
The SkyBlue Constraint Solver and Its Applications

Michael Sannella

Department of Computer Science

and Engineering, FR-35

University of Washington

Seattle, WA 98195

sannella@cs.washington.edu

Abstract

The SkyBlue constraint solver is an e�cient incremental algorithm that uses local propagation to

maintain sets of required and preferential constraints. SkyBlue is a successor to the DeltaBlue algorithm,

which was used as the constraint solver in the ThingLab II user interface development environment.

Like DeltaBlue, SkyBlue represents constraints between variables by sets of short procedures (methods)

and incrementally resatis�es the set of constraints as individual constraints are added and removed.

DeltaBlue has two signi�cant limitations: cycles of constraints are prohibited, and constraint methods

can only have a single output variable. SkyBlue relaxes these restrictions, allowing cycles of constraints

to be constructed (although SkyBlue may not be able to satisfy all of the constraints in a cycle) and

supporting multi-output methods. This paper presents the SkyBlue algorithm and discusses several

applications that have been built using SkyBlue.

1 Introduction

The DeltaBlue algorithm is an incremental algorithm for maintaining sets of required and preferential con-

straints (constraint hierarchies) using local propagation [4, 5, 9]. The ThingLab II user interface development

environment was based on DeltaBlue, demonstrating its feasibility for constructing user interfaces [5]. How-

ever, DeltaBlue has two signi�cant limitations: cycles in the graph of constraints and variables are prohibited

(if a cycle is found, an error is signaled and the cycle is broken by removing a constraint) and constraint

methods can only have one output variable.

The SkyBlue algorithm was developed to remove these limitations. Even though it is not always possible

to solve cycles of constraints using local propagation, SkyBlue allows constructing such cycles. SkyBlue

cannot satisfy the constraints around a cycle, but it correctly maintains the non-cyclic constraints elsewhere

in the graph. In some situations it may be possible to solve the subgraph containing the cycle by calling

a more powerful solver. Future work will extend SkyBlue to call specialized constraint solvers to solve the

constraints around a cycle, and continue using local propagation to satisfy the rest of the constraints.

SkyBlue also supports constraints with multi-output methods, which are useful in many situations. For

example, suppose the variables X and Y represent the Cartesian coordinates of a point, and the variables

� and � represent the polar coordinates of this same point. To keep these two representations consistent,

one would like to de�ne a constraint with a two-output method (X;Y) (� cos �; � sin �) and another two-

output method in the other direction (�; �) (

p

X

2

+ Y

2

; arctan(Y;X)). Multi-output methods are also

useful for accessing the elements of compound data structures. For example, one could unpack a compound

CartesianPoint object into two variables using a constraint with methods (X;Y) (Point:X; Point:Y)

and Point CreatePoint(X;Y).

Support for multi-output methods introduces a performance issue. It has been proved that supporting

multi-output methods is NP-complete [5]. In actual use, the worst-case time complexity has not been a

problem. Both DeltaBlue and SkyBlue typically change only a small subgraph of the constraint graph

when a constraint is added or removed so the actual performance is usually sub-linear in the number of

constraints. Over the same types of constraint graphs that DeltaBlue can handle (no cycles, single-output

methods), SkyBlue has been measured at about half the speed of DeltaBlue. In the future SkyBlue may be

extended to detect when the constraint graph contains no cycles or multi-output methods and achieve the

speed of DeltaBlue in this case.

SkyBlue is currently being used as the constraint solver in several applications (see Section 6). Sky-

Blue implementations are available from the author. Detailed information on SkyBlue, including complete

pseudocode, is available in a technical report [7].

2 Method Graphs

A SkyBlue constraint is represented by one or more methods. Each method is a procedure that reads the

values of a subset of the constraint's variables (the method's input variables) and calculates values for the

remaining variables (the method's output variables) that satisfy the constraint. For example, the constraint

A+B = C could be represented by three methods: C A+ B, A C � B, and B C � A. If the value

of A or B were changed, SkyBlue could maintain the constraint by executing C A +B to calculate a new

value for C.

(a)

V3

C2

V6

V7

V1

C5

C1

V2

C4 V5

V4

C3

(b)

V3

C2

V6

V7

V1

C5

C1

V2

C4 V5

V4

C3

Figure 1: (a) A method graph with an unenforced constraint (C5), a method conict (at V 5), and a directed

cycle (between C1 and C2). (b) Another method graph for the same constraints where all of the constraints

can be satis�ed.

To satisfy a set of constraints, SkyBlue chooses one method to execute from each constraint, known as

the selected method of the constraint. The set of constraints and variables form an undirected constraint

graph with edges between each constraint and its variables. The constraint graph, together with the selected

methods, form a directed method graph. In this paper, method graphs are drawn with circles representing

variables and squares representing constraints (Figure 1). Lines are drawn between each constraint and its

variables. If a constraint has a selected method, arrows indicate the outputs of the selected method. If a

constraint has no selected method, it is linked to its variables with dashed lines. Small diagrams beneath

each constraint square indicate the unselected methods for the constraint (if any). These diagrams are

particularly useful when a constraint doesn't have methods in all possible directions or has multi-output

methods (such as C1).

The following terminology will be used in this paper. If a constraint has a selected method in a method

graph the constraint is enforced in that method graph, otherwise it is unenforced. Assigning a method as the

selected method of a constraint is known as enforcing the constraint. Assigning no method as the selected

method of a constraint is known as revoking the constraint. A variable that is an output of a constraint's

selected method is determined by that constraint. A variable that is not an output of any selected method is

undetermined. Following the selected method's output arrows leads to downstream variables and constraints.

Following the arrows in the reverse direction leads to upstream variables and constraints.

If a method graph contains two or more selected methods that output to the same variable, this is

a method conict. In Figure 1a, there is a method conict between the selected methods of C3 and C4.

SkyBlue prohibits method conicts because they prevent satisfying both constraints simultaneously. If we

satisfy C3 by executing its selected method (setting V 5), and then satisfy C4 by executing its selected

method (again setting V 5), then C3 might no longer be satis�ed. If a method graph has no method conicts

and no directed cycles, then it can be used to satisfy the enforced constraints by executing the selected

methods so any determined variable is set before it is read (i.e., executing the methods in topological order).

For example, Figure 1b shows a method graph for the same constraints where all of the constraints can be

satis�ed by executing the selected methods for C1, C2, C3, C4, and C5, in this order. The method graph

speci�es how to satisfy the enforced constraints, regardless of the particular values of the variables.

If a method graph contains directed cycles, such as the one between C1 and C2 in Figure 1a, it is not

possible to �nd a topological sort of the selected methods. In this case, SkyBlue sorts and executes only the

selected methods upstream of cycles. Any methods in a cycle or downstream of a cycle are not executed

and their output variables are marked to specify that their values do not necessarily satisfy the enforced

constraints. If a cycle is later broken, the methods in the cycle and downstream are executed correctly.

SkyBlue will be extended in the future to call more powerful solvers to �nd values satisfying a cycle of

constraints and then propagate these values downstream.

3 Constraint Hierarchies

An important property of any constraint solver is how it behaves when the set of constraints is overconstrained

(i.e., there is no solution that satis�es all of the constraints) or underconstrained (i.e., there are multiple

solutions). If the solver is maintaining constraints within a user interface application, it is not acceptable

to handle these situations by signaling an error or halting. The constraint hierarchy theory presented in [2]

provides a way to specify declaratively how a solver should behave in these situations. A constraint hierarchy

is a set of constraints, each labeled with a strength, indicating how important it is to satisfy each constraint.

1

Given an overconstrained constraint hierarchy, a constraint solver may leave weaker constraints unsatis�ed

in order to satisfy stronger constraints. If a hierarchy is underconstrained, the solver can choose any solution.

The user can control which solution is chosen by adding weak stay constraints to specify variables whose

value should not be changed.

(a)

V1
C2C1 C4

weak weak
C3

V2 V3mediumstrong

A non-LGB method graph.

(b)

V1
C2C1 C4

weak weak
C3

V2 V3mediumstrong

Another non-LGBmethod graph.

(c)

V1
C2C1 C4

weak weak
C3

V2 V3mediumstrong

An LGB method graph.

(d)

V1
C2C1 C4

weak weak
C3

V2 V3mediumstrong
Another LGB method graph for

the same constraints.

(e)

V1
C2C1 C4

weak
C3

V2 V3mediumstrongmedium
This is the only LGB method

graph if C1 has medium strength.

Figure 2: LGB and non-LGB Method Graphs.

The SkyBlue solver uses the constraint strengths to construct locally-graph-better (or LGB) method

graphs [5]. A method graph is LGB if there are no method conicts and there are no unenforced constraints

that could be enforced by revoking one or more weaker constraints (and possibly changing the selected

1

In this paper, strengths will be written using the symbolic names required, strong, medium, and weak, in order from

strongest to weakest.

methods for other enforced constraints with the same or stronger strength).

2

For example, consider the

method graph in Figure 2a. This graph is not LGB because the strong constraint C2 could be enforced

by choosing the method that outputs to V 2 and revoking the medium constraint C3, producing Figure 2b.

Actually, this method graph is not LGB either since C3 could be enforced by revoking C4, producing

Figure 2c. This method graph is LGB since the only unenforced constraint (C4) cannot be enforced by

revoking a weaker constraint.

There may be multiple LGB method graphs for a given constraint graph. Figure 2d shows another LGB

method graph which is neither better nor worse than Figure 2c. Given these constraints, SkyBlue would

construct one of these two method graphs arbitrarily. The constraint strengths could be modi�ed to favor

one alternative over the other. For example, if the strength of C1 was changed to medium, the only LGB

method graph would be the one in Figure 2e. One way for the programmer to control the method graphs

constructed is to add stay constraints that have a single null method with no inputs and a single output.

A stay constraint speci�es that its output variable should not be changed. A similar type of constraint is a

set constraint, which sets its output to a constant value. Set constraints can be used to inject new variable

values into a constraint graph. In Figure 2, C1 and C4 are stay or set constraints.

Reference [2] presents several di�erent ways to de�ne which variable values \best" satisfy a constraint

hierarchy. The concept of read-only variables extends this theory to constraints that may not be able to

set some of their variables, such as SkyBlue constraints without methods in all possible directions. For

many constraint graphs, LGB method graphs compute \locally-predicate-better" solutions to the constraint

hierarchy (de�ned in Reference [2]). Reference [5] examines the relation between LGB method graphs and

locally-predicate-better solutions.

4 The SkyBlue Algorithm

The SkyBlue constraint solver maintains the constraints in a constraint graph by constructing an LGB

method graph and executing the selected methods in the method graph to satisfy the enforced constraints.

Initially, the constraint graph and the corresponding LGB method graph are both empty. SkyBlue is

invoked by calling two procedures, add-constraint to add a constraint to the constraint graph, and

remove-constraint to remove a constraint. As constraints are added and removed, SkyBlue incremen-

tally updates the LGB method graph and executes methods to resatisfy the enforced constraints.

The presentation of SkyBlue is divided into several sections. Sections 4.1 and 4.2 present an overview of

add-constraint and remove-constraint. Section 4.3 describes how a constraint is enforced by constructing

a method vine, the core of the SkyBlue algorithm. The algorithm described in these sections produces correct

results, but its performance su�ers as the constraint graph becomes very large. Section 5 presents several

techniques used in the complete algorithm that signi�cantly improve the e�ciency of SkyBlue for large

constraint graphs. More detailed information on SkyBlue, including complete pseudocode for the algorithm,

is available in a technical report [7].

4.1 Adding Constraints

When a new constraint is added to the constraint graph it may be possible to alter the method graph to

enforce it by selecting a method for the constraint, switching the selected methods of enforced constraints

with the same or stronger strength, and possibly revoking one or more weaker constraints. This process

is known as constructing a method vine or mvine (described in Section 4.3). add-constraint adds a new

constraint cn to the constraint graph by performing the following steps:

1. Add cn to the constraint graph (unenforced) and try to enforce cn by constructing an mvine. If it is

not possible to construct such an mvine, leave cn enenforced and return from add-constraint. In this

case, the method graph is unchanged (it is still LGB).

2. Repeatedly try to enforce all of the unenforced constraints in the constraint graph by constructing

mvines until none of the remaining unenforced constraints can be enforced. Note that each time an

2

Reference [5] de�nes \locally-graph-better" such that directed cycles are prohibited. In this paper, the de�nition of LGB

is modi�ed so LGB method graphs may include directed cycles.

unenforced constraint is successfully enforced, one or more weaker constraints may be revoked. These

newly-unenforced constraints must be added to the set of unenforced constraints.

3. Execute the selected methods in the method graph to satisfy the enforced constraints (as described in

Section 2).

The second step must terminate because there are a �nite number of constraints. Each time an un-

enforced constraint is enforced, one or more weaker constraints may be added to the set of unenforced

constraints. These additional constraints may be enforcible, adding still weaker constraints to the set of

unenforced constraints, but this process cannot go on inde�nitely. Eventually the process will stop with a

set of unenforcible constraints. When the second step terminates the method graph must be LGB, since no

more mvines can be constructed.

As an example, suppose that add-constraint has just added C2 to the constraint graph and the current

method graph is shown in Figure 2a. One way that an mvine could be constructed is by enforcing C2 with

the method that outputs to V 2 and revoking C3 (Figure 2b). Given this method graph, the second step

would try constructing an mvine to enforce C3, possibly by revoking C4 (Figure 2c). At this point it is

not possible to construct an mvine to enforce C4 so the second step terminates. This method graph is

LGB. Alternatively, if the �rst mvine had been constructed by revoking C1 then the LGB method graph of

Figure 2d would have been produced immediately and the second step would not have been able to enforce

C1.

4.2 Removing Constraints

remove-constraint is very similar to add-constraint. When an enforced constraint is removed this may

allow some unenforced constraints to be enforced, which leads to the same process of repeatedly constructing

mvines. remove-constraint removes a constraint cn from the constraint graph by performing the following

steps:

1. If cn is currently unenforced, remove it from the constraint graph and return from remove-constraint.

Removing an unenforced constraint cannot make any other constraints enforcible so the method graph

is still LGB.

2. Repeatedly try enforcing all of the unenforced constraints in the constraint graph by constructing

mvines (adding revoked constraints to the set of unenforced constraints) until none of the unenforced

constraints can be enforced. As in add-constraint this step eventually terminates with an LGB

method graph.

3. Execute the selected methods in the method graph to satisfy the enforced constraints (as described in

Section 2).

4.3 Constructing Method Vines

The SkyBlue algorithm is based on attempting to enforce an unenforced constraint by changing the selected

methods of constraints with the same or stronger strength and/or revoking one or more constraints with

weaker strengths. There are many ways this could be implemented, including trying all possible assignments

of selected methods without method conicts. The technique used in SkyBlue, known as constructing a

method vine (or mvine), uses a backtracking depth-�rst search.

An mvine is constructed by selecting a method for the constraint we are trying to enforce (the root

constraint). If this method has a method conict with the selected methods of other enforced constraints,

we select new methods for these other constraints. These new selected methods may conict with yet

other selected methods, and so on. This process extends through the method graph, building a \vine" of

newly-chosen selected methods growing from the root constraint. This growth process may terminate in the

following ways:

1. If a newly-selected method in the mvine outputs to variables that are not currently determined by any

constraint, then this branch of the mvine is not extended any further.

2. If a newly-selected method in the mvine conicts with a selected method whose constraint is weaker than

the root constraint, then the weaker constraint is revoked, rather than attempting to �nd an alternative

selected method for it. As a result, all of the methods in the mvine will belong to constraints with

equal or stronger strengths than the root constraint.

3. If an alternative selected method is chosen for a constraint and there is a method conict with another

selected method in the mvine, then we cannot add this method to the mvine and must try another

method. If all of the methods of this constraint conict with other selected methods in the mvine, then

the mvine construction process backtracks: previously-selected methods are removed from the mvine

and the mvine is extended using other selected methods for these constraints. If no method can be

chosen for the root constraint that allows a complete conict-free mvine to be constructed, then the

root constraint cannot be enforced.

Figure 3 presents an example demonstrating the process of constructing an mvine. A complete mvine

is a connected subgraph of the method graph. An mvine is not necessarily a tree: separate branches may

merge and it may contain directed cycles. If all of the constraint methods in the mvine have a single output,

then an mvine will have the structure of a single stalk leading from the root constraint through a series of

other constraints with changed selected methods. If there is a method with multiple outputs in the mvine,

the mvine will divide into multiple branches with one branch for each output. The di�erent branches cannot

be extended independently since methods in di�erent branches cannot output to the same variables. The

backtracking search must take this into account by trying all possible combinations of selected methods for

the constraints in the di�erent branches.

5 Performance Techniques

The SkyBlue algorithm described in Section 4 works correctly, but its performance su�ers as the constraint

graph becomes very large. This happens because larger constraint graphs may contain greater numbers of

unenforced constraints that SkyBlue has to try enforcing, and each attempt to construct an mvine may

involve searching through more enforced constraints. The following subsections describe techniques used in

SkyBlue to improve its performance with larger constraint graphs.

5.1 The Collection Strength Technique

The initial SkyBlue method graph is empty and LGB. Every call to add-constraint or remove-constraint

leaves an LGB method graph. Therefore, the current method graph must be LGB whenever add-constraint

or remove-constraint is called. This fact can be used to avoid collecting and trying to enforce some of the

unenforced constraints.

Whenever add-constraint adds a constraint cn, it is impossible for it to enforce any unenforced

constraints with the same or stronger strength than cn, other than cn itself. If it was possible to enforce

any such constraint after cn was added, then it would have been possible to enforce it before cn was added

and the previous method graph would not have been LGB.

Whenever remove-constraint removes an enforced constraint cn, it is impossible to enforce any un-

enforced constraints that are stronger than cn. If it was possible to enforce any stronger constraint after

cn was removed, then it would have been possible to enforce it before cn was removed and the previous

method graph would not have been LGB. Note that unlike add-constraint, removing a constraint may

allow unenforced constraints with the same strength to be enforced, as well as weaker ones.

5.2 The Local Collection Technique

If the method graph is LGB and a constraint is added or removed from the constraint graph, any unenforced

constraints in a subgraph unconnected to the added or removed constraint clearly cannot be enforced. It is

possible to be more selective: Whenever add-constraint is called to add a constraint cn and an mvine is

successfully constructed to enforce it, it is su�cient to collect unenforced constraints that constrain variables

downstream in the method graph from all of the \redetermined variables" whose determining constraint

V6V4
C5

weak

requiredV1 V2

V3

V5required
C2C1 C4

required
C3

strong

Suppose we start with this method graph, and we

want to enforce the strong constraint C1 by build-

ing an mvine.

V6V4
C5

weak

requiredV1 V2

V3

V5required
C2C1 C4

required
C3

strong

First, C1's selected method is set to its only method

so it determines V 1.

V6V4
C5

weak

requiredV1 V2

V3

V5required
C2C1 C4

required
C3

strong

This causes a method conict with C2 so we have

to enforce C2 with its other method.

V6V4
C5

weak

requiredV1 V2

V3

V5required
C2C1 C4

required
C3

strong
This causes method conicts with C3 and C4. Sup-

pose we process C4 �rst: we can simply switch its

selected method so it determines V 5. V 5 is not de-

termined by any other constraints so we don't have

to extend this branch of the mvine.

V6V4
C5

weak

requiredV1 V2

V3

V5required
C2C1 C4

required
C3

strong
We have to process C3 by choosing another method.

Suppose we try the one that determines V 2. This

is not permitted because it causes a method conict

with C2, which is already in the mvine.

V6V4
C5

weak

requiredV1 V2

V3

V5required
C2C1 C4

required
C3

strong
Therefore, we have to backtrack and try another

method for C3. Suppose we now try the method

that determines V 4 (causing a method conict with

C5).

V6V4
C5

weak

requiredV1 V2

V3

V5required
C2C1 C4

required
C3

strong
Now we need to handle C5. Because it is weaker

than C1 we don't have to �nd an alternative

method but can simply revoke it, producing this

�nal method graph.

Figure 3: Constructing an mvine. Methods in the mvine are drawn with thicker lines.

has changed. Whenever remove-constraint is called to remove a constraint cn, it is su�cient to collect

unenforced constraints that constrain variables downstream from the variables previously determined by cn.

Whenever SkyBlue successfully constructs an mvine, additional unenforced constraints can be added to

the set of collected unenforced constraints by scanning downstream from the newly-redetermined variables.

As each of these constraints is processed (it is enforced, or it is determined that it cannot be enforced) it

can be removed from the set. When the set is empty there are no more unenforced constraints that can be

enforced.

A similar technique can be used to reduce the number of methods executed. Rather than executing the

selected methods of all enforced constraints in the constraint graph, it is only necessary to collect and execute

the selected methods of newly-enforced constraints, and methods downstream of redetermined variables.

5.3 Walkabout Strengths

An mvine is constructed by repeatedly choosing a new selected method for a constraint and then trying to

extend the mvine from the outputs of this method. It will be possible to complete the mvine below these

outputs only if the mvine eventually encounters undetermined variables or constraints weaker than the root

constraint, and there are no method conicts between di�erent branches of the mvine. If SkyBlue could

predict that one of these conditions was untrue then the selected method could be rejected immediately

without trying to extend the mvine.

The DeltaBlue algorithm predicts whether a constraint can be enforced by using the concept of walkabout

strengths [4]. A variable's walkabout strength is the strength of the weakest constraint that would have to

be revoked to allow that variable to be determined by a new constraint. This could be the strength of

the constraint that currently determines the variable or the strength of a weaker constraint elsewhere in

the method graph that could be revoked after switching the selected methods of other constraints. If the

variable is not currently determined by any constraint then the walkabout strength is de�ned as weakest,

which is a special strength weaker than any constraint. A variable will also have a walkabout strength of

weakest if it can be left undetermined by switching selected methods without revoking any constraints.

3

One important property of DeltaBlue's walkabout strengths is that they can be calculated using local

information. The walkabout strength of a variable determined by a constraint can be calculated from the

constraint's strength, its methods, and the walkabout strengths of the rest of the constraint's variables. If

the method graph has no cycles (required for DeltaBlue), all of the variable walkabout strengths can be

updated by setting the walkabout strengths of all undetermined variables to weakest and processing each

enforced constraint in topological order to set the walkabout strengths of the determined variables.

requiredV2

required

required

V1

V3

V4

V5

V6
C1

C2

C3

C4

C5

weakest

weakestweakest

weakest weakest

required
requiredweakest

Figure 4: Method graph with a possible conict.

There is a problem with using walkabout strengths in SkyBlue because methods may have multiple out-

puts. Consider the method graph of Figure 4. DeltaBlue would correctly calculate the walkabout strengths

of V 2{V 6 to be weakest. But what about V 1? The walkabout strengths of V 2 and V 3 imply that V 1

should have a walkabout strength of weakest, since the alternative (multi-output) method for C1 can be

chosen that outputs to V 2 and V 3, which both have weakest walkabout strengths. However, it is not possi-

ble for a method to set both V 2 and V 3 simultaneously, without revoking one of the required constraints.

Simply switching methods would lead to a method conict with both C4 and C5 determining V 6. However,

this cannot be detected without exploring the graph, which would remove one of the bene�ts of walkabout

strengths (i.e., they can be calculated using local information).

In SkyBlue, the de�nition of walkabout strength is modi�ed. A variable's walkabout strength is de�ned

as a lower bound on the strength of the weakest constraint in the current method graph that would need to

be revoked to allow the variable to be determined by a new constraint. SkyBlue uses the modi�ed de�nition

of walkabout strengths to reject methods when constructing an mvine: if any of the outputs of a method

have walkabout strengths equal to or stronger than the root constraint, then it is not possible to complete

the mvine using this method. The use of walkabout strengths cannot eliminate all of the backtracking during

mvine construction but it can reduce it considerably.

Whenever SkyBlue successfully constructs an mvine it modi�es the method graph, so the walkabout

strengths must be updated to correspond to the new method graph. This is done by processing all of the

3

Another interpretation of the weakest strength is that each variable has an implicit stay constraint with a strength of

weakest, which speci�es that the variable value doesn't change unless a stronger constraint determines it.

enforced constraints in the constraint graph (in topological order) and recalculating the walkabout strengths

of the determined variables. It is possible to apply the technique from Section 5.2 in this situation by

processing only the enforced constraints downstream of the redetermined variables.

SkyBlue uses the modi�ed de�nition of walkabout strengths to simplify the processing of cycles. If the

method graph contains directed cycles, it is not possible �nd a topological sort for the constraints. The

walkabout strengths for variables in the cycle could be calculated by examining all of the constraints in

the cycle, but this would require non-local computation. Instead, SkyBlue chooses a selected method in

the cycle and calculates the walkabout strengths of its outputs as if all of its input variables in the cycle

had walkabout strengths of weakest. This is guaranteed to be a correct lower bound. This simpli�es the

updating of walkabout strengths at the cost of increasing the search when constructing an mvine, because

the walkabout strengths in a cycle and downstream may be weaker than necessary.

5.4 Comparing Performance Techniques

For regression testing and performance tuning, a random sequence of 10000 calls to add-constraint and

remove-constraint was generated and saved. Using this sequence it is possible to measure how the perfor-

mance of SkyBlue is improved by the performance techniques described above.

local walkabout time number mvines number

collection strengths (seconds) attempted constructed backtracks

on on 25.3 24222 5840 12748

on o� 47.2 24222 5840 196012

o� on 44.1 77354 5826 36262

o� o� 125.5 77354 5826 571534

Figure 5: Measurements collected while executing a sequence of 10000 constraint operations in SkyBlue with

di�erent performance techniques enabled.

Figure 5 shows the timing results when executing the sequence with four di�erent con�gurations of the

SkyBlue algorithm. The local collection column speci�es whether the technique from Section 5.2 was used to

collect constraints local to the added or removed constraint when enforcing and executing methods, versus

processing all of the constraints in the constraint graph. The walkabout strengths column speci�es whether

variable walkabout strengths were used to improve mvine searches and updated whenever an mvine was

constructed, as described in Section 5.3. The times in the third column show that SkyBlue is most e�cient

with both techniques enabled, about half the speed with either technique disabled, and exceedingly slow

with neither of the techniques enabled. The collection strength technique of Section 5.1 was enabled in all

four cases. Disabling this technique did not change the times as much as the other two techniques.

These timings are explained by the remaining three columns, which record the number of times SkyBlue

attempted to enforce a constraint by constructing an mvine, the number of times the mvine was successfully

constructed, and the number of times backtracking occurred while trying to construct an mvine. These

timings can be interpreted as follows: the local collection technique saves time by reducing the number of

attempts to construct mvines and the number of constraint methods executed. The walkabout strength

technique saves time by reducing the amount of backtracking when constructing an mvine. This particularly

reduces backtracking (and time) when there are numerous unsuccessful mvines, such as when the local

collection technique is disabled.

6 SkyBlue Applications

SkyBlue is currently being used as the constraint solver in Multi-Garnet [8], a package that extends the

Garnet user interface construction system [6] with support for hierarchies of multi-way constraints. SkyBlue

is also currently being used as the constraint solver in an implementation of the Kaleidoscope language [3]

and as an equation manipulation tool in the Pika simulation system [1].

6.1 Multi-Garnet

Garnet is a widely-used user interface toolkit built on Common Lisp and X windows [6]. However, Garnet

only supports one-way constraints, all of which must be required (no hierarchies). The Multi-Garnet package

uses the SkyBlue solver to add support for multi-way constraints and constraint hierarchies to Garnet [8].

0.00 100.00A
0.00

100.00

B

22.45 122.45A

0.00

100.00

B

0.00 81.89A
0.00

272.56

B

Figure 6: Three views of a scatterplot built within Multi-Garnet: The initial scatterplot, the initial scatterplot

after moving the X-axis, and the initial scatterplot after scaling the point cloud by moving a point.

Figure 6 shows three views of a graphic user interface constructed in Multi-Garnet: a scatterplot dis-

playing a set of points. SkyBlue constraints are used to specify the relationship between the screen position

of each point, the corresponding data value, and the positions and range numbers of the X and Y-axes. As

the scatterplot points and axes are moved with the mouse, SkyBlue maintains the constraints so that the

graph continues to display the same data.

The scatterplot application exploits many of the features of SkyBlue. SkyBlue resatis�es the constraints

quickly enough to allow continuous interaction. The di�erent interactions (move axis, move point cloud,

scale point cloud, etc.) are de�ned by adding weak stay constraints to specify variables that should not be

changed. Multi-way constraints allow any of the scatterplot points to be selected and moved, changing the

axes data. This changes the positions of the other points, reshaping or moving the point cloud. Finally, the

scatterplot uses constraints with multi-output methods, such as a constraint with three two-output methods

that maintains the relationship between the X-coordinates of the ends of the X-axis, the range numbers

displayed at the ends of the axis, and the scale and o�set variables used to position points relative to the

axis. It would be di�cult to build this application in Garnet without maintaining some of the relationships

using other mechanisms in addition to the Garnet constraint solver.

6.2 The Pika Simulation System

SkyBlue is being used as an equation manipulation tool in a version of the Pika simulation system [1].

Pika constructs simulations in domains such as electronics or thermodynamics by collecting algebraic and

di�erential equations representing relationships between object attributes. For example, in a simulation

of an electronic circuit, one equation would relate the voltage across and the current through a particular

resister. Pika processes these equations and passes them to a numerical integrator that calculates how the

object attributes change over time.

Pika uses SkyBlue to manipulate the collected equations. Each equation is expressed as a SkyBlue

constraint with one method for each possible output variable. SkyBlue chooses one method from each

constraint so that no two constraints select the same output variable, and topologically orders the selected

methods. Pika uses the ordered list of selected methods to set up the numerical integrator. Note that Pika

does not use SkyBlue to maintain the constraints (equations) directly, but rather uses it to process the

equations for the numerical integrator, which will maintain the equations during the simulation.

During equation processing, Pika takes advantage of SkyBlue's support for constraint hierarchies to

inuence the methods selected. There may be many possible ways to directionalize a given set of equations,

leaving di�erent sets of variables constant. Within the simulation, it may be preferable to keep some variables

constant over others. This is represented by adding weak stay constraints to variables that should remain

constant. SkyBlue will choose an equation ordering that leaves these variables constant, if possible.

Pika uses SkyBlue's facilities for incrementally adding and removing constraints to update the sorted list

of equation methods as equations are added and removed. This may occur while the simulation is executing.

For example, when the temperature of a container of water increases and it starts to boil, a di�erent set of

equations describing its behavior is activated.

Often there are cycles in the sets of selected methods produced by SkyBlue. Currently, Pika handles

these cycles by extracting the equations in the cycle, and passing them to an symbolic mathematics system

which tries to transform them to a non-cyclic set of equations. Pika replaces the cycle of equations by

the reduced equations, SkyBlue (incrementally) updates the constraint graph, and Pika processes the new

ordered list of selected methods.

Acknowledgements

Thanks to Alan Borning, Ralph Hill, and Brad Vander Zanden for useful discussions and comments on earlier

versions of this paper. This work was supported in part by the National Science Foundation under Grants

IRI-9102938 and CCR-9107395.

References

[1] Franz G. Amador, Adam Finkelstein, and Daniel S. Weld. Real-Time Self-Explanatory Simulation. In

Proceedings of the National Conference on Arti�cial Intelligence, 1993. To appear.

[2] Alan Borning, Bjorn Freeman-Benson, and Molly Wilson. Constraint Hierarchies. Lisp and Symbolic

Computation, 5(3):223{270, September 1992.

[3] Bjorn Freeman-Benson and Alan Borning. The Design and Implementation of Kaleidoscope'90, A Con-

straint Imperative Programming Language. In Proceedings of the IEEE Computer Society International

Conference on Computer Languages, pages 174{180, April 1992.

[4] Bjorn Freeman-Benson, John Maloney, and Alan Borning. An Incremental Constraint Solver. Commu-

nications of the ACM, 33(1):54{63, January 1990.

[5] John Maloney. Using Constraints for User Interface Construction. PhD thesis, Department of Computer

Science and Engineering, University of Washington, August 1991. Published as Department of Computer

Science and Engineering Technical Report 91-08-12.

[6] Brad A. Myers, Dario Guise, Roger B. Dannenberg, Brad Vander Zanden, David Kosbie, Philippe Mar-

chal, and Ed Pervin. Comprehensive Support for Graphical, Highly-Interactive User Interfaces: The

Garnet User Interface Development Environment. IEEE Computer, 23(11):71{85, November 1990.

[7] Michael Sannella. The SkyBlue Constraint Solver. Technical Report 92-07-02, Department of Computer

Science and Engineering, University of Washington, February 1993.

[8] Michael Sannella and Alan Borning. Multi-Garnet: Integrating Multi-Way Constraints with Garnet.

Technical Report 92-07-01, Department of Computer Science and Engineering, University of Washington,

September 1992.

[9] Michael Sannella, John Maloney, Bjorn Freeman-Benson, and Alan Borning. Multi-way versus One-

way Constraints in User Interfaces: Experience with the DeltaBlue Algorithm. Software|Practice and

Experience, 1992. In press.

