute-propagate-valid to try executing the method. This will execute the method if all of

its inputs are valid, validating or invalidating the outputs appropriately. If some of the upstream

constraints have not been processed, there must be a cycle, so exec-from-cycle is called to handle

it. This may process (and unmark) other constraints in exec-roots, so we have to check that each

constraint is marked before we process it.
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exec-from-roots(exec-roots: List of Any)

prop-mark := new-mark()

exec-pplan := new empty stack of Constraints

;; make pplan to execute selected methods of newly-enforced

;; constraints in exec-roots and downstream constraints.

For all constraints cn in exec-roots do

pplan-add(exec-pplan, cn, prop-mark)

;; also execute selected methods downstream of undetermined

;; variables being changed from valid=false to valid=true.

For all variables var in exec-roots do

If (var.determined-by = nil) and not(var.valid) then

pplan-add(exec-pplan, var, prop-mark)

var.valid := true

;; scan through pplan

While exec-pplan 6= fg do

cn := pop(exec-pplan)

If cn.mark 6= prop-mark then

;; this cn has already been processed: do nothing

ElseIf any-immediate-upstream-cns-marked(cn, prop-mark) then

;; Some of this cn's upstream cns have not been processed;

;; there must be a cycle. Handle cycle: possibly processing

;; and unmarking other cns

exec-from-cycle(cn, prop-mark)

Else

;; All of this cn's upstream cns have been processed:

;; unmark it and try to execute its method

cn.mark := nil

execute-propagate-valid(cn)

execute-propagate-valid executes the selected method of cn if all of its inputs are valid, and

validates or invalidates the output variables. Executing the method will retrieve the values of the

input variables, and set the output variables to values that satisfy the constraint.

execute-propagate-valid(cn: Constraint)

inputs-valid := true

For all variables var in cn.selected-method.inputs do

If not(var.valid) then inputs-valid := false

If inputs-valid then

execute-method(cn.selected-method)

For all variables var in cn.selected-method.outputs do

var.valid := inputs-valid

Currently, exec-from-cycle handles a cycle including cn by invalidating the output variables of all

constraints in the cycle (and downstream of it). All of these constraints are unmarked, to indicate

that they have been processed (which also stops the recursion). In future versions of SkyBlue,

exec-from-cycle could be replaced with a procedure which analyzes the cycle, and calls a more

powerful solver to �nd acceptable values, and validates the variables in the cycle.
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exec-from-cycle(cn: Constraint, prop-mark: Mark)

If cn.mark = prop-mark then

cn.mark := nil

For variable var in cn.selected-method.outputs do

var.valid := false

For all constraints consuming-cn in var.constraints do

If (consuming-cn 6= cn) and enforced(consuming-cn) then

exec-from-cycle(consuming-cn, prop-mark)

6.7 Constructing Propagation Plans: pplan-add

At several points in the SkyBlue algorithm, it is useful to topologically sort the enforced constraints

in the method graph downstream from a given set of variables and constraints. pplan-add collects

and sorts these constraints using a depth-�rst search.

pplan-add is used to construct a propagation plan (or pplan), a stack containing all of the enforced

constraints in the method graph downstream of one or more constraints and variables. The con-

straints in a pplan are ordered such that any constraint in the pplan is higher on the stack than all of

its downstream constraints (if there are no cycles). Therefore, by scanning through the constraints

in a pplan, one can examine the constraints in a top-down fashion without worrying that a constraint

will be processed before its upstream constraints.

If there are cycles downstream in the method graph, the pplan will contain constraints whose up-

stream constraints appear later in the pplan. It is easy to detect such cycles when processing the

pplan constraints. When pplan-add constructs a pplan, it marks all of the collected constraints

with the mark done-mark (this mark is used to terminate in�nite loops, and guarantee that each

constraint is only collected once). If each constraint is unmarked as it is processed, a cycle can be

detected by checking whether all of a constraint's immediate upstream constraints are unmarked.

If this is not true, then this constraint must be in a cycle, and the rest of the constraints in the

cycle must appear later in the pplan. This type of scanning is done in exec-from-roots and

propagate-walk-strength, which include code to handle any cycles which are detected.

pplan-add takes a stack pplan to collect the constraints, a root object obj to trace downstream

from, and a mark done-mark. If obj is an enforced constraint that has not been collected yet (its

mark is not done-mark), then it is marked and collected, and all of the constraints downstream

of its outputs are collected. Actually, obj is collected after all of the downstream constraints are

collected (pushed on the stack), so that the constraint will appear on the stack before its downstream

constraints. If obj is a variable, then all of the enforced constraints that use it are collected. If obj

is a list, all of the constraints downstream of its elements are collected.

pplan-add can be called multiple times to construct a pplan from multiple roots, as long as no

constraint marks are changed between calls. Consider: If pplan-add is called to add a constraint

that is downstream of previously-added constraints, then it will already be marked, and the call to

pplan-add will do nothing. If it is upstream of all of the constraints in the pplan, calling pplan-add

will simply add the upstream constraints on top of the stack.
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pplan-add(pplan: stack of Constraints, obj: Any, done-mark: Mark)

If obj is a constraint then

If enforced(obj) and obj.mark 6= done-mark then

;; process unmarked, enforced constraint by marking it, collecting

;; downstream constraints, and pushing it on top of the pplan stack.

obj.mark := done-mark

For all variables var in obj.selected-method.outputs do

pplan-add(pplan, var, done-mark)

push(obj, pplan)

ElseIf obj is a variable then

;; process variable by collecting downstream constraints starting

;; with the constraints directly consuming the variable.

For all constraints cn in obj.constraints do

If cn 6= var.determined-by then

pplan-add(pplan, cn, done-mark)

ElseIf obj is a list then

For all elements elt in obj do

pplan-add(pplan, elt, done-mark)

7 Input and Output Constraints

SkyBlue methods are de�ned as side-e�ect-free functions that read the values of the method input

variables and compute values for the method output variables that satisfy the constraints (Section 2).

Sometimes, however, it is useful to de�ne constraints that don't strictly follow this de�nition.

An input constraint is a constraint that has a single method with no input variables and one or

more output variables. The values for the output variables are calculated by accessing information

external to the constraint graph. One use for such a constraint would be to read input devices.

For example, suppose that a programmer implementing an interactive graphics application wants

to repeatedly set a constrained variable to the position of the mouse and resatisfy the constraints.

This could be implemented by repeatedly adding and removing constraints that set the variable to

di�erent mouse positions. A simpler alternative (which may also be more e�cient) is to de�ne an

input constraint whose single method reads the current position of the mouse, and sets its output

variable to that value. When this constraint is added, the method graph would be changed, and

the mouse constraint method would be executed once (if the mouse constraint was not overridden

by a stronger constraint). To handle further new mouse positions, the application using SkyBlue

must explicitly execute the mouse constraint's method (if it is enforced) as well as any downstream

enforced methods. This can be done by calling exec-from-roots (Section 6.6), passing a list of the

input constraints to be re-executed.

An output constraint is a constraint that has a single method with one or more input variables and

no output variables. When the method is executed, it can access the values of the input variables,

and change information external to the constraint graph (causing a side-e�ect). For example, an

output constraint could be used to read some constrained variables, and update a graphic display.

The output constraint method would be executed once when the constraint is added (it is always

possible to enforce an output constraint, regardless of its strength), and re-executed whenever any
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of the upstream methods are executed.

6

It is important that input and output constraint methods do not access the constraints and variables

in their constraint graph, other than their declared input or output variables. In particular, they

should not call add-constraint or remove-constraint.

It is possible to construct methods with both input and output variables that also read external

values and cause side-e�ects, but they would be more di�cult to use than \pure" input and output

constraints. In particular, it would be more di�cult to control when they are executed: an input

constraint with input variables would not be executed if any of its input variables were marked

invalid, and would be re-executed whenever any of its input variables were changed. On the other

hand, an output constraint with output variables might not be enforced, if its outputs were set by

stronger constraints.

8 Extracting and Executing Plans

Sometimes when using input constraints it is possible to improve performance by extracting a plan,

an object containing a sorted list of the downstream methods. If the method graph doesn't change, it

could be quickly executed when the input constraint needs to be reexecuted. This section describes

how to extract plans, execute them, and automatically invalidate them. The invalidation technique

requires making some small changes to the SkyBlue pseudocode of Section 6. This section should

be considered an optional extension to the SkyBlue algorithm.

Consider a constraint-based graphic editor where the user drags the mouse to move an object, and

the constraints should be maintained while the object is moved. This could be implemented with

an input constraint that is repeatedly executed (by an explicit call to exec-from-roots) every time

the mouse is moved to set a variable to the position of the mouse, and propagate this value through

a network of enforced constraints. Suppose that the rest of the network is not being changed while

the mouse is being moved. In this case SkyBlue will repeatedly topologically order the same set of

enforced constraints downstream of the input constraint, and execute them. This repeated sorting

can be avoided by saving the sorted list of constraints, known as a plan, and simply executing these

constraint's selected methods in order. It is also possible to detect cycles in the plan, and avoid

cycle detection while executing the plan constraints.

An important issue that arises when using plans is that a plan may be invalidated. A plan is

derived from a particular method graph. If the method graph is changed by adding or removing a

constraint, then the plan no longer accurately represents the sequence of constraint methods that

should be executed to satisfy the constraints. Actually, all constraint operations may not invalidate

a particular plan: if the method graph is changed in a way that doesn't e�ect the constraints in the

plan, than it would still be valid. A technique is described below for automatically invalidating a

plan when it becomes invalid. It is not perfect (it may invalidate a plan unnecessarily), but it will

never indicate a plan is valid when it isn't.

6

Note that an output constraint method will not be executed if any of its input variables is in or downstream of a

cycle (and thus is marked invalid, see Section 6.6).
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�eld name type description

valid Boolean true if this plan is valid

root-cns List of Constraints constraints used to construct this plan

good-cns List of Constraints ordered list of enforced constraints in plan

bad-cns List of Constraints enforced constraints in and downstream of cycles

A SkyBlue plan is represented by a plan record. The valid �eld is true if this plan is still valid,

otherwise false. root-cns contains the list of constraints passed to extract-plan (below) when

constructing the plan. good-cns is the ordered list of enforced constraints whose selected methods

should be executed (in order) when the plan is executed. bad-cns is the list of enforced constraints

downstream from the root constraints that are in cycles or downstream of cycles. When the plan is

executed, we can simply leave these constraint unexecuted, without doing cycle detection. They are

saved in the plan object as part of plan invalidation.

extract-plan constructs a plan containing a subset of the enforced constraints in the current

method graph. The subset contains all enforced constraints in root-cns, and all enforced constraints

downstream of these roots. The constraints in the plan are ordered, so that executing the selected

methods of these constraints sequence re-satis�es all constraints enforced by the method graph.

extract-plan is similar to exec-from-roots, except that it collects the constraints whose selected

methods should be executed, rather than actually executing them. A pplan is constructed sorting

the constraints downstream of root-cns (any unenforced constraints in root-cns are ignored by

pplan-add), and constraints are popped o� the pplan and collected on the list good-cns. If a cycle is

found, all of the constraints in the cycle, and downstream of the cycle, are saved in the list bad-cns.

After all of the constraints have been saved on one of these two lists, a plan object is constructed,

with separate �elds to hold the the good, bad, and root constraints, and a valid plan is created by

calling create-valid-plan.
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extract-plan(root-cns: List of Constraints): Plan

good-cns := new empty List of Constraints

bad-cns := new empty List of Constraints

prop-mark := new-mark()

;; make pplan rooted with enforced constraints.

pplan := new empty stack of Constraints

pplan-add(pplan, root-cns, prop-mark)

;; scan through pplan

While pplan 6= fg do

cn := pop(pplan)

If cn.mark 6= prop-mark then

;; this cn has already been processed: do nothing

ElseIf any-immediate-upstream-cns-marked(cn, prop-mark) then

;; Some of this cn's upstream cns have not been processed;

;; there must be a cycle: add cn to invalid constraint list

Add cn to bad-cns

;; note: do *not* unmark cn: all constraints in the cycle,

;; and downstream of it, will thus be added to the bad list.

Else

;; All of cn's upstream cns have been processed: unmark and

;; add to *end* of good-cns (after the upstream cns).

cn.mark := nil

Add cn to end of good-cns

Return create-valid-plan(root-cns, good-cns, bad-cns)

execute-plan executes the plan by trying to execute each constraint's selected methods, in or-

der. execute-propagate-valid (Section 6.6) is used to execute the methods conditional on the

valid �elds of its input variables, because cycles may be introduced (or removed) upstream from

the plan constraints, changing whether the plan constraint variables are valid (and whether the

plan constraints should be executed). No matter what happens upstream, however, the bad-cns

constraints will not be executed, and their output variables will remain invalidated (they must have

been invalidated when the cycle was initially constructed, before the plan was extracted).

execute-plan(plan: Plan)

If plan.valid then

For all constraints cn in plan.good-cns do

execute-propagate-valid(cn)

Else

Error "trying to execute invalid plan"

The SkyBlue plan invalidation technique is based on checking every time that a constraint has its

selected-method �eld changed, and invalidating all plans could be invalidated by that change.

There are two ways that a plan can become invalid: (1) if one of the constraints in the plan (in

root-cns or good-cns or bad-cns) has its selected-method �eld changed, or (2) if some other

constraint has its selected-method �eld changed to a new method that inputs from a variable that

is determined by a constraint in the plan. In the �rst case, the old plan containing the constraint

may be invalid because the order of constraints may have changed, or constraints may need to

be removed (if the changed constraint was revoked). In the second case, the plans containing the

upstream constraint are invalid since they should include the changed constraint.
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This technique is implemented by making two changes to the SkyBlue algorithm: (1) Add an

additional �eld valid-plans to each constraint. This �eld will contain a list of all valid plans

that include that constraint (in the plan's root-cns or good-cns or bad-cns lists). Plans are

added to the valid-plans �eld by create-valid-plan. (2) Every time that SkyBlue changes the

selected-method �eld of any constraint, invalidate-plans-on-setting-method must be called.

7

create-valid-plan creates a new plan with the speci�ed constraint lists, and its valid �eld true.

Then it adds this plan to the valid-plans �elds of all of the constraints in the plan.

create-valid-plan(root-cns: List of Constraints,

good-cns: List of Constraints,

bad-cns: List of Constraints): Plan

plan := new Plan

plan.valid := true

plan.root-cns := root-cns

plan.good-cns := good-cns

plan.bad-cns := bad-cns

For all constraints cn in plan.root-cns or plan.good-cns or plan.bad-cns do

Add plan to cn.valid-plans

Return plan

invalidate-plans-on-setting-method invalidates any plans including the constraint whose se-

lected method is being changed, as well as any plans containing constraints that are immediately

upstream of this constraint's new selected method.

invalidate-plans-on-setting-method (cn: Constraint, new-mt: Method)

;; we will invalidate any plans including this constraint

invalidate-constraint-plans(cn.valid-plans)

;; we will also invalidate plans including constraints that

;; determine the inputs of this new method.

If new-mt 6= nil then

For all variables var in new-mt.inputs do

If var.determined-by 6= nil then

invalidate-constraint-plans(var.determined-by)

invalidate-constraint-plans invalidates the plans in the valid-plans �eld of constraint

invalid-cn, and removes these plans from all the valid-plans �elds of the constraints in these

plans. Small point: the �eld invalid-cn.valid-plans is not changed until after the loop is �nished, in

case a destructive change to this list might confuse the loop.

7

We don't have to worry about whether invalidate-plans-on-setting-method is called before or after SkyBlue

changes the determined-by �elds of the method inputs, since either (1) the determined-by �eld of an input is not

changed, or (2) the new constraint determining the var will have its selected-method �eld changed, and its plans will

be invalidated.
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invalidate-constraint-plans(invalid-cn: Constraint)

For all plans plan in invalid-cn.valid-plans do

plan.valid := false

For all constraints cn in plan.good-cns or plan.bad-cns or plan.root-cns do

If cn 6= invalid-cn then

Remove plan from cn.valid-plans

invalid-cn.valid-plans := fg

9 Performance Measurements

SkyBlue was developed to extend the range of user interface applications that could be constructed

using local propagation constraints. In order to build real applications using SkyBlue, it must be

fast enough to resatisfy constraints during user interactions. We are still investigating the perfor-

mance characteristics of SkyBlue and trying to improve its performance. This section discusses the

theoretical performance of SkyBlue and presents timings collected by measuring benchmarks and

real user interfaces.

8

9.1 Time Complexity

The worst-case time complexity of the DeltaBlue algorithm for adding or removing a constraint

from the constraint graph is O(MN ), where N is the total number of constraints in the graph and

M is the maximum number of methods in a constraint [13]. M is bounded by a small constant

in most constraint graphs so this reduces to O(N ). Over the same types of constraint graphs

that DeltaBlue can handle (no cycles, single-output methods), SkyBlue has the same worst-case

behavior. However, if constraints have multi-output methods the performance can be much worse.

Reference [13] proved that �nding an LGB method graph for a constraint graph with multi-output

methods is NP-complete. In particular, it is possible to construct cases where the worst case time

is O(M

N

) for a constraint graph with N constraints that have M multi-output methods each (see

Figure 12 for an example).

In actual use, the worst-case time complexity has not been a problem for several reasons. First,

the constraint graphs that lead to O(M

N

) performance are rather contrived. We have not seen

similar graphs occur in real applications. Second, we believe (and are trying to prove) that the

exponential behavior only increases as a function of the number of constraints with multi-output

methods, regardless of the number of other constraints. Although constraints with multi-output

methods are very useful (if not indispensable), the overriding majority of the constraints used in

real applications have single-output methods. Finally, both DeltaBlue and SkyBlue typically change

only a small subgraph of the constraint graph when a constraint is added or removed so the actual

performance is usually sub-linear in the number of constraints.

8

Garnet is implemented in Common Lisp and Multi-Garnet is built on top of Garnet. All �gures reported here

were measured on a lightly loaded Sun Microsystems SPARCstation IPX using Allegro Common Lisp version 4.1,

Garnet version 2.1, and Multi-Garnet version 2.2.
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Suppose we have just called add-constraint to add the constraint C1 to the constraint graph.

Initially, C1 is unenforced in the above method graph. Now, update-method-graph will try to

enforce it, by constructing a method vine.
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Suppose that we start building the mvine by selecting the method of c1 that outputs to V 2, V 199,

and V 200. Furthermore, suppose that we next try to extend the mvine through C2, C3, etc. No

matter which selected methods are chosen for C2 through C100, a method con
ict will be discovered

between C100 and C2, when trying to select a method for C100. The above method graph shows

one possible choice leading to a method con
ict. Given this situation, build-mvine will backtrack,

trying another selected method for C100, leading to a con
ict, then backtrack to C99, etc.
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possible combinations of selected methods to C2{C100 before it tries the

other method for C1, which leads to the LGB method graph above.

Figure 12: An example where adding a constraint could take worst-case exponential time.
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9.2 Comparing Performance Techniques

SkyBlue has signi�cant new capabilities absent from other solvers, such as support for multi-output

methods. Therefore, it is not possible to create a benchmark that exercises all of the features of

SkyBlue and directly compare it to other algorithms. For regression testing and performance tuning,

a random sequence of 10000 calls to add-constraint and remove-constraint was generated and

saved. Using this sequence it is possible to measure how the performance of SkyBlue is improved by

the techniques described in Section 5.

local walkabout time number mvines number

collection strengths (seconds) attempted constructed backtracks

on on 25.3 24222 5840 12748

on o� 47.2 24222 5840 196012

o� on 44.1 77354 5826 36262

o� o� 125.5 77354 5826 571534

Figure 13: Timings collected for executing a sequence of 10000 constraint operations in SkyBlue

with di�erent performance techniques enabled.

Figure 13 shows the timing results when executing the sequence with four di�erent con�gurations

of the SkyBlue algorithm. The �rst two columns specify whether two techniques were enabled or

disabled. The local collection column speci�es whether the technique from Section 5.2 was used to

collect constraints local to the added or removed constraint when enforcing and executing methods,

versus processing all of the constraints in the constraint graph. The walkabout strengths column

speci�es whether variable walkabout strengths were used to improve mvine searches and updated

whenever an mvine was constructed, as described in Section 5.3. The times in the third column

show that SkyBlue is most e�cient with both techniques enabled, about half the speed with either

technique disabled, and exceedingly slow with neither of the techniques enabled. The collection

strength technique of Section 5.1 was enabled in all four con�gurations. Disabling this technique

did not change the times as much as the other two techniques.

These timings are explained by the remaining three columns, which record the number of times

SkyBlue attempted to enforce a constraint by constructing an mvine, the number of times the

mvine was successfully constructed, and the number of times backtracking occurred while trying to

construct an mvine. Notice that the walkabout strengths technique did not a�ect the number of

mvines attempted or successfully constructed. However, it did have a major e�ect on the amount

of backtracking. The local collection technique decreases the number of mvines attempted without

any signi�cant change in the number successfully constructed. These timings can be interpreted as

follows: the local collection technique saves time by reducing the number of attempts to construct

mvines and the number of constraint methods executed. The walkabout strength technique saves

time by reducing the amount of backtracking when constructing an mvine. This particularly reduces

backtracking (and time) when there are numerous unsuccessful mvines, such as when the local

collection technique is disabled.
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9.3 Comparing DeltaBlue and SkyBlue

To compare the performance of DeltaBlue and SkyBlue, a sequence of 10000 random calls to

add-constraint and remove-constraint was generated subject to the restriction that all methods

had a single output and there were no cycles in the constraint graph. DeltaBlue took 3.1 seconds to

execute the sequence, versus 5.8 seconds for SkyBlue. This indicates that SkyBlue is about half the

speed of DeltaBlue, given constraint graphs that DeltaBlue can handle. The reason that DeltaBlue

is faster is because the assumption that there are no multi-output methods in the method graph

allows it to ignore many unenforced constraints that SkyBlue tries to enforce. SkyBlue also spends

extra time trying to detect and handle cycles. It may be possible to modify SkyBlue to detect when

the constraint graph contains no cycles or multi-output methods and achieve the speed of DeltaBlue

in this case.

9.4 Comparing Garnet and Multi-Garnet

Figure 14 shows timings collected by measuring several interactive graphics applications written in

Garnet and Multi-Garnet. This allows comparing the performance of Garnet's constraint system

with the SkyBlue solver used in Multi-Garnet. The applications were measured by moving an

element on the display 500 times and measuring the total time used to resatisfy the constraints

(moving other constrained objects) and update the display 500 times. The �rst four columns show

the total measured times for the benchmarks (500 moves) as well as the update time for each move.

The other columns divide the total times into separate elements. The graphics redisplay column

shows the time to update the display using Garnet's redisplay algorithm. The method execution

column shows the time spent executing methods to satisfy the constraints. The Garnet overhead

and Multi-Garnet overhead columns list the remaining time spent doing Garnet and Multi-Garnet

constraint operations, calculated by measuring the total time executing the benchmark with the two

systems and subtracting the graphics redisplay and method execution �gures.

benchmark Garnet Multi-Garnet graphics method Garnet Multi-Garnet

total once total once redisplay execution overhead overhead

Demo-Manyobjs 19.8 0.04 21.2 0.04 15.9 2.5 1.4 2.8

Move-Axis 45.0 0.09 44.0 0.09 35.6 4.3 5.1 4.1

Scale-Points 130.5 0.26 146.7 0.29 68.6 52.5 9.4 25.6

Figure 14: User interface benchmark timings using Garnet and Multi-Garnet (seconds).

The Demo-Manyobjs benchmark is a simple interactive program displaying a chain of boxes con-

nected by lines. The lines are positioned between the boxes using constraints. As a box is moved

the constraints are resatis�ed and the connecting lines are repositioned. All the constraints in both

the Garnet and Multi-Garnet versions are one-directional. In this case SkyBlue has about twice the

overhead of Garnet.

The Move-Axis and Scale-Points benchmarks measured two interactions with the scatterplot of

Figure 1. The Move-Axis benchmark measures the time to move the X-axis 500 times (the second

plot) and the Scale-Points benchmark measures the time to scale the point-cloud by moving a point
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500 times (the third plot). The Multi-Garnet version of this benchmark uses multi-way constraints

with multi-output methods, which are not supported in Garnet. In order to compare the performance

with Garnet, a simpli�ed version was implemented in Garnet using only one-way constraints. The

Garnet version only supports a small part of the functionality of the Multi-Garnet version. For

example, the Garnet version only allows one particular point could be moved to scale the point

cloud, whereas any point could be moved in the Multi-Garnet version. The measured Multi-Garnet

overhead is one to two times that of Garnet, which is actually a signi�cant accomplishment for

Multi-Garnet. It o�ers much more than Garnet without signi�cantly worse performance.

The last four columns demonstrate that the total time is dominated by the graphics redisplay and

method execution time. These two elements would be the same no matter how the application was

implemented, whether a constraint solver was used or the relationships were maintained explicitly

(integrating the method procedures into an imperative program). This is typical in interactive

systems using local propagation and suggests that constraint solvers such as SkyBlue can be used

to construct interactive systems without adversely impacting performance.

The most important question when examining the performance of an interactive system is the actual

redisplay rate that the user experiences when using the system. The Demo-Manyobjs and Move-Axes

benchmarks have times of under 0.1 seconds per redisplay for both the Garnet and Multi-Garnet

versions, which is quite acceptable. For the Scale-Points benchmark, the Garnet version uses 0.26

seconds per redisplay and the Multi-Garnet version uses 0.29 seconds per redisplay. This is not great

but it is usable. Undoubtedly it could be improved signi�cantly by reimplementing the whole system

in a language like C, but even this Lisp implementation is fast enough to show that the SkyBlue

constraint solver provides a practical tool for user interface construction.

10 Future Work

This paper has presented the SkyBlue algorithm, a constraint solver that uses local propagation

to e�ciently maintain constraint hierarchies. Future work will investigate improving SkyBlue's

speed by calculating more accurate walkabout strengths in cycles, implementing heuristics to reduce

backtracking when constructing mvines, and adapting techniques from DeltaBlue in cases where

there are no multi-output methods or cycles in the method graph. We also intend to investigate

various extensions to SkyBlue:

Cycle Solvers We intend to integrate SkyBlue with more powerful solvers to solve cycles of con-

straints. For example, if eval-from-roots discovers that all of the constraints in a cycle

represent linear equations (using extra information associated with the constraints), then it

can pass the constraints to an equation solver to �nd values for the variables in the cycle and

then continue local propagation downstream from the cycle.

Constraint Compilers SkyBlue could be extended with a constraint compiler to compile a sub-

graph of the constraint graph (possibly including cycles) into a single complex constraint with

methods to handle the di�erent propagation directions [4]. This could be used to avoid re-

peated calls to a more powerful solver and as an encapsulation mechanism. SkyBlue provides

a good base for developing a constraint compiler since compiled constraints typically have

methods with multiple outputs.
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Unsolvable Constraints We intend to extend the ability of SkyBlue to handle constraints that

it cannot solve. Currently, it detects when the constraint graph includes cycles and marks

variables whose values may not satisfy the enforced constraints. Sometimes it is not possible

to know that constraints cannot be solved until the constraint methods are executed. For

example, a constraint method may cause a divide-by-zero error when given certain inputs. It

may not always be possible to satisfy all of the constraints in a constraint graph, but it is

important for the constraint solver to keep track of which constraints are satis�ed.
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