
Garnet Reference and User Manual
For Garnet Version 3.0.0+

Revision 0.0.1, 14 May 2020

This is edition 0.0.1 of the Garnet Reference and User Manual,
corresponding to Garnet version 3.0.0+.

Copyright c© 19xx–2020

i

Short Contents

1 Overview . 1
2 On-line Tour Through Garnet . 23

3 Garnet Tutorial . 41
4 KR: Constraint-Based Knowledge Representation 97
5 Opal: The Garnet Graphical Object System 148
6 Interactors: Encapsulating Mouse and Keyboard Behaviors . . 221
7 Aggregadgets, Aggrelists & Aggregraphs 311

8 Garnet Gadgets . 390
9 Debugging Tools for Garnet Reference chapter 563

10 Demonstration Programs for Garnet . 584
11 A Sample Garnet Program . 592

12 Gilt Reference: A Simple Interface Builder for Garnet 608
13 C32 Reference: A Constraint Editor . 633

14 Lapidary Reference . 643

15 Hints on Making Garnet Programs Run Faster 698
16 Gem: Low-level Graphics Library . 704
A GNU General Public License . 710

Function Index . 711

Variable Index . 714

Keyword Index . 716
Type Index . 717

Concept Index . 718

ii

Table of Contents

1 Overview . 1
1.1 Introduction . 1
1.2 Garnet Bulletin Board . 1
1.3 Important Features of Garnet . 2
1.4 Coverage . 3
1.5 Running Garnet From /afs . 5
1.6 How to Retrieve and Install Garnet . 5

1.6.1 Installation on a Mac . 5
1.6.2 Installation on a Unix System . 6

1.7 Directory Organization . 9
1.8 Site-Specific Changes . 10

1.8.1 Pathnames . 10
1.8.2 Compiler Optimization Settings . 10
1.8.3 Fonts in X11 . 11
1.8.4 Keyboard Keys . 11
1.8.5 Multiple Screens . 12
1.8.6 OpenWindows Window Manager . 12
1.8.7 LispWorks . 12
1.8.8 CLISP . 13
1.8.9 AKCL . 14

1.9 Mac-Specific Issues . 14
1.9.1 Compensating for 31-Character Filenames: 14
1.9.2 Directories: . 14
1.9.3 Binding Keys: . 15
1.9.4 Simulating Multiple Mouse Buttons With the Keyboard: . . 15
1.9.5 Modifier Keys: . 15
1.9.6 Things to Keep in Mind When You
Want Your Garnet Programs . 15

1.10 Compiling Garnet . 16
1.11 Loading Garnet . 16
1.12 Loader and Compiler Functions . 17

1.12.1 Garnet-Load and Garnet-Compile . 17
1.12.2 Adding Your Own Pathnames . 18

1.13 Overview of the Parts of Garnet . 18
1.14 Overview of this Technical Report . 19
1.15 What You Need To Know . 19
1.16 Planned Future Extensions . 21
1.17 Garnet Articles . 22

2 On-line Tour Through Garnet 23
2.1 Abstract . 23
2.2 Introduction . 23
2.3 Getting Started . 23

iii

2.4 Typing . 23
2.5 Garbage Collection . 24
2.6 Errors, etc. 24
2.7 Learning Garnet . 25
2.8 LearnGarnet . 25
2.9 A Note on Packages . 25
2.10 A Note on Refresh . 26
2.11 Loading Garnet and the Tour . 27
2.12 Basic Objects . 27
2.13 Formulas . 29
2.14 Interaction . 30
2.15 Higher-level Objects . 32

2.15.1 Buttons . 32
2.15.2 Slider . 33

2.16 Playing Othello . 34
2.17 Modifying Othello . 34
2.18 Using GarnetDraw . 35
2.19 Cleanup . 36
2.20 . 36

3 Garnet Tutorial . 41
3.1 Abstract . 41
3.2 Take the Tour . 41
3.3 Load Garnet . 41
3.4 The Prototype-Instance System . 41
3.5 Inheritance . 41
3.6 Prototypes . 44
3.7 Default Values . 48
3.8 The Inspector . 48
3.9 Parameters . 50
3.10 Destroying Objects . 51
3.11 Unnamed Objects . 51
3.12 Lines, Rectangles, and Circles . 52
3.13 Aggregates . 52
3.14 Aggregadgets, Aggrelists, and Aggregraphs 55

3.14.1 Aggregadgets . 55
3.14.2 Aggrelists . 56

3.15 Windows . 57
3.16 Gadgets . 57
3.17 Constraints . 57
3.18 Formulas . 57
3.19 Cached Values . 61
3.20 Formulas and s-value . 62
3.21 Using the :obj-over Slot . 62
3.22 Constraints in Aggregadgets . 65
3.23 Interactors . 69
3.24 Kinds of Interactors . 69
3.25 The Button Interactor . 70

iv

3.26 A Feedback Object with the Button Interactor 73
3.27 The Move-Grow Interactor . 74
3.28 A Feedback Object with the Move-Grow Interactor 76
3.29 Creating a Panel of Text Buttons . 76

3.29.1 The Limitations of Aggregates . 77
3.29.2 Using an Aggregadget for the Text Button 79
3.29.3 Defining Parts Using Prototypes . 80
3.29.4 The Label of the Button . 81
3.29.5 Instances of the Button Aggregadget . 82
3.29.6 Making an Aggrelist of Text Buttons . 84
3.29.7 Adding an Interactor . 86

3.30 Referencing Objects in Functions . 90
3.31 Hints and Caveats . 92
3.32 Dimensions of Aggregates . 92

3.32.1 Supply Your Own Formulas to Improve Performance 92
3.32.2 Ignore Feedback Objects in Dimension Formulas 92
3.32.3 Include All Components in the Aggregate’s Bounding Box . . 92

3.33 Dimensions of Windows . 92
3.34 Formulas . 92

3.34.1 The Difference Between formula and o-formula 93
3.34.2 Avoid Real Number Divide . 95

3.35 Feedback Objects . 95
3.36 Debugging . 95
3.37 The Inspector . 95
3.38 PS . 95
3.39 Flash . 95
3.40 Ident . 96
3.41 Trace-Inter . 96

4 KR: Constraint-Based
Knowledge Representation . 97
4.1 KR: Introduction . 97
4.2 Structure of the System . 98
4.3 Basic Concepts . 98

4.3.1 Main Concepts: Schema, Slot, Value . 98
4.3.2 Inheritance . 101

4.4 Object-Oriented Programming . 102
4.4.1 Objects . 102
4.4.2 Prototypes vs. Classes . 102
4.4.3 Inheritance of Formulas . 103

4.5 Constraint Maintenance . 103
4.5.1 Value Propagation . 103
4.5.2 Formulas . 103
4.5.3 Circular Dependencies . 104
4.5.4 Dependency Paths . 105
4.5.5 Constraints and Multiple Values . 105

4.6 Functional Interface: Common Functions . 105
4.6.1 Schema Manipulation . 105

v

4.6.2 Slot and Value Manipulation Functions 107
4.6.3 Getting Values with g-value and gv . 107
4.6.4 Setting Values with S-Value . 108
4.6.5 formula and o-formula . 109
4.6.6 gv and gvl in Formulas . 110
4.6.7 Object-Oriented Programming . 110
4.6.8 Reader Macros . 112

4.7 The Type-Checking System . 112
4.7.1 Creating Types . 113
4.7.2 Declaring the Type of a Slot . 114
4.7.3 Type Documentation Strings . 114
4.7.4 Retrieving the Predicate Expression . 115
4.7.5 Explicit Type-Checking . 115
4.7.6 Temporarily Disabling Types . 115
4.7.7 System-Defined Types . 115

4.8 Functional Interface: Additional Topics . 119
4.8.1 Schema Manipulation . 119
4.8.2 Uniform Declaration Syntax . 120
4.8.3 Declarations in Instances . 122
4.8.4 Examining Slot Declarations . 122
4.8.5 Relations and Slots . 123
4.8.6 Constraint Maintenance . 124

4.9 Constant Formulas . 125
4.9.1 Efficient Path Definitions . 128

4.10 Tracking Formula Dependencies . 128
4.11 Formula Meta-Information . 129

4.11.1 Creating Meta-Information . 129
4.11.2 Accessing Meta-Information . 129
4.11.3 Demons . 130
4.11.4 Overview of the Demon Mechanism . 131
4.11.5 The :update-slots List . 131
4.11.6 Examples of Demons . 132
4.11.7 Enabling and Disabling Demons . 132
4.11.8 Multiple Inheritance . 133
4.11.9 Inheritance: Implementation Notes . 133
4.11.10 Local Values . 134
4.11.11 Local-only Slots . 136
4.11.12 Schema Creation Options . 137
4.11.13 Print Control . 137
4.11.14 Print Control Slots . 139
4.11.15 Slot Printing Functions . 141
4.11.16 Control Variables . 141

4.12 An Example . 143
4.12.1 The Degrees Schema . 143
4.12.2 The Thermometer Example . 144

4.13 Summary . 146

vi

5 Opal: The Garnet Graphical Object System . . 148
5.1 Abstract . 148
5.2 Introduction . 148
5.3 Overview of Opal . 149

5.3.1 Basic Concepts . 149
5.3.2 The Opal Package . 150
5.3.3 Simple Displays . 150
5.3.4 Object Visibility . 151
5.3.5 View Objects . 152
5.3.6 Read-Only Slots . 152
5.3.7 Different Common Lisps . 152

5.4 Slots of All Graphical Objects . 153
5.4.1 Left, top, width and height . 153
5.4.2 Line style and filling style . 153
5.4.3 Drawing function . 153
5.4.4 select-outline-only,
hit-threshold, and pretend-to-be-leaf 155

5.5 Methods on All view-objects . 156
5.5.1 Standard Functions . 156
5.5.2 Extended Accessor Functions . 157

5.6 Graphic Qualities . 158
5.6.1 Color . 160

5.6.1.1 Using Default Colors . 160
5.6.1.2 Prototype and Definition . 160

5.6.2 line-style Class . 161
5.6.2.1 Using Default Line Styles . 161
5.6.2.2 Prototype and Definition opal:line-style 162

5.6.3 Filling-Styles . 164
5.6.3.1 Creating Your Own Stippled Filling-Styles 166
5.6.3.2 Fancy Stipple Patterns . 166
5.6.3.3 Other Slots Affecting Stipple Patterns 167

5.6.4 Fast Redraw Objects . 167
5.7 Specific Graphical Objects . 168

5.7.1 Line . 170
5.7.2 Rectangles . 170

5.7.2.1 Rounded-corner Rectangles . 170
5.7.3 Polyline and Multipoint . 171
5.7.4 Arrowheads . 173
5.7.5 Arcs . 176
5.7.6 Ovals . 178
5.7.7 Circles . 178
5.7.8 Fonts and Text . 178

5.7.8.1 Fonts . 178
5.7.8.2 Text . 181
5.7.8.3 Scrolling Text Objects . 182

5.7.9 Bitmaps . 182
5.7.10 Pixmaps . 183

5.7.10.1 Creating a pixmap . 184

vii

5.7.10.2 Storing a pixmap . 184
5.8 Multifont . 185

5.8.1 Format of the :initial-text Slot . 186
5.8.2 Functions on Multifont Text . 187

5.8.2.1 Functions that Manipulate the Cursor 187
5.8.2.2 Functions for Text Selection . 188
5.8.2.3 Functions that Access the Text or Cursor 190

5.8.3 Adding and Editing Text . 190
5.8.3.1 Operations on :initial-text Format Lists 191
5.8.3.2 Using view-objects as Text . 192
5.8.3.3 Using Marks . 192

5.8.4 Interactors for Multifont Text . 193
5.8.4.1 Multifont Text Interactor . 193
5.8.4.2 Focus Multifont Text Interactor . 195
5.8.4.3 Selection Interactor . 197
5.8.4.4 Lisp Mode . 197

5.8.5 Auto-Scrolling Multifont Text Objects 198
5.8.6 After Cursor Moves . 199
5.8.7 A Multifont Text Gadget . 199

5.9 Aggregate objects . 199
5.9.1 Class Description . 200
5.9.2 Insertion and Removal of Graphical Objects 200
5.9.3 Application of functions to components 201
5.9.4 Finding Objects Under a Given Point . 202
5.9.5 Finding objects inside rectangular regions 203

5.10 Virtual-Aggregates . 203
5.10.1 Virtual-Aggregates Slots . 204
5.10.2 Two-dimensional virtual-aggregates . 205
5.10.3 Manipulating the Virtual-Aggregate . 205

5.11 Windows . 206
5.11.1 Window Positioning . 209
5.11.2 Border Widths . 209
5.11.3 Window Cursors . 209

5.11.3.1 The :cursor Slot . 210
5.11.3.2 Garnet Cursor Objects . 210
5.11.3.3 Temporarily Changing the Cursor 211

5.11.4 Update Quarantine Slot . 212
5.11.5 Windows on other Displays . 212
5.11.6 Methods and Functions on Window Objects 213

5.12 Printing Garnet Windows . 215
5.13 Saving and Restoring . 218

5.13.1 Saving Lisp Images . 218
5.13.2 Saving Lisp Images Manually in X11 . 218

5.14 Utility Functions . 219
5.14.1 Executing Unix Commands . 219
5.14.2 Testing Operating System Directories 219

5.15 Aggregadgets and Interactors . 220
5.16 Creating New Graphical Objects . 220

viii

6 Interactors: Encapsulating Mouse and
Keyboard Behaviors . 221
6.1 Abstract . 221
6.2 Introduction . 221
6.3 Advantages of Interactors . 221
6.4 Overview of Interactor Operation . 222
6.5 Simple Interactor Creation . 223
6.6 Overview of the Section . 224

6.6.1 the Main Event Loop . 225
6.6.2 main-event-loop . 225
6.6.3 main-event-loop Process . 225
6.6.4 Launching and Killing the main-event-loop-process . . . 226
6.6.5 launch-process-p . 226
6.6.6 main-event-loop-process-running-p 226
6.6.7 Operation . 226
6.6.8 Creating and Destroying . 226

6.7 Continuous . 227
6.8 Feedback . 228
6.9 Events . 228

6.9.1 Keyboard and Mouse Events . 228
6.9.2 "Middledown" and "Rightdown" on the Mac 228
6.9.3 Modifiers (Shift, Control, Meta) . 229
6.9.4 Window Enter and Leave Events . 229
6.9.5 Double-Clicking . 230
6.9.6 Function Keys, Arrows Keys, and Others 230
6.9.7 Multiple Events . 230
6.9.8 Special Values T and nil . 231

6.10 Values for the “Where” slots . 231
6.10.1 Introduction . 231
6.10.2 Running-where . 231
6.10.3 Kinds of “where” . 232
6.10.4 Type Parameter . 232
6.10.5 Custom . 233
6.10.6 Full List of Options for Where . 234
6.10.7 Same Object . 236
6.10.8 Outside while running . 236
6.10.9 Thresholds, Outlines, and Leaves . 236

6.11 Details of the Operation . 237
6.12 Mouse and Keyboard Accelerators . 240
6.13 Slots of All Interactors . 241
6.14 Specific Interactors . 245
6.15 Menu-Interactor . 246

6.15.1 Default Operation . 248
6.15.2 Interim Feedback . 248
6.15.3 Final Feedback . 249
6.15.4 Final Feedback Objects . 250
6.15.5 Items Selected . 251
6.15.6 Application Notification . 252

ix

6.15.7 Normal Operation . 252
6.15.8 Slots-To-Set . 253

6.16 Button-Interactor . 253
6.16.1 Default Operation . 255
6.16.2 Interim Feedback . 255
6.16.3 Final Feedback . 255
6.16.4 Items Selected . 255
6.16.5 Application Notification . 255
6.16.6 Normal Operation . 256
6.16.7 Auto-Repeat for Buttons . 256
6.16.8 Examples . 256
6.16.9 Single button . 256
6.16.10 Single button with a changing label . 257

6.17 Move-Grow-Interactor . 257
6.17.1 Default Operation . 259
6.17.2 attach-point . 260
6.17.3 Running where . 261
6.17.4 Extra Parameters . 261
6.17.5 Application Notification . 262
6.17.6 Normal Operation . 263
6.17.7 Gridding . 263
6.17.8 Setting Slots . 263
6.17.9 Useful Function: Clip-And-Map . 264

6.18 Two-Point-Interactor . 265
6.18.1 Default Operation . 266
6.18.2 Minimum sizes . 267
6.18.3 Extra Parameters . 267
6.18.4 Application Notification . 268
6.18.5 Normal Operation . 269
6.18.6 Examples . 269
6.18.7 Creating New Objects . 269

6.19 Angle-Interactor . 270
6.19.1 Default Operation . 272
6.19.2 Extra Parameters . 272
6.19.3 Application Notification . 273
6.19.4 Normal Operation . 273

6.20 text-interactor . 273
6.20.1 Default Editing Commands . 275
6.20.2 Default Operation . 276
6.20.3 Multi-line text strings . 276
6.20.4 Extra Parameters . 277
6.20.5 Application Notification . 277
6.20.6 Normal Operation . 278
6.20.7 Useful Functions . 278
6.20.8 Examples . 279
6.20.9 Editing a particular string . 279
6.20.10 Editing an existing or new string . 279
6.20.11 Key Translation Tables . 280

x

6.20.12 Editing Function . 282
6.21 Gesture-Interactor . 282

6.21.1 Default Operation . 284
6.21.2 Rejecting Gestures . 284
6.21.3 Extra Parameters . 284
6.21.4 Application Notification . 285
6.21.5 Normal Operation . 286
6.21.6 Example - Creating new Objects . 286
6.21.7 Agate . 288
6.21.8 End-User Interface . 289
6.21.9 Programming Interface . 290
6.21.10 Gesture Demos . 291

6.22 Animator-Interactor . 291
6.23 Transcripts . 293
6.24 Advanced Features . 294
6.25 Priority Levels . 294

6.25.1 Example . 297
6.25.2 Sorted-Order Priority Levels . 297

6.26 Modes and Change-Active . 297
6.26.1 Modal Windows . 297
6.26.2 Change-Active . 298

6.27 Events . 298
6.27.1 Example of using an event . 299

6.28 Starting and Stopping Interactors Explicitly 300
6.29 Special slots of interactors . 301

6.29.1 Example of using the special slots . 301
6.30 Multiple Windows . 302
6.31 Wait-Interaction-Complete . 302
6.32 Useful Procedures . 303
6.33 Custom Action Routines . 303

6.33.1 Menu Action Routines . 304
6.33.2 Button Action Routines . 304
6.33.3 Move-Grow Action Routines . 305
6.33.4 Two-Point Action Routines . 306
6.33.5 Angle Action Routines . 306
6.33.6 Text Action Routines . 308
6.33.7 Gesture Action Routines . 308
6.33.8 Animation Action Routines . 309

6.34 Debugging . 309

7 Aggregadgets, Aggrelists & Aggregraphs . . . 311
7.1 Abstract . 311
7.2 Aggregadgets . 311
7.3 Accessing Aggregadgets and Aggrelists . 311
7.4 Aggregadgets . 311

7.4.1 How to Use Aggregadgets . 312
7.4.2 Named Components . 315
7.4.3 Destroying Aggregadgets . 316

xi

7.4.4 Constants and Aggregadgets . 316
7.4.5 Implementation of Aggregadgets . 317
7.4.6 Dependencies Among Components . 318
7.4.7 Multi-level Aggregadgets . 319
7.4.8 Nested Part Expressions for Aggregadgets 321
7.4.9 Creating a Part with a Function . 323
7.4.10 Creating All of the Parts with a Function 326

7.5 Interactors in Aggregadgets . 329
7.6 Instances of Aggregadgets . 334

7.6.1 Default Instances of Aggregadgets . 334
7.6.2 Overriding Slots and Structure . 336
7.6.3 Simulated Multiple Inheritance . 336
7.6.4 Instance Examples . 337
7.6.5 More Syntax: Extending an Aggregadget 341

7.7 Aggrelists . 343
7.7.1 How to Use Aggrelists . 343
7.7.2 Itemized Aggrelists . 345
7.7.3 The :item-prototype Slot . 345
7.7.4 The :items Slot . 346
7.7.5 Aggrelist Components . 346
7.7.6 Constants and Aggrelists . 347
7.7.7 A Simple Aggrelist Example . 348
7.7.8 An Aggrelist with an Interactor . 350
7.7.9 An Aggrelist with a Part-Generating Function 352
7.7.10 Non-Itemized Aggrelists . 355

7.8 Instances of Aggrelists . 358
7.8.1 Overriding the Item Prototype Object 358

7.9 Manipulating Gadgets Procedurally . 360
7.9.1 Copying Gadgets . 360
7.9.2 Aggregadget Manipulation . 360
7.9.3 Add-Component . 360
7.9.4 Remove Component . 361
7.9.5 Add-Interactor . 362
7.9.6 Remove-Interactor . 362
7.9.7 Take-Default-Component . 362
7.9.8 Itemized Aggrelist Manipulation . 363
7.9.9 Add-Item . 363
7.9.10 Remove-Item . 364
7.9.11 Remove-Nth-Item . 364
7.9.12 Change-Item . 364
7.9.13 Replace-Item-Prototype-Object . 364
7.9.14 Ordinary Aggrelist Manipulation . 365
7.9.15 Add-Component . 365
7.9.16 Remove-Component . 365
7.9.17 Remove-Nth-Component . 366
7.9.18 Local Modification . 366

7.10 Reading and Writing Aggregadgets and Aggrelists 366
7.10.1 Write-Gadget . 366

xii

7.10.2 Avoiding Deeply Nested Parts Slots . 367
7.10.3 More Details . 367
7.10.4 Writing to Streams . 368
7.10.5 References to External Objects . 368
7.10.6 References to Graphic Qualities . 369
7.10.7 Saving References From Within Formulas 369

7.11 More Examples . 371
7.11.1 A Customizable Check-Box . 371
7.11.2 Hierarchical Implementation of a Customizable Check-Box . . 373
7.11.3 Menu Aggregadget with built-in
interactor, using Aggrelists . 374

7.12 Aggregraphs . 378
7.13 Using Aggregraphs . 378

7.13.1 Accessing Aggregraphs . 378
7.13.2 Overview . 379
7.13.3 Aggregraph Nodes . 379
7.13.4 A Simple Example . 380
7.13.5 An Example With an Interactor . 382

7.14 Aggregraph . 384
7.15 Scalable Aggregraph . 386
7.16 Scalable Aggregraph Image . 387
7.17 Customizing the :layout-graph Function . 388

8 Garnet Gadgets . 390
8.1 Abstract . 390
8.2 Introduction . 390
8.3 Current Gadgets . 390
8.4 Customization . 399
8.5 Using Gadget Objects . 399
8.6 Application Interface . 400

8.6.1 The :value slot . 400
8.6.2 The :selection-function slot . 401
8.6.3 The :items slot . 401
8.6.4 Item functions . 402
8.6.5 Adding and removing items . 402

8.7 Constants with the Gadgets . 403
8.8 Accessing the Gadgets . 404
8.9 Gadgets Modules . 404
8.10 Loading the Gadgets . 404
8.11 Gadget Files . 406
8.12 Gadget Demos . 407
8.13 The Standard Gadget Objects . 407
8.14 Scroll Bars . 407
8.15 Sliders . 410
8.16 Trill Device . 414
8.17 Gauge . 418
8.18 Buttons . 420

8.18.1 Text Buttons . 422

xiii

8.18.2 X Buttons . 423
8.18.3 Radio Buttons . 425

8.19 Option Button . 426
8.20 Popup-Menu-Button . 429
8.21 Menu . 432
8.22 Scrolling Menu . 435

8.22.1 Scroll Bar Control . 437
8.22.2 Menu Control . 437

8.23 Menubar . 438
8.23.1 Item Selection Functions . 440
8.23.2 Programming the Menubar in the Traditional Garnet Way . . 440
8.23.3 An example . 441
8.23.4 Adding items to the menubar . 441
8.23.5 Removing items from the menubar . 442
8.23.6 Programming the Menubar with Components 443
8.23.7 An example . 443
8.23.8 Creating components of the menubar 444
8.23.9 Adding components to the menubar . 444
8.23.10 Removing components from the menubar 445
8.23.11 Finding Components of the Menubar 445
8.23.12 Enabling and Disabling Components 446
8.23.13 Other Menubar Functions . 446

8.24 Labeled Box . 447
8.25 Scrolling-Input-String . 448
8.26 Scrolling-Labeled-Box . 450
8.27 Graphics-Selection . 451
8.28 Multi-Graphics-Selection . 455

8.28.1 Programming Interface . 459
8.28.2 End User Operation . 461

8.29 Scrolling-Windows . 462
8.30 Arrow-line and Double-Arrow-Line . 468

8.30.1 Arrow-Line . 469
8.30.2 Double-Arrow-Line . 469

8.31 Browser Gadget . 470
8.31.1 User Interface . 472
8.31.2 Programming Interface . 472
8.31.3 Overview . 472
8.31.4 An example . 473
8.31.5 Generating Functions for Items and Strings 474
8.31.6 Other Browser-Gadget Slots . 474
8.31.7 The Additional Selection . 474
8.31.8 Manipulating the browser-gadget . 475

8.32 Polyline-Creator . 476
8.32.1 Creating New Polylines . 477
8.32.2 Editing Existing Polylines . 478
8.32.3 Some Useful Functions . 478

8.33 Error-Gadget . 479
8.33.1 Programming Interface . 480

xiv

8.33.2 Error-Checking and Careful Evaluation 481
8.33.3 Careful-Eval . 481
8.33.4 Careful-Read-From-String . 482
8.33.5 Careful-String-Eval . 482
8.33.6 Careful-Eval-Formula-Lambda . 482

8.34 Query-Gadget . 483
8.35 [Save Gadget] . 483

8.35.1 Programming Interface . 486
8.35.2 Adding more gadgets to the save gadget 488
8.35.3 Hacking the Save Gadget . 488
8.35.4 The Save-File-If-Wanted function . 489

8.36 [Load Gadget] . 489
8.37 Property Sheets . 490

8.37.1 User Interface . 491
8.37.2 Prop-Sheet . 491
8.37.3 Prop-Sheet-For-Obj . 494
8.37.4 Useful Functions . 498
8.37.5 Prop-Sheet-With-OK . 499
8.37.6 Prop-Sheet-For-Obj-With-OK . 500
8.37.7 Useful Functions . 501
8.37.8 Useful Gadgets . 502
8.37.9 Horiz-Choice-List . 502
8.37.10 Pop-Up-From-Icon . 502
8.37.11 Property Sheet Examples . 503

8.38 Mouseline . 504
8.38.1 MouseLine gadget . 504
8.38.2 MouseLinePopup gadget . 505

8.39 Standard Edit . 505
8.39.1 General Operation . 505
8.39.2 The Standard-Edit Objects . 506
8.39.3 Standard Editing Routines . 506
8.39.4 Utility Procedures . 508

8.40 The Motif Gadget Objects . 508
8.41 Useful Motif Objects . 511

8.41.1 Motif Colors and Filling Styles . 511
8.41.2 Motif-Background . 511
8.41.3 Motif-Tab-Inter . 512

8.42 Motif Scroll Bars . 513
8.43 Motif Slider . 516
8.44 Motif-Trill-Device . 519
8.45 Motif Gauge . 520
8.46 Motif Buttons . 524

8.46.1 Motif Text Buttons . 525
8.46.2 Motif Check Buttons . 527
8.46.3 Motif Radio Buttons . 528

8.47 [Motif Option Button] . 529
8.48 Motif Menu . 531

8.48.1 Programming Interface . 532

xv

8.48.2 The Motif-Menu Accelerator Interactor 533
8.48.3 Adding Items to the Motif-Menu . 534

8.49 [Motif Scrolling Menu] . 535
8.50 Motif-Menubar . 538

8.50.1 Selection Functions . 539
8.50.2 Accelerators . 540
8.50.3 Decorative Bars . 540
8.50.4 Programming the Motif-Menubar
the Traditional Garnet Way . 541

8.50.5 An Example . 541
8.50.6 Adding Items to the Motif-Menubar . 542
8.50.7 Removing Items from the Motif-Menubar 543
8.50.8 Programming the Motif-Menubar with Components 543
8.50.9 An Example . 543
8.50.10 Creating Components of the Motif-Menubar 544
8.50.11 Adding Components to the Motif-Menubar 544
8.50.12 Removing Components from the Menubar 545
8.50.13 Methods Shared with the Regular Menubar 545

8.51 Motif-Scrolling-Labeled-Box . 546
8.52 Motif-Error-Gadget . 548
8.53 Motif-Query-Gadget . 549
8.54 [Motif Save Gadget] . 550
8.55 [Motif Load Gadget] . 551
8.56 Motif Property Sheets . 552

8.56.1 Motif-Prop-Sheet-With-OK . 552
8.56.2 Motif-Prop-Sheet-For-Obj-With-OK . 553

8.57 Motif-Prop-Sheet-For-Obj-With-Done . 556
8.58 Motif Scrolling Window . 557
8.59 Using the Gadgets: Examples . 560
8.60 Using the :value Slot . 560
8.61 Using the :selection-function Slot . 560
8.62 Using Functions in the :items Slot . 561
8.63 Selecting Buttons . 561
8.64 The :item-to-string-function Slot . 562

9 Debugging Tools for Garnet
Reference chapter . 563
9.1 Abstract . 563
9.2 Introduction . 563
9.3 Notation in this Chapter . 563
9.4 Loading and Using Debugging Tools . 563
9.5 Inspecting Objects . 563

9.5.1 Inspector . 564
9.5.2 Invoking the Inspector . 566
9.5.3 Schema View . 566
9.5.4 Object View . 567
9.5.5 Formula Dependencies View . 569
9.5.6 Summary of Commands . 571

xvi

9.6 PS – Print Schema . 572
9.7 Look, What, and Kids . 572
9.8 Is-A-Tree . 573
9.9 Finding Graphical Objects . 573
9.10 Inspecting Constraints . 574
9.11 Choosing Constant Slots . 575

9.11.1 Suggest-Constants . 576
9.12 Explain-Formulas and Find-Formulas . 577
9.13 Count-Formulas and Why-Not-Constant . 577
9.14 Noticing when Slots are Set . 577
9.15 Opal Update Failures . 578
9.16 Inspecting Interactors . 579
9.17 Tracing . 579
9.18 Describing Interactors . 580
9.19 Sizes of Objects . 582

10 Demonstration Programs for Garnet 584
10.1 Abstract . 584
10.2 Introduction . 584
10.3 Loading and Compiling Demos . 584
10.4 Running Demo Programs . 585
10.5 Double-Buffered Windows . 585
10.6 Best Examples . 585

10.6.1 GarnetDraw . 585
10.6.2 Demo-Editor . 586
10.6.3 Demo-Arith . 586
10.6.4 Demo-Grow . 586
10.6.5 Multifont and Multi-Line Text Input . 586
10.6.6 Demo-Multifont . 586
10.6.7 Creating New Objects . 586
10.6.8 Angles . 587
10.6.9 Aggregraphs . 587
10.6.10 Scroll Bars . 587
10.6.11 Menus . 587
10.6.12 Animation . 587
10.6.13 Garnet-Calculator . 587
10.6.14 Browsers . 588
10.6.15 Demo-Virtual-Agg . 588
10.6.16 Demo-Pixmap . 588
10.6.17 Demo-Gesture . 588
10.6.18 Demo-Unidraw . 588
10.6.19 Gadget Demos . 589
10.6.20 Real-Time Constraints and Performance 590

10.7 Old Demos . 590
10.7.1 Moving and Growing Objects . 591
10.7.2 Menus . 591

10.8 Demos of Advanced Features . 591
10.8.1 Using Multiple Windows . 591

xvii

10.8.2 Modes . 591
10.8.3 Using Start-Interactor . 591

11 A Sample Garnet Program 592
11.1 Abstract . 592
11.2 Introduction . 592
11.3 Loading the Editor . 592
11.4 User Interface . 593
11.5 Overview of How the Code Works . 594
11.6 The Code . 596

12 Gilt Reference: A Simple Interface
Builder for Garnet . 608
12.1 Abstract . 608
12.2 Introduction . 608
12.3 Loading Gilt . 611
12.4 User Interface . 611

12.4.1 Gadget Palettes . 614
12.4.2 Placing Gadgets . 614
12.4.3 Selecting and Editing Gadgets . 616

12.5 Editing Strings . 618
12.6 Commands . 619

12.6.1 To-Top and To-Bottom . 620
12.6.2 Copying Objects . 620
12.6.3 Aligning Objects . 620
12.6.4 Deleting Objects . 622
12.6.5 Properties . 622
12.6.6 Saving to a file . 625
12.6.7 Reading from a file . 627
12.6.8 Value and Enable Control . 629

12.7 Run Mode . 629
12.8 Hacking Objects . 629
12.9 Using Gilt-Created Dialog Boxes . 629

12.9.1 Pop-up dialog box . 630
12.10 Using Gilt-Created Objects in Windows . 631
12.11 Hacking Gilt-Created Files . 631

13 C32 Reference: A Constraint Editor 633
13.1 Abstract . 633
13.2 Overview of C32 . 633
13.3 Loading C32 . 633
13.4 The Spreadsheet Window . 634
13.5 Editing Formulas . 636
13.6 The Commands Window . 639
13.7 [Point To Object] . 641
13.8 [Showing references to other slots] . 641
13.9 [Deleting, hiding, and showing slots] . 641

xviii

13.10 [Copy Formula] . 641
13.11 [Quit] . 642
13.12 C32 Internals . 642

14 Lapidary Reference . 643
14.1 Abstract . 643
14.2 Getting Started . 643
14.3 Object Creation . 643
14.4 Selecting Objects . 645
14.5 Mouse-Based Commands . 651
14.6 Editor Menu Commands . 655
14.7 File . 655
14.8 Edit . 660
14.9 Properties . 660
14.10 Arrange . 672
14.11 Constraints . 673
14.12 Other . 673
14.13 Test and Build Radio Buttons . 673
14.14 Creating Constraints . 674
14.15 Box Constraints . 674
14.16 Line Constraints . 677
14.17 Custom Constraints . 679
14.18 The Constraint Gadget . 680

14.18.1 Programming Interface . 680
14.18.2 Slots of the Constraint Gadget . 680
14.18.3 Exported Functions . 681
14.18.4 Programming with Links . 682
14.18.5 Custom Constraints . 683
14.18.6 Feedback . 684

14.19 Interactors . 684
14.20 Action Buttons . 684
14.21 Events . 685
14.22 :Start Where . 687
14.23 Formulas . 687
14.24 Specific Interactors . 687

14.24.1 Choice Interactor . 687
14.24.2 Move/Grow Interactor . 689
14.24.3 Two Point Interactor . 692
14.24.4 Text Interactor . 693
14.24.5 Angle Interactor . 695

14.25 Getting Applications to Run . 697

15 Hints on Making Garnet
Programs Run Faster . 698
15.1 Abstract . 698
15.2 Introduction . 698
15.3 General . 698

xix

15.4 Making your Garnet Code Faster . 700
15.5 Making your Binaries Smaller . 702

16 Gem: Low-level Graphics Library 704
16.1 Creating New Graphics Backends . 704
16.2 Using the module directly . 704
16.3 Function Reference . 704
16.4 Font Handling . 706
16.5 Internal slots in graphical objects . 706

16.5.1 :update-slots . 706
16.5.2 :drawable . 707
16.5.3 :display-info . 707
16.5.4 :x-tiles . 708
16.5.5 :x-draw-function . 708

16.6 Methods on all graphical objects . 708
16.7 Draw Methods . 709

Appendix A GNU General Public License 710

Function Index . 711

Variable Index . 714

Keyword Index . 716

Type Index . 717

Concept Index . 718

1

1 Overview

1.1 Introduction

The Garnet research project in the School of Computer Science at Carnegie Mellon Uni-
versity is creating a comprehensive set of tools which make it significantly easier to create
graphical, highly-interactive user interfaces. The lower levels of Garnet are called the “Gar-
net Toolkit,” and these provide mechanisms that allow programmers to code user interfaces
much more easily. The higher level tools allow both programmers and non-programmers
to create user interfaces by just drawing pictures of what the interface should look like.
Garnet stands for Generating an Amalgam of Real-time, Novel Editors and Toolkits.

At the time of this writing, the Garnet toolkit is in use by about 80 projects throughout the
world. This document contains an overview, tutorial, and reference for the Garnet System.

This chapter describes version 3.0 of Garnet. It replaces all previous versions and the
change documents for versions 1.3, 1.4, 2.0, 2.1, and 2.2.

Garnet is written in Common Lisp and can be used with either Unix systems running X
windows or on the Mac. Therefore, Garnet is quite portable to various environments. It
works in virtually any Common Lisp environment, including Allegro (Franz), Lucid, CMU,
Harlequin, CLISP, AKCL, and Macintosh Common Lisps. The computers we know about
it running on include Sun, DEC, HP, Apollo, IBM RT, IBM 6000, TI, SGI, NeXTs running
X11, PC’s running Linux, Macs, and there may be others. Currently, Garnet supports
X11 R4 through R6 using the standard CLX interface. Garnet does not use the standard
Common Lisp Object System (CLOS) or any X toolkit (such as Xtk or CLIM).

Garnet has also been implemented using the native Macintosh QuickDraw and operating
system. To run the Macintosh version of Garnet, you need to have System 7.0 or later,
Macintosh Common Lisp (MCL) version 2.0.1 or later, and at least 8Mb of RAM. The
system takes about 10 megabytes of disk space on a Mac, not including the documentation
(which takes an additional 8 megabytes). We find that performance of Garnet on MCL is
acceptable on Quadra’s, and fine on a Quadra 840 A/V. It is really too slow on a Mac II. To
do anything useful, you probably need 12mb of memory. A PowerPC Mac does not work
well for Lisp (see discussion on comp.lang.lisp.MCL).

More details about Garnet are available in the Garnet FAQ: ftp://a.gp.cs.cmu.edu/
usr/garnet/garnet/FAQ which is posted periodically.

This document is a technical reference manual for the entire Garnet system. There have
been many conference and journal papers about Garnet (See [Garnet Articles], page 22, for
a complete bibliography). The best overview of Garnet is GarnetIEEE,,Myers and others,
1990. Section [Garnet Articles], page 22, includes instructions for retrieving some Garnet
papers via FTP.

The project Amulet is sister project of Garnet with features similar to those in Garnet, but
implemented in C++. See [Planned Future Extensions], page 21, for descussion how to get
more information about the Amulet project.

1.2 Garnet Bulletin Board

There is an international bboard for Garnet users named comp.windows.garnet. Topics
discussed on this bboard include user questions and software releases. There is also a

ftp://a.gp.cs.cmu.edu/usr/garnet/garnet/FAQ
ftp://a.gp.cs.cmu.edu/usr/garnet/garnet/FAQ

Chapter 1: Overview 2

mailing list called garnet-users@cs.cmu.edu which carries exactly the same messages as
the bboard. If you cannot read the bboard in your area, please send mail to garnet-users-
request@cs.cmu.edu to get on the mailing list.

You can report bugs to garnet-bugs@cs.cmu.edu which is read only by the Garnet devel-
opers.

1.3 Important Features of Garnet

Garnet has been designed as part of a research project, so it contains a number of novel
and unique features. Some of these are:

• The Lapidary tool is the only interactive tool that allows application-specific graphics
and new widgets to be created without programming.

• The Garnet Toolkit is designed to support the entire user interface of an application;
both the contents of the application window and its menus and dialog boxes. For
example, Garnet directly supports selecting graphical objects with the mouse, moving
them around, and changing their size.

• It is look-and-feel independent. Garnet allows the programmer to define a new graphical
style, and use that throughout a system. Alternatively, a pre-defined or standard style
can be used, if desired.

• It uses a prototype-instance object model instead of the more conventional class-instance
model, so that the programmer can create a prototype of a part of the interface, and
then create instances of it. If the prototype is changed, then the instances are updated
automatically. Garnet’s custom object system is called KR. Garnet does not use CLOS.

• Constraints are integrated with the object system, so any slot (also called an “instance
variable”) of any object can contain a formula rather than a value. When a value that
the formula references changes, the formula is re-evaluated automatically. Constraints
can be used to keep lines attached to boxes, labels centered within rectangles, etc. (see
Figure 〈undefined〉 [toolkit-SampleFig], page 〈undefined〉). Constraints can also be
used to keep application-specific values connected with the values of graphical objects,
menus, scroll bars or gauges in the user interface.

• Objects are automatically refreshed when they change. Pictures are displayed by cre-
ating graphical objects which are retained. If a slot of an object is changed, the system
automatically redraws the object and any other objects that overlap it. Also, the
system handles window refresh requests from X and the Mac.

• The programmer specifies the handling of input from the user at a high level using
abstract interactor objects. Typical user interface behaviors are encapsulated into a few
different types of interactors, and the programmer need only supply a few parameters
to get objects to respond to the mouse and keyboard in sophisticated ways.

• There is built-in support for laying out objects in rows and columns, for example, for
menus, or in graphs or trees, for example, to show a directory structure or a dependency
graph.

• Two complete sets of gadgets (also called widgets or interaction techniques) are pro-
vided to help the programmer get started. These include menus, buttons, scroll bars,
sliders, circular gauges, graphic selection, scrollable windows, and arrows. One set has
the Garnet look and feel, and the other has the Motif look and feel. The Motif set is

Chapter 1: Overview 3

implemented entirely in Lisp on top of Garnet, to provide maximum flexibility. Note:
There are no Macintosh look-and-feel gadgets. When you use Garnet on the Macintosh,
the gadgets will not look like standard Macintosh widgets.

• Garnet is designed to be efficient. Even though Garnet handles many aspects of the
interface automatically, an important goal is that it execute quickly and not take too
much memory. We are always working to improve the efficiency, but Garnet can cur-
rently handle dozens of constraints attached to objects that are being dragged with the
mouse.

• Garnet will automatically produce PostScript for any picture on the screen, so the
programmer does not have to worry about printing.

• Gesture recognition (such as drawing an "X" over an object to delete it) is supported,
so designers can explore innovative user interface concepts.

1.4 Coverage

Garnet is designed to handle interfaces containing a number of graphical objects which the
user can manipulate with the mouse and keyboard.

Garnet is suitable for applications of the following kinds:

• User interfaces for expert systems and other AI applications.

• Box and arrow diagram editors like Apple Macintosh MacProject (which helps with
project management).

• Graphical Programming Languages where computer programs can be constructed using
icons and other pictures (a common example is a flowchart).

• Tree and graph editing programs, including editors for semantic networks, neural net-
works, and state transition diagrams.

• Conventional drawing programs such as Apple Macintosh MacDraw.

• Simulation and process monitoring programs where the user interface shows the status
of the simulation or process being monitored, and allows the user to manipulate it.

• User interface construction tools (Garnet was implemented using itself).

• Some forms of CAD/CAM programs.

• Icon manipulation programs like the Macintosh Finder (which allows users to manip-
ulate files).

• Board game user interfaces, such as Chess.

Figure 4.1 shows a simple Garnet application that was created from start to finish (including
debugging) in three hours. The code for this application is shown in the sample program
chapter, which begins on page Figure 4.1.

Chapter 1: Overview 4

Label

Delete

Quit

Brad A. Myers

Roger B. Dannenberg

Dave Kosbie

Andrew Mickish

Brad Vander Zanden

Ed Pervin

Dario Guise

Philippe Marchal

Figure 1.1: A sample Garnet application. The code for this application is listed the "Sample
Garnet Program" section of this chapter, starting on page 〈undefined〉 [sampleprog-first-
page.], page 〈undefined〉
Other examples of applications created using Garnet appear in the picture section of this
chapter, starting on page 〈undefined〉 [apps], page 〈undefined〉.

Chapter 1: Overview 5

1.5 Running Garnet From /afs

If you are running Garnet in X windows from CMU, or if you have access to AFS, you
can access Garnet directly on the /afs servers. We maintain binaries of the official release
version in machine- and lisp-specific subdirectories of /afs/cs/project/garnet/. If you
are at CMU, you can skip section [retrieving], page 5, altogether, and just start lisp and
load Garnet with:

(load "/afs/cs/project/garnet/garnet-loader.lisp")

The CMU version of garnet-loader.lisp will attempt to determine what kind of machine
and lisp you’re using, and load the appropriate binaries for you. You will not have to supply
or customize any pathnames.

1.6 How to Retrieve and Install Garnet

Garnet is available for free by anonymous FTP. There are different instructions for obtaining
the software depending on whether it will be installed on a Mac or a Unix system (the code
is the same, but the packaging is different).

1.6.1 Installation on a Mac

[Retrieving the Stuffit Files:]

Garnet 3.0 is available in Stuffit files that include the sources, the library files,
the binary files compiled for Macintosh Common Lisp 2.0.1, and documentation. To
download the Garnet collection that includes MCL binaries, use FTP or Fetch (a
Mac file transfer utility) to connect to a.gp.cs.cmu.edu (128.2.242.7) and login as
‘‘anonymous’’ with your e-mail address as the password. Change to "binary" mode
for FTP, or stay in "automatic" mode for Fetch, and download the Stuffit archive
/usr/garnet/garnet/mac.sit Alternatively, you can get the BinHex version in text
mode by retrieving /usr/garnet/garnet/mac.sit.hqx If you are using Fetch, it will
automatically convert the BinHex file into a binary .sit file after it is installed on your
Mac. If you used FTP to get the .hqx file, you will need to BinHex4 Decode the file. You
should also retrieve one version of the documentation file:

/usr/garnet/garnet/doc.sit

/usr/garnet/garnet/doc.sit.hqx

If you do not have a version of Stuffit, you can also download the copy of Stuffit_
Expander from the same directory to uncompress the Garnet archive. The Stuffit utility
is a self-extracting archive that you only need to double-click on to install on your Mac. Be
sure to use binary transfer mode in FTP if you are retrieving StuffIt_Expander_.sea.

[Unpacking the Stuffit Files:]

Once you have downloaded the .sit or .sit.hqx archives (and installed the Stuffit_

Expander, if necessary), launch the Stuffit utility. Next, "Expand..." or "Open" the
mac.sit archive, and choose a folder into which the uncompressed Garnet folder will be
expanded. The instructions below assume you have installed the uncompressed folder at
the top-level of your hard drive, and that your hard drive is named "Macintosh HD" (i.e.,
the uncompressed folder will become "Macintosh HD:Garnet:"). It is a good idea to expand

Chapter 1: Overview 6

the doc.sit archive in the Garnet folder that was created by the first archive. For further
instructions about printing the documentation, consult the README file in the doc folder.

[Preparing MCL Before Loading Garnet:]

When using Garnet, you may need to increase the amount of memory that is claimed by
the Lisp application. You can change the memory claimed by MCL by selecting the MCL
application in the Macintosh Finder and choosing "Get Info" from the Finder’s "File"
menu. Most Garnet applications will require that MCL use at least 6Mb of RAM, and
using at least 12Mb is recommended. The default "Preferred size" for MCL is 3072K, so
you will need to edit that value to be upwards of 6000K. You are only allowed to change this
information when the application is NOT running, and it should be done before proceeding
with the rest of these instructions. Note: All Lisp images saved from the MCL application
will retain the new "Preferred size" value.

Before loading Garnet, you will need to compile several MCL library files that are used
by Garnet. A compiler script for this procedure is provided in the Garnet collection. In
the fresh MCL listener, load the file "Macintosh HD:Garnet:compile-MCL-libraries.lisp"
(replacing the hard drive prefix with whatever is appropriate for your machine). After the
script is finished, quit MCL and then launch MCL again.

[Loading Garnet:]

Using the MCL text editor, edit the file garnet-loader.lisp from the new Garnet folder
(choose "File...", "Open..." from the MCL menubar to edit a file). Find the definition of
the variable Your-Garnet-Pathname and set its value to the path of the new Garnet folder
you created with Stuffit. All other subfolders of Garnet will be computed relative to this
pathname. Save the new version of the garnet-loader.lisp file.

In the fresh lisp listener, load "Macintosh HD:Garnet:garnet-loader.lisp" (using whatever
prefix is appropriate instead of "Macintosh HD:Garnet:"). Garnet will inform you as it
loads each module, and will finally return with a prompt. At this point, Garnet is fully
loaded and you are ready to try the Tour or some demos as discussed later in this chapter.

1.6.2 Installation on a Unix System

When running on X windows, Garnet uses the CLX interface from Lisp to X11. CLX
should be supplied with every Lisp, and the following instructions assume that CLX has
been installed correctly on your system. If you need help with CLX, you need to contact
your Lisp vendor. We cannot help you acquire, compile, or install CLX, sorry.

Retrieving the TAR Files:

The Garnet software is about 9 megabytes. In order to make it easy to copy the files over,
we have created TAR files, so to use the mechanism below requires double the storage area.
Therefore, you first need to find a machine with enough room, and then create a directory
called garnet wherever you want the system to be:

% mkdir garnet

Chapter 1: Overview 7

Then, cd to the garnet directory.

% cd garnet

Now, ftp to a.gp.cs.cmu.edu (128.2.242.7). When asked to log in, use anonymous, and
your name as the password.

% ftp a.gp.cs.cmu.edu

Connected to A.GP.CS.CMU.EDU.

220 A.GP.CS.CMU.EDU FTP server (Version 4.105 of 10-Jul-90 12:07) ready.

Name (a.gp.cs.cmu.edu:bam): anonymous

331 Guest login ok, send username@node as password.

Password:

230 Filenames can not have ’/..’ in them.

Then change to the garnet directory (note the double garnet’s) and use binary transfer
mode:

ftp> cd /usr/garnet/garnet/

ftp> bin

The files have all been combined into TAR format files for your convenience. These will
create the appropriate sub-directories automatically. We have both compressed and uncom-
pressed versions. For the regular versions, do the following:

ftp> get src.tar

ftp> get lib.tar

ftp> get doc.tar

To get the compressed version, do the following:

ftp> get src.tar.Z

ftp> get lib.tar.Z

ftp> get doc.tar.Z

Now you can quit FTP:

ftp> quit

Installing the Source Files:

If you got the compressed versions, you will need to uncompress them:

% uncompress src.tar.Z

% uncompress lib.tar.Z

% uncompress doc.tar.Z

Now, for each tar file, you will need to "untar" it, to get all the original files:

% tar -xvf src.tar

% tar -xvf lib.tar

% tar -xvf doc.tar

This will create subdirectories will all the sources in them. At this point you can delete the
original tar files, which will free up a lot of space:

% rm *.tar

Now, copy the files garnet-loader.lisp, garnet-compiler.lisp, garnet-prepare-

compile.lisp, and garnet-after-compile from the src directory into the garnet

directory:

% cp src/garnet-* .

Chapter 1: Overview 8

Customizing the PathNames:

The file garnet-loader.lisp contains variables that should be set with the pathnames
of your Garnet directory and the location of CLX for your lisp. You will now need to
edit garnet-loader.lisp in an editor, and set these variables. Comments in the file will
direct you how to do this. At the top of the file are the two variables you will need to
set: Your-Garnet-Pathname and Your-CLX-Pathname. NOTE: If CLX is already loaded in
your lisp image, you do not need to set the CLX variable.

Chapter 1: Overview 9

Compiling Garnet to Make Binary Files:

Lisp requires very large address spaces. We have found on many Unix systems, that you
need to expand the area that it is willing to give to a process. The following commands
work in many systems. Type these commands to the C shell (csh). You might want to also
put these commands into your .login file.

% unlimit datasize

% unlimit stacksize

Now, you will need to compile the Garnet source to make your own binaries. This is
achieved by loading the compiler scripts. There is more information on compiling in section
[compilinggarnet], page 16, below, and special instructions for compiling Garnet in CLISP
are in section [clisp], page 13.

;; Only LispWorks users need to do the next two commands. See sec-

tion [lispworks], page 12.

lisp> #+lispworks (load "src/utils/lispworks-processes.lisp")

lisp> #+lispworks (guarantee-processes)

lisp> (load "garnet-prepare-compile")

lisp> (load "garnet-loader")

lisp> (load "garnet-compiler")

Now Garnet is all compiled and loaded, but a shell script still needs to be executed to
separate the binary files from the source files. To set up for the next time, it is best
to quit lisp now, and run the garnet-after-compile shell script. If your sources are
not in a directory named garnet/src or your binaries should not be in a directory named
garnet/bin, then you will need to edit garnet-after-compile to set the directories. Also,
if your compiler produces binary files that do not have one of the following extensions,
then you need to edit the variable CompilerExtension in garnet-after-compile: ".fasl",
".lbin", ".sbin", ".hbin", ".sparcf", ".afasl", or ".fas". Otherwise, you can just execute the
file as it is supplied (NOTE: this is run from the shell, not from Lisp). You should be in
the garnet directory.

% csh garnet-after-compile

Now you can start lisp again, and load Garnet:

lisp> (load "garnet-loader")

Details about how to customize the loading of Garnet are provided in section [loading-
garnet], page 16.

1.7 Directory Organization

All of the information about where various files of Garnet are stored is in the file
garnet-loader.lisp. This file also defines the Garnet version number:

* user::Garnet-Version-Number

"3.0"

You may need to edit the garnet-loader file to tell Garnet where all the files are. Normally,
there will be a directory called garnet with sub-directories called src, lib and bin. In the
src and bin directions will be sub-directories for all the parts of the Garnet system:

utils - Utility files and functions.

Chapter 1: Overview 10

kr - KR object system.

gworld - Mac routines for off-screen drawing (only used on the Mac)

gem - Garnet’s interface to machine-specific graphics routines (X and Mac)

opal - Opal Graphics management system.

inter - Interactors input handling.

aggregadgets - Files to handle aggregates and lists.

gadgets - Pre-defined gadgets, such as menus and scroll bars.

gesture - Tools for handling gestures as input.

ps - Functions for printing Garnet windows with PostScript.

debug - Debugging tools.

demos - Demonstration programs written using Garnet.

gilt - The Gilt interface builder.

c32 - A spreadsheet for editing constraints among objects.

lapidary - The Lapidary interactive tool.

contrib - Files contributed by Garnet users that are not supported by the Garnet
group, but just provided for your use.

1.8 Site-Specific Changes

If you are transferring Garnet to your site, you will need to make a number of edits to files
in order for Garnet to load, compile and operate correctly. All users will need to edit the
Garnet pathnames as discussed in section [pathnames], page 10, but relatively few users
should need the other sections [optimization-settings], page 10, - [clisp], page 13. Garnet
has been adjusted to load on the widest possible variety of lisps and operating systems with
minimum modification.

Of course, if you change any .lisp files in the Garnet subdirectories (not including
garnet-loader.lisp), you will need to recompile them (section [garnet-load], page 17),
even if you do not need to recompile other parts of Garnet.

1.8.1 Pathnames

After you have copied Garnet to your machine and untar’ed the source files, the top level
Garnet directory will contain the file garnet-loader.lisp. This one file contains the file
names for all the parts of Garnet. You should edit this file to put in your own file names.
The best way to do this is to set the Garnet-Version to be :external and edit the string
at the top of the file called Your-Garnet-Pathname to say where the files are. This change
is normally done during the compile procedure, already described in section [retrieving],
page 5.

1.8.2 Compiler Optimization Settings

The variable user::*default-garnet-proclaim*, defined in garnet-loader.lisp, holds
a list of compiler optimization flags and default values. These flags determine things like
the size and speed of your resulting Garnet binaries. For example, the default value of this
variable in Allegro is:

’(optimize (speed 3) (safety 1) (space 0) (debug 3))

Chapter 1: Overview 11

This optimization causes Allegro to generate compiled binaries that are as fast and small
as possible. The safety setting of 1 means that the compiled code will allow keyboard
interrupts if you somehow go into an infinite loop, and the debug setting of 3 means you
will get the most helpful error messages that Allegro can give you when you are thrown into
the debugger.

Different implementations of lisp require different values for the optimization flags, and
garnet-loader.lisp provides values for Allegro, Lucid, CMUCL, LispWorks, and MCL
that we have found work particularly well. You can override the default optimizations by
defining the *default-garnet-proclaim* variable before loading garnet-loader.lisp.
A value of nil for this variable means that you want to maintain the declarations that are
already in effect for your lisp.

1.8.3 Fonts in X11

In X11 R4 through R6, there are almost always a full set of fonts available with standard
names. Garnet relies on these fonts being available on the standard font paths set up by
X11. You can try loading Garnet and see if it finds the standard fonts.

If not, look in the file garnet/src/opal/text-fonts.lisp. This file constructs font names
according to the standard X11 format (with lots of "-*-*-*"’s). You will have to substitute
the names of fonts that are available at your installation.

1.8.4 Keyboard Keys

If your keyboard has some specially-labeled keys on it, Garnet will allow you to use these
as part of the user interface. The file

define-keys.lisp

which is in the garnet/src/inter sub-directory, defines the mappings from the codes that
come back from X11 and the Mac to the special Lisp characters or atoms that define the
keys in Garnet.

For many machines, such as Suns, HP’s, DECStations, and Macs, we have built in mappings
for all of the keyboard keys. Since there are no Lisp characters for the special keys, they
are named with keywords such as :uparrow and :F1. If some keys on your keyboard are
not mapped to keywords, you can use the following mechanism to set this up.

To find the correct codes to use for each undefined key, load the Find-Key-Symbols utility
with

(garnet-load "inter-src:find-key-symbols.lisp")

After loading this file, simply type the keys you need to find mappings for while input is
focused on the Find-Key-Symbols window (you may have to click on the window’s title-bar
to change the input focus). Garnet will print out the code number of the keys you type.

Then, you can go into the file define-keys.lisp and edit it so the codes you found map
to appropriate keywords.

Next, you might want to bind these keys to keyboard editing operations. If you want these
to be global to all Garnet applications, then you can edit the files textkeyhandling.lisp
and multifont-textinter.lisp which contain the default mappings of keyboard keys to
text editing operations. The Interactors chapter contains full more information on how this
works.

Chapter 1: Overview 12

[If you surround your changes to all these files with #+<your-switch> and mail them back
to us (garnet@cs.cmu.edu), then we will incorporate them into future versions so you won’t
need to continually edit the files.]

1.8.5 Multiple Screens

If you are working on a machine with only one screen, you need not pay attention to this
section. However, certain machines, such as the color Sun 3/60, have more than one screen.
The color Sun 3/60 has both a black-and-white screen (whose display name is "unix:0.0")
and a color screen (whose display name is "unix:0.1"). If you type "echo $DISPLAY" in
a Unix shell, you will get the display name of the screen you are working on; that name
should look like "unix:0.*" where * is some integer.

Garnet assumes that the DISPLAY environment variable has this form of "display-
name:displaynumber.screennumber", and extracts the display and screen numbers from
that. If any fields are missing, then the missing display or screen number defaults to zero.

1.8.6 OpenWindows Window Manager

If you are running OpenWindows from Sun, you will need to add the following line to your
.Xdefaults file to make text input work correctly:

OpenWindows.FocusLenience: True

1.8.7 LispWorks

LispWorks is the Common Lisp sold by Harlequin Ltd. There is one peculiarity about Lisp-
Works that requires an additional step before executing the main-event-loop background
process of Garnet (Garnet uses multiprocessing by default in LispWorks – see the Interac-
tors chapter, section "The Main Event Loop" for details). You need to perform this step
both when compiling and loading Garnet (the appropriate steps are mentioned during the
standard compile procedure in section [retrieving], page 5).

LispWorks has an unconventional "initialization phaze" to multiprocessing, which requires
that a special function be called before launching a background process. There are two ways
to initialize multiprocessing in LispWorks. One way is to start the big window-oriented
LispWorks interface by executing (tools:start-lispworks). This will cause a menu to
appear, and you can open a lisp listener as a selection from the menu. From this listener,
you can load garnet-loader.lisp, and Garnet’s main-event-loop process will be launched
by default.

If you do not need all the functionality of the LispWorks interface, you can initialize
multiprocessing with much less overhead. Before loading Garnet, load the file
"src/utils/lispworks-process.lisp" and execute the function guarantee-processes

to start multiprocessing. For example, at the LispWorks prompt you could type:

[>] (garnet-load "utils-src:lispworks-process.lisp")

[>] (guarantee-processes)

;; At this point, a new lisp listener has been spawned

[>] (load "garnet/garnet-loader")

It is important to realize that when you call guarantee-processes, a new lisp listener
is spawned, and all subsequent commands will be typed into the second listener. Putting

Chapter 1: Overview 13

the guarantee-processes call at the top of the garnet-loader.lisp file will not work,
because the first listener will remain hung at the guarantee-processes call, while the
second process is waiting for user input.

On the other hand, it has been reported that putting the special steps for LispWorks in
a .lispworks file may serve to automate the process a bit. To automatically initialize
multiprocessing whenever LispWorks is started, put the following lines in your .lispworks
file:

(progn

(load "<your-garnet-pathname>/src/utils/lispworks-process.lisp")

(guarantee-processes))

You will not be able to call garnet-load from your .lispworks file because the function
will not have been defined when the file is read.

Whenever you enter the debugger of the new listener spawned by guarantee-processes,
you will get restart options that include:

...

5 (abort) return to level 0.

6 Return to top level

7 Return from multiprocessing

When you want to exit the debugger, you should choose either "(abort) return to level
0," or "Return to top level", since both of these options will return you to the top-level
LispWorks prompt. If you ever choose "Return from multiprocessing", then you will
kill both the second listener and the main-event-loop-process, and you will have to call
guarantee-processes and opal:launch-main-event-loop-process to restart Garnet’s
main-event-loop process.

It is not necessary to load "lispworks-process.lisp" or execute guarantee-processes

if you instead choose to execute tools:start-lispworks.

1.8.8 CLISP

CLISP is a Common Lisp (CLtL1) implementation by Bruno Haible of Karlsruhe University
and Michael Stoll of Munich University, both in Germany. There are a couple of additional
steps you must take to run Garnet in CLISP that are not required in other lisps.

Renaming .lisp files to .lsp

If you have an older version of CLISP, you will have to rename all of the source files from
".lisp" to ".lsp" before starting the procedure to compile Garnet. A /bin/sh shell script
has been provided to automate this process in the file src/utils/rename-for-clisp. This
script requires that you cd into the src directory and execute

% sh utils/rename-for-clisp

The script will rename all of the "src/*/*.lisp" files to ".lsp", so that they can be read
by CLISP.

Obtaining CLX

If you are already using CLISP, you may need to additionally retrieve the CLX module.
CLX for CLISP can be retrieved via ftp from ma2s2.mathematik.uni-karlsruhe.de, in
the file /pub/lisp/clisp/packages/pcl+clx.clisp.tar.z.

Making a Garnet image

Chapter 1: Overview 14

Once you have installed the CLX module, you can make a restartable image of Garnet with
the following procedure (NOTE: this is different from other lisps). This is the standard
procedure for compiling Garnet, followed by a dump of the lisp image.

clisp -M somewhere/clx.mem

> (load "garnet-prepare-compile.lsp")

> (load "garnet-loader.lsp")

> (load "garnet-compiler.lsp")

> (opal:make-image "garnet.mem" :quit t)

The saved image can then be restarted with the command:

clisp -M garnet.mem

1.8.9 AKCL

Some of the default parameters for the AKCL lisp image are insufficient for running Garnet.
You may be able to change some of these parameters in the active lisp listener, but it is
probably better to rebuild your AKCL image from scratch with the following parameter
values:

MAXPAGES for AKCL should be at least 10240, and

(SYSTEM:ALLOCATE-RELOCATABLE-PAGES 800)

(SYSTEM:ALLOCATE-CONTIGUOUS-PAGES 45 T)

(SYSTEM:ALLOCATE ’CONS 3500 t)

(SYSTEM:ALLOCATE ’SYMBOL 450 t)

(SYSTEM:ALLOCATE ’VECTOR 150 t)

(SYSTEM:ALLOCATE ’SPICE 300 t)

(SYSTEM:ALLOCATE ’STRING 200 t)

Garnet runs about half as fast in AKCL as on other Common Lisps. Increasing the RAM
in your machine may help. Users have reported that 16MB on a Linux-Box 486 yields
unacceptable performance.

1.9 Mac-Specific Issues

1.9.1 Compensating for 31-Character Filenames:

There are several gadgets files that normally have names that are longer than 31 char-
acters. Mac users may continue to specify the full-length names of these files by using
user::garnet-load, described in section [garnet-load], page 17, which translates the reg-
ular names of the gadgets into their truncated 31-character names so they can be loaded.
It is recommended that garnet-load be used whenever any Garnet file is loaded, so that
typically long and cumbersome pathnames can be abbreviated by a short prefix.

1.9.2 Directories:

Unlike the Unix version, the Macintosh version stores all the binary and source files together
in the various subdirectories under "src". This difference will not matter when a Garnet
application is moved between Unix and Mac platforms as long as garnet-load is being
used to load Garnet files. Garnet-load will always knows where to find the files.

Chapter 1: Overview 15

1.9.3 Binding Keys:

We have assigned Lisp keywords for most of the keys on the Macintosh keyboard. Thus, to
start an interactor when the "F1" key is hit, use :F1 as the interactor’s :start-event.
If you want to know what a key generates, you can use the small utility Find-Key-

Symbols which has been ported to the Mac. Execute (garnet-load "inter-src:find-

key-symbols") to bring up a window which can perceive keyboard events and prints out the
resulting characters. The data you collect from this utility can be used in the :start-where
slot of interactors to describe events that will start the interactor, and can be used to modify
the characters generated by the keyboard key by editing the file src:inter:mac-define-

keys.lisp.

1.9.4 Simulating Multiple Mouse Buttons With the Keyboard:

Most of the Garnet demos assume a three button mouse. To simulate this on the Macintosh,
we use keyboard keys to replace a three-button mouse. By default, the keys are F13, F14,
and F15 for the left, middle, and right mouse buttons, respectively. The real mouse button
is also mapped to :leftdown.

You can redefine the keys to be any three keys you want by setting inter::*leftdown-key*,
inter::*middledown-key*, and inter::*rightdown-key* after loading Garnet or by edit-
ing the file src:inter:mac-define-keys.lisp directly. These variables should contain
numerical key-codes corresponding to your desired keys. Some key-codes are shown on
p. I-251 of Inside Macintosh Volume I, but you can also do (garnet-load "inter:find-

key-symbols") to run a utility program that tells you the key-code for any keyboard key.
The utility will generate numbers that can be used directly in src:inter:mac-define-

keys.lisp.

To facilitate Garnet’s use with keyboards not equipped with function keys, Garnet sup-
plies another utility program called mouse-keys.lisp, which is in the top-level Garnet
directory in the Mac version (and is in src/utils/mouse-keys.lisp if you acquired the
Unix-packaged version of Garnet). When loaded, this utility creates a window that allows
you to toggle between using the function keys and arrow keys for the simulated mouse but-
tons. If you are frequently switching between using Garnet on an Extended Keyboard and
a smaller laptop keyboard, you may use this utility a lot to tell Garnet which keys should
be used for middle-down and right-down.

1.9.5 Modifier Keys:

Like MCL itself, Garnet treats the Option key as the "Meta" key. Also, you currently
cannot get access to the Command (Open-Apple) key from Garnet.

1.9.6 Things to Keep in Mind When You Want Your Garnet
Programs

to Run on Both X Windows and the Mac:

Use user::garnet-load instead of load when loading gadget files

Only supply :face values for fonts that run on both systems – this typically restricts
you to using only the standard faces available in Garnet 2.2 and earlier versions.

The #+apple and #-apple reader macros can be used to indicate code that should
be used only for Macs and only for non-Macs, respectively. When defining fonts, for

Chapter 1: Overview 16

example, you may want to provide the slot description (:face #+apple :underline

#-apple :bold) to indicate that the font will be underlined on the Mac but bold in X.

The default place for windows is at (0,0) which unfortunately puts their title bars under
the Macintosh menubar, so you cannot even move them using the mouse! (You can
still s-value the position from the Lisp Listener.) Therefore, never create a window
on the Mac with a :top less than 45 or it will not be movable.

Remember that many Mac screens are much smaller than most workstations’ screens.
Positioning windows perfectly may not be possible, and a better goal may be to simply
keep the window title-bars within reach of the mouse so that the windows can be moved.

1.10 Compiling Garnet

After executing the compile procedure in section [retrieving], page 5, the result should be
that all the files are compiled and loaded. (If there was a problem and you need to restart
the compile procedure, please see below.) The compiler scripts do not check for compile
errors. We have attempted to make Garnet compile without errors on all Common Lisps,
but some lisps generate more warnings than others.

The compiler scripts compile the binaries into the same directories as the source files. For
example, all the interactor binaries will be in garnet/src/inter/ along with the source
(.lisp) files. Therefore, after the compilation is completed, you will need to move the
binaries into their own directory (e.g., garnet/bin/inter). To do this, use the c-shell
script

csh garnet-after-compile

The garnet-after-compile file will normally be in the top level garnet directory. Note
that this is typed to the shell, not to Lisp. Even if you normally run the "regular" (Bourne)
shell (sh), the above command should work.

To prevent certain parts of Garnet from being compiled, set user::compile-xxx-p to nil,
where xxx is replaced with the part you do not want to compile. See the comments at the
top of the file garnet-prepare-compile for more information.

If you ever have to restart the compile process, you do not have to start from scratch. If
you have not yet moved the binary files out of the src/ directory (i.e., you have not yet
run garnet-after-compile), then you can use the files that have been compiled already
instead of compiling them again. Restart lisp, and for each Garnet module that has been
compiled, set the variable user::compile-xxx-p to nil to indicate that it should not be
compiled again. Then load the three script files again in the usual order. Note: if a module
has been only partially compiled, then you must recompile the whole module.

1.11 Loading Garnet

To load Garnet, it is only necessary to load the file:

(load "garnet-loader")

(Of course, you may have to preface the file name with the directory path of where it is
located. It is usually in the top level garnet directory.)

To prevent any of the Garnet sub-systems from being loaded, simply set the variable
user::load-xxx-p to nil, where xxx is replaced by whatever part you do not want to

Chapter 1: Overview 17

load. Normally, some parts of the system are not loaded, such as the gadgets and demos.
This is because you normally do not want to load or use all of these in a session. Files
that use gadgets will load the appropriate ones automatically, and the demos-controller

program loads the demos as requested.

It is possible to save an image of lisp after loading Garnet, so that when you restart lisp,
Garnet will already be loaded and you will not have to load garnet-loader.lisp. For
details about making lisp images, see the function opal:make-image in the Opal chapter.

1.12 Loader and Compiler Functions

1.12.1 Garnet-Load and Garnet-Compile

There are two functions that allow you to save a lot of typing when you load and compile
files. When you supply garnet-load and garnet-compile with the Garnet subdirectory
that you want to get a file from (e.g., "gadgets"), the functions will automatically append
your Garnet pathname to the front of the specified file.

user::Garnet-Load "prefix:filename" [function], page 90

user::Garnet-Compile "prefix:filename" [function], page 90

These functions are defined in garnet-loader.lisp and are internal to the user package.

The prefix parameter corresponds to one of the Garnet subdirectories, and the filename is a
file in that directory. A list of the most useful prefixes appear in section [garnet-load-alist],
page 18, and a full list can be seen by evaluating the variable user::Garnet-Load-Alist

in your lisp (after loading Garnet). Examples:

* (garnet-load "gadgets:v-scroll-loader")

Loading #p"/afs/cs/project/garnet/bin/gadgets/v-scroll-loader"

Loading V-Scroll-Bar...

...Done V-Scroll-Bar.

T

* (garnet-compile "opal:aggregates")

Compiling #p"/afs/cs/project/garnet/src/opal/aggregates.lisp"

for output to #p"/afs/cs/project/garnet/bin/opal/aggregates.fasl"

...

; Writing fasl file "/afs/cs/project/garnet/bin/opal/aggregates.fasl"

; Fasl write complete

NIL

*

There are two groups of prefixes that garnet-load accepts – the "bin" prefixes and the
"src" prefixes. Garnet-load assumes that when you load files, you will want to load the
compiled binaries. Therefore, when you use prefixes like "gadgets", garnet-load uses the
Garnet-Gadgets-Pathname variable to find the file you want. If you really want to load a

Chapter 1: Overview 18

file from your source directory, you should use the subdirectory name with "-src" tacked
on. For example,

* (garnet-load "gadgets-src:motif-parts")

Loading #p"/afs/cs/project/garnet/src/gadgets/motif-parts"

...

T

*

Garnet-compile does not accept "-src" prefixes, because it always assumes that you want
to take a lisp file from your source directory, compile it, and output it to your bin directory.
Note: do not specify ".lisp" or ".fasl" with your filename – garnet-compile will supply
suffixes for you. Garnet-compile attempts to determine your correct binary extension
(".fasl", ".lbin", etc.) from the kind of Lisp that you are using. If garnet-compile ever
gets the extension wrong, you can change it by setting the variable *compiler-extension*,
which is defined in the user package.

1.12.2 Adding Your Own Pathnames

The functions user::garnet-load and user::garnet-compile look up their prefix pa-
rameters in an association list called user::Garnet-Load-Alist. Its structure looks like:

(defparameter Garnet-Load-Alist

‘(("opal" . Garnet-Opal-Pathname) ; For loading the multifont-loader

("gg" . Garnet-Gadgets-PathName) ; For loading gadgets

("gestures" . Garnet-Gestures-PathName) ; For loading agate

("debug" . Garnet-Debug-PathName) ; For loading the Inspector

("demos" . Garnet-Demos-PathName) ; For loading demos

("gilt" . Garnet-Gilt-PathName) ; For loading high-level tools...

("c32" . Garnet-C32-PathName)

("lapidary" . Garnet-Lapidary-PathName)

...))

This alist is expandable so that you can include your own prefixes and pathnames. Prefixes
can be added with the following function:

user::Add-Garnet-Load-Prefix prefix pathname [function], page 90

For example, after executing (add-garnet-load-prefix "home" "/usr/amickish/"), you
would be able to do (garnet-load "home:my-file").

1.13 Overview of the Parts of Garnet

Garnet is composed of a number of sub-systems, some of which can be loaded and used
separately from the others. Most of the subsystems also have their own separate packages.
The following list shows the components of Garnet, the package used by that component,
and the page number of the corresponding section in this chapter.

KR - Package kr. system. 〈undefined〉 [kr], page 〈undefined〉.
Gem - Package gem. routines that allow the system to run on the Mac or on X11. We
do not support user code directly calling Gem, so it is not described further in this
chapter.

Chapter 1: Overview 19

Opal - Package opal. The graphical object system. 〈undefined〉 [Opal], page 〈unde-
fined〉.
Interactors - Package inter. mouse and keyboard input. 〈undefined〉 [inter],
page 〈undefined〉.
Gestures - Package inter. Code to handle gesture recognition and training. Described
in the interactors chapter, 〈undefined〉 [inter], page 〈undefined〉.
Aggregadgets - Package opal. Support for creating instances of collections of objects,
and for rows or columns of objects. [aggregadgets], page 55.

AggreGraphs - Package opal. Support for creating graphs and trees of objects. Also
described in the aggregadgets chapter, [aggregadgets], page 55.

Gadgets - Package garnet-gadgets, nicknamed gg. gadgets, including menus, buttons,
scroll bars, circular gauges, graphics selection, etc. 〈undefined〉 [gadgets], page 〈unde-
fined〉.
Debugging tools - Package garnet-debug, nicknamed gd. including the Inspector.
〈undefined〉 [Debug], page 〈undefined〉.
Demonstration programs - Each demonstration program is in its own package. 〈un-
defined〉 [demos], page 〈undefined〉.
Gilt - Package gilt. interface builder. 〈undefined〉 [gilt], page 〈undefined〉.
C32 - Package c32. A spreadsheet interface for editing constraints. [c32], page 633.

Lapidary - Package Lapidary. sophisticated interactive design tool. 〈undefined〉 [lap-
idary], page 〈undefined〉.
Contrib - A set of file contributed by Garnet users. These have not been tested by
the Garnet group, and are not supported. Each file should have a comment at the top
describing how it works and who to contact for help and more information.

1.14 Overview of this Technical Report

In the programer’s reference to all the parts of the Garnet toolkit listed above, this technical
report also contains:

• A guided on-line tour of the Garnet system that will help you become familiar with a
few of the features of the Garnet toolkit. 〈undefined〉 [tour], page 〈undefined〉.

• A tutorial to teach you the basic things you need to know to use Garnet. 〈undefined〉
[tutorial], page 〈undefined〉.

• The code for a simple graphical editor, as a sample of code written for Garnet. 〈unde-
fined〉 [sampleprog], page 〈undefined〉.

• The Hints chapter starting on page 〈undefined〉 [hints], page 〈undefined〉, includes some
suggestions that have been collected from the experience of Garnet users for making
Garnet programs run faster. If you have ideas for things to add to this section, let us
know.

1.15 What You Need To Know

Although this is a large technical report, you certainly do not need to know everything in it
to use Garnet. Garnet is designed to support many different styles of interface. Therefore,
there are many options and functions that you will probably not need to use.

Chapter 1: Overview 20

In fact, to run the Tour (page 〈undefined〉 [tour], page 〈undefined〉), it is not necessary to
read any of the programer’s reference chapters. The tour is self-explanatory.

Next, you should probably read the Tutorial (page 〈undefined〉 [tutorial], page 〈undefined〉),
since it tries to provide enough information about most of Garnet so that you don’t need
the other chapters right away.

To run the Gilt Interface Builder, you do not need to know about the rest of the system
either. The Gilt chapter should be sufficient. When you are ready to set some properties
of the gadgets, you will need to look up the particular gadget in the Gadgets chapter to see
what the properties do.

Even when you are ready to start programming, you will still not need most of the infor-
mation described here. To start, you should probably do the following:

Read this overview.

Run the tour, to get a feel for Garnet programming.

Read the tutorial.

You might try creating a few dialog boxes using Gilt. This will familiarize you with
the Gadgets. See the Gilt chapter (〈undefined〉 [gilt], page 〈undefined〉).
After that, you can look at the sample program at the end of this technical report, to
see what you need more information about.

You could now try to start writing your own programs, and just use the rest of the
chapters as reference when you need information.

Next, look at the introduction and the following functions in the KR document: gv,

gvl, s-value, formula, o-formula, and create-instance. The KR chapter docu-
ments the entire KR module, but Garnet does not use every feature that KR provides.
Some concepts (like demons), will never be used by the typical Garnet user. Once
you have gained some familiarity with the system, you may want to return to the KR
chapter and read about object-oriented programming, type-checking, and constants.

Next, skim the first five chapters of the Opal chapter, and look at the various graphical
objects, so you know what kinds are provided. The primary functions you will use
from Opal are: add-component, update, and destroy, as well as the various types
of graphical objects (rectangle, line, circle, etc.), drawing styles (thin-line,
dotted-line, light-gray-fill, etc.) and fonts.

Next, in the Interactors chapter, you will need to skim the first four chapters to see
how interactors work, and then see which interactors there are in the next chapter. You
will probably not need to take advantage of the full power provided by the interactors
system.

Aggregadgets and Aggrelists are very useful for handling collections of objects, so you
should read their chapter. They support creating instances of groups of objects.

You should then look at the gadget chapter to see all the built-in components, so you
do not have to re-invent what is already supplied.

User interface code is often difficult to debug, so we have provided a number of helpful
tools. The Inspector is mentioned briefly in the Tutorial, and it is discussed thoroughly
in the debugging chapter. You will probably find many debugging features very useful.

The demo programs can be a good source of ideas and coding style, so the document
describing them might be useful.

Chapter 1: Overview 21

If all you want Garnet for is to display menus and gauges that are supplied in the gadget
set, you can probably just read the KR, Gadgets and Gilt chapters, and skip the rest.

1.16 Planned Future Extensions

We expect 3.0 to be the last release of the lisp version of Garnet. No enhancements of
the lisp version are planned. However, if you need something and would like to sponsor its
development, write to garnet@cs.cmu.edu.

The group is now working on a C++ system called Amulet, which will have many features
similar to those found in Garnet. Watch for announcements about the Amulet project on
comp.windows.garnet and comp.lang.c++. To sign up for the new Amulet mailing list,
please send mail to amulet-users-request@cs.cmu.edu.

Chapter 1: Overview 22

1.17 Garnet Articles

A number of articles about Garnet have been made available for FTP from the directory
/usr/garnet/garnet/doc/papers/ on a.gp.cs.cmu.edu. There is a README file in that
directory, indicating which .ps files correspond to the Garnet bibliography citations.

23

2 On-line Tour Through Garnet

by: Brad A. Myers

14 May 2020

2.1 Abstract

This chapter provides an on-line tour through some of the features of the Garnet toolkit.
It serves as an introduction to the toolkit and how to program with it. This document and
tour do not assume that the reader has read the reference chapters. The tour only assumes
that the reader is familiar with Common Lisp and has loaded the Garnet software.

2.2 Introduction

The Garnet User Interface Development Environment contains a comprehensive set of tools
that make it significantly easier to design and implement highly-interactive, graphical, di-
rect manipulation user interfaces. The lower layers of Garnet provide an object-oriented,
constraint-based graphical system that allows properties of graphical objects to be specified
in a simple, declarative manner and then maintained automatically by the system. The
dynamic, interactive behavior of the objects can be specified separately by attaching high-
level “interactor” objects to the graphics. The higher layers of Garnet include a number
of tools to allow various parts of the interface to be specified without programming. The
primary tools are Gilt, an interface builder, and Lapidary, a tool which helps you build
gadgets and dialog boxes.

This document will help users get acquainted with the Garnet software by leading them
through a number of exercises on line. This entire exercise should take about an hour. This
tour assumes that the user is familiar with Lisp, although even non-Lispers might be able
to type in the expressions verbatim and get the correct results.

Clearly, in this short tour, a great many parts of Garnet will not be covered, so the interested
reader will need to refer to other parts of this chapter for details.

2.3 Getting Started

Garnet is a software package written in Common Lisp for X11 and the Mac, so the first
thing to do is to run X11 and lisp on your Unix machine, or start MCL on your Mac.
At Carnegie Mellon University, the Garnet software is available on the AFS file server.
Elsewhere, you will have to copy the software onto your machine, and load it into your
Lisp. See the discussion in the Overview document for an explanation of loading Garnet
and special considerations for particular machines.

2.4 Typing

Many of the names in Garnet contain colons “:” and hyphens “-”. These are part of the
names and must be typed as shown. For example, :filling-style is a single name, and
must be typed exactly.

In this document, the text that the user types (e.g, you) is shown underlined in the code
examples. Most of the code looks like the following:

* ‘(+ 3 4)’

Chapter 2: On-line Tour Through Garnet 24

7

The "*" is the prompt from Lisp to tell you it is ready to accept input (your Lisp may use
a different prompt). Do not type the "*". Type "‘(+ 3 4)’". The next line (here 7) shows
what Lisp types as a response.

If you don’t like to type, you might have the Appendix of this document displayed in an
editor and just copy the commands into the Lisp window. In X, you can use the X cut buffer
(copy the lines one-by-one into the X cut buffer, then paste them into the Lisp window); on
the Mac, you can edit a file using the MCL editor and do the usual copy-and-paste opera-
tions. The Appendix contains a list of all the commands you need to type, to make it easier
to copy them. The appendix code by itself is stored in the file tourcommands.lisp which
is stored in the demos source directory (usually garnet/src/demos/tourcommands.lisp).
Note: do not just load tourcommands, since it will run all the demos and quickly quit; just
copy-and-paste the commands one-by-one from the file.

2.5 Garbage Collection

Most Common Lisp implementations use a garbage collection mechanism that occasionally
interrupts all activity until it is completed. At various times during your tour, Lisp will
stop and print something like the following message:

[GC threshold exceeded with 2,593,860 bytes in use. Commencing GC.]

You will then have to wait until it finishes and types something like:

[GC completed with 538,556 bytes retained and 2,055,356 bytes freed.]

[GC will next occur when at least 2,538,556 bytes are in use.]

This can happen at any time, and it causes the entire system to freeze (although the cursor
will still track the mouse). Therefore, if nothing is responding, Lisp and Garnet may not
have crashed. Wait for a minute and see if they come back.

2.6 Errors, etc.

It is quite common to end up in the Lisp debugger. This might be caused by a bug in
Garnet or because you made a small typing error. To get out of the debugger, you will need
to type the specific command for that version of Common Lisp (q on CMU Common Lisp,
:reset in Allegro Common Lisp, and Command-period in MCL). For special instructions
about the LispWorks debugger, see the section "LispWorks" in the Overview chapter.

Often, you can just try whatever you were doing again. However, some errors might cause
Garnet or even Lisp to get messed up. In order of severity, you can try the following recovery
strategies after leaving the debugger:

If Lisp does not seem to be responding, try typing ^C (or whatever your break character
is – Command-comma in MCL) to the lisp window (move the mouse cursor to the Lisp
window first).

If you typed a line incorrectly, try typing it again the correct way.

If that does not work, try destroying the object you were creating and starting over
from where you first started creating the object. To destroy an object that you created
using (create-instance ’xxx ...), just type (opal:destroy xxx). Note that on the
create-instance there is a quote mark, but not on the destroy call.

Chapter 2: On-line Tour Through Garnet 25

If you were in the first part of the tour (section 〈undefined〉 [LearnGarnet], page 〈un-
defined〉), then if that does not work, try destroying the window and starting over
from the top: (opal:destroy MYWINDOW). If you were in the Othello part, try typing
(stop-othello).

If that does not work, try quitting Lisp and restarting. For CMU Common Lisp, type
(quit) to get out of Lisp; for Lucid, type (system:quit); for LispWorks, type (bye);
for Allegro, type :ex; and for MCL type (quit). See section [startlisp], page 23, about
how to start Lisp, and section [quitting], page 36, about quitting.

Finally, you can always logout and log back in.

In the Appendix of this document is a list of all the commands you are supposed to type
in. This will be useful if you need to start over and don’t want to have to read through
everything to get to where you were. If you are starting at the Othello part (section
[Othello], page 34), you do not have to execute any of the commands before that (except
to load Garnet and the tour).

If Lisp seems to be stuck in an infinite loop, you can break out by typing the break character
(often ^C — control-C) or the abort command in MCL (Command-comma). It will throw
you into the debugger.

If you start something over, or retype a command, you may see messages like:

Warning - create-schema is destroying the old #k<MGE::TRILL>.

This is a debugging statement is you can just ignore it.

There are a large number of debugging functions and techniques provided to help fix Garnet
toolkit code, but these are not explained in this tour. See the debugging chapter.

LOGGING IN

Ask for user’s name and login and e-mail address.

Automatically send bam the name in a mail message.

System will also Use-package kr, kr-debug

BASICS

2.7 Learning Garnet

2.8 LearnGarnet

2.9 A Note on Packages

The Garnet software is divided into a number of Lisp packages. A package may be thought
of as a module containing procedures and variables that are all associated in some way.
Usually, the programmer works in the user package, and is not aware of other packages in

Chapter 2: On-line Tour Through Garnet 26

Lisp. In Garnet, however, function calls are frequently accompanied by the name of the
package in which the function was defined.

For example, one of the packages in Garnet is opal, which contains all the objects and
procedures dealing with graphics. To reference the rectangle object, which is defined in
opal, the user has to explicitly mention the package name, as in opal:rectangle.

On the other hand, the package name may be omitted if the user calls use-package on
the package that is to be referenced. That is, if the command (use-package :OPAL) or
(use-package "OPAL") is issued, then the rectangle object may be referenced without
naming the opal package.

The recommended "Garnet Style" is to use-package only one Garnet package – KR –
and explicitly reference objects in other packages. This convention is followed in the code
examples below. The file tour.lisp that you loaded contains the line (use-package :KR),
which implements this convention. You will probably want to put this line at the top of all
your future Garnet programs as well.

The packages in Garnet include:

KR - contains the procedures for creating and accessing objects. This contains the
functions create-instance, gv, gvl, s-value, and o-formula.

Opal - contains the graphical objects and some functions for them.

inter - contains the interactor objects for handling the mouse.

Garnet-Gadgets - (nicknamed gg) contains a collection of predefined "gadgets" like
menus and scroll bars.

Garnet-Debug - (nicknamed gd) contains a number of debugging functions. These are
not discussed in this tour, however.

2.10 A Note on Refresh

In X11 and Mac QuickDraw, pictures drawn to windows need to be redrawn if the window
is covered and then uncovered. Garnet handles this automatically for you by through a
background process which detects this situation and redraws windows when necessary. In
most lisps, Garnet launches this main-event-loop process itself. On the Mac, MCL runs
a background process anyway, and Garnet supplies the necessary functions that handle
graphics redrawing. This function is also responsible for processing mouse and keyboard
input to Garnet windows.

The main-event-loop background process starts without any special attention in most
lisps, including Allegro, Lucid, CMUCL, and MCL. If you are running LispWorks, then
there is an initialization procedure for multiprocessing that you must perform before loading
Garnet. Please consult the "LispWorks" section of the Overview chapter, the first section
in this Garnet programer’s reference chapters.

Unfortunately, if you are not running a recent version of Allegro, Lucid, CMUCL, MCL,
or LispWorks, your Lisp may not support background processes. In this case, you must
explicitly run the function yourself. If you notice that windows are not refreshing properly
after becoming uncovered (or de-iconified), or that Garnet is completely ignoring all your
keyboard and mouse input, then type the following into Lisp:

* ‘(inter:main-event-loop)’

Chapter 2: On-line Tour Through Garnet 27

This function loops forever, so you then have to hit the F1 key while the cursor is in a
Garnet window to exit main-event-loop. Alternatively, you can type ^C or Command-
period, or whatever your operating system break character is, in the Lisp window. Also, it
is permissible (though unnecessary) to call main-event-loop within a version of Lisp which
supports background processes – the function first checks if another main-event-loop is
already running in the background, and if so, it returns immediately.

2.11 Loading Garnet and the Tour

The Overview document discusses how to load the Garnet software. In summary, you
will load the file Garnet-Loader and this will load all the standard software. After that,
you need to load the special file tour.lisp, which is in the src/demos sub-directory. For
example, if the Garnet files are in the directory /usr/xxx/garnet/, then type the following:

* ‘(load "/usr/xxx/garnet/garnet-loader")’

Which will print out lots of stuff. Then type:

* ‘(garnet-load "demos:tour")’

Note that garnet-load provided by Garnet to simplify loading Garnet files. It takes one
argument (in this case "demos:tour"), a two-part string consisting of the a Garnet subdi-
rectory reference (eg, "demos") and the name of a file (eg, "tour"), separated by a colon.
The procedure searches the directory associated with that package for a Lisp file (either
compiled or uncompiled) of that name.

2.12 Basic Objects

Now you are going to start creating some Garnet Toolkit objects.

Garnet is an object-oriented system, and you create objects using the function
create-instance, which takes a quoted name for the new object, the type of object to
create, and then some other optional parameters. First, you will create a window object.

Type the text shown underlined to Lisp. Be sure to start with an open parenthesis and be
careful about where the quotes and colons go.

* ‘(create-instance ’MYWINDOW inter:interactor-window)’

#k<MYWINDOW>

You won’t see anything yet, because Garnet waits for an update call before showing the
results. Now type:

* ‘(opal:update MYWINDOW)’

and the window should appear.

You can move the window around and change its size just like any other X or Mac window,
in whatever way you have your X window manager set up to do this.

Now, you are going to create an “aggregate” object to hold all the other objects you create.
An aggregate holds a collection of other objects; it does not have any graphic appearance
itself.

* ‘(create-instance ’MYAGG opal:aggregate)’

#k<MYAGG>

This aggregate will be the special top level aggregate in the window, that will hold all the
objects to be displayed in the window. You will use the function s-value which sets the

Chapter 2: On-line Tour Through Garnet 28

value of a “slot” (also called an instance variable) of the object. S-value takes the object,
the slot and the new value. To read the value of the slot, use the function gv, which stants
for “get value”. All slot names in Garnet start with a colon.

* ‘(s-value MYWINDOW :aggregate MYAGG)’

#k<MYAGG>

* ‘(gv MYWINDOW :aggregate)’

#k<MYAGG>

Now, you will create a rectangle.

* ‘(create-instance ’MYRECT MOVING-RECTANGLE)’

#k<MYRECT>� �
[Note: MOVING-RECTANGLE is defined in the user package by tour.lisp as a special-
ization of the general opal:rectangle prototype.]
 	
Again, this is not visible yet. First, the rectangle must be added to the aggregate,
and then the update procedure must be called. Adding the rectangle uses the function
add-component which takes the aggregate and the new object to add to it.

* ‘(opal:add-component MYAGG MYRECT)’

#k<MYRECT>

* ‘(opal:update MYWINDOW)’

NIL

The rectangle should now appear in the window.

All objects have a number of properties, such as their position, size and color. So far, all
the objects have used the default values for properties. You will now change the color of
the rectangle by setting its :filling-style slot. Remember that slot names begin with a
colon, and that nothing happens until you do the update.

* ‘(s-value MYRECT :filling-style opal:gray-fill)’

#k<GRAY-FILL>

* ‘(opal:update MYWINDOW)’

NIL

The other filling styles that are available include opal:light-gray-fill, opal:dark-

gray-fill, opal:black-fill, opal:white-fill, and opal:diamond-fill. These are
all “halftone” shades, which means that they are created by turning some pixels on and
others off. If you have a color screen, you might also try opal:red-fill, opal:blue-fill,

opal:green-fill, opal:yellow-fill, opal:purple-fill, etc.

Now, you will create a text object. Here, for the first time, you will supply some extra values
for slots when the object is created, rather than just using s-value afterward. Objects have
a large number of slots and the ones that are not specified use the default values. To specify
a slot at creation time, each name and value is enclosed in a separate parenthesis pair. Note
that you can type carriage return where-ever you want. After the text is created, add it to
the aggregate and update the window.

* ‘(create-instance ’MYTEXT opal:text (:left 200)(:top 80)

(:string "Hello World"))’

#k<MYTEXT>

Chapter 2: On-line Tour Through Garnet 29

* ‘(opal:add-component MYAGG MYTEXT)’

#k<MYTEXT>

* ‘(opal:update MYWINDOW)’

NIL

The :top of the string is just its Y value, and the :left is just the X value, and they are,
of course, independent.

You can change the position (:left and :top) and string of MYTEXT using s-value if
you want, like the following:

* ‘(s-value MYTEXT :top 40)’

40

* ‘(opal:update MYWINDOW)’

NIL

2.13 Formulas

An important property of Garnet is that properties of objects can be connected using
constraints. A constraint is a relationship that is defined once and maintained automatically
by the system. You will constrain the string to stay at the top of the rectangle. Then, when
the rectangle is moved, the string will move automatically.

Constraints in Garnet are expressed as formulas which are put into the slots of objects. Any
slot can either have a value in it (like a number or a string) or a formula which computes the
value. The formula can be an arbitrary Lisp expression which must be passed to the Garnet
function o-formula. References to other objects in formulas must take a special form. To
get the slot slot-name from the object other-object, use the form (gv other-object

slot-name), where “gv” stands for “get value.” The gv function can be used either inside
or outside of formulas. When used from inside a formula, gv will establish a dependency
on the referenced slot, causing the formula to reevaluate if the value in the referenced slot
ever changes.

Now, set the top of the string to be a formula that depends on the top of the rectangle.

Note that the particular number returned by the s-value call will not be the same as shown
below.

* ‘(s-value MYTEXT :top (o-formula (gv MYRECT :top)))’

#k<F3875> the number will be different

* ‘(opal:update MYWINDOW)’

NIL

After the update, the string should move to be at the top of the rectangle. If you change
the top of the rectangle, both the rectangle and the string will now move:

* ‘(s-value MYRECT :top 50)’

50

* ‘(opal:update MYWINDOW)’

NIL

If you want to experiment with writing your own formulas, the Lisp arithmetic operators in-
clude +, -, floor (for divide), and * (for multiply) and they must be in fully parenthesized
expressions, as in (o-formula (+ (gv MYRECT :top) 7)). To get the width and height of
an object from inside a formula, use (gv obj :width) and (gv obj :height). You could

Chapter 2: On-line Tour Through Garnet 30

try, for example, to get the text to stay centered in X (:left) and Y (:top) inside the
rectangle.

2.14 Interaction

Now, you will get the objects to respond to input. To do this, you attach an interactor to
the object. Interactors handle the mouse and keyboard and update graphical objects.

First, you will have the rectangle move with the mouse. To do this, you create a move-grow-
interactor and tell it to operate on MYRECT. The interactor will start whenever the
mouse is pressed :in MYRECT, and the interactor works in MYWINDOW. The interactor
will continue to run no matter where the mouse is moved while the button is held down.

It is not necessary to call update to get interactors to start working; they start as soon
as they are created. However, if you are not using a recent version of CMU, Allegro,
LispWorks, Lucid, or MCL Common Lisp, interactors only run while the main-event-loop
procedure is operating. Main-Event-Loop does not exit, so you will have to hit the F1 key
while the cursor is in the Garnet window, or type ^C (or whatever your operating system
break character is) while the cursor is in the Lisp window, to be able to type further Lisp
expressions.

* ‘(create-instance ’MYMOVER inter:move-grow-interactor

(:start-where (list :in MYRECT))

(:window MYWINDOW))’

#k<MYMOVER>

If your Lisp requires it, then type:

* ‘(inter:main-event-loop)’

Now you can press with the left button over the rectangle, and while the button is held
down, move the rectangle around. (The first time you press on the rectangle, it may take
a while, as Lisp swaps in the appropriate code.) Notice that the text string moves up
and down also. The text string does not move left and right, however, since there is no
constraint on the :left of the string, only on the :top (unless you have written some extra
formulas other than the one described above).

A different interactor allows you to type into text strings. This is called a text-interactor.
The code below will cause the text interactor to start when you press the right mouse
button, and stop when you press the right mouse button again. This will allow you to type
carriage returns into the string and to move the cursor point by hitting the left button
inside the string. (Before typing these commands, hit the F1 key to exit main-event-loop
if necessary).

* ‘(create-instance ’MYTYPER inter:text-interactor

(:start-where (list :in MYTEXT))

(:window MYWINDOW)

(:start-event :rightdown)

(:stop-event :rightdown))’

#k<MYTYPER>

If your Lisp requires it, then type:

* ‘(inter:main-event-loop)’

Chapter 2: On-line Tour Through Garnet 31

Now, if you press with the right mouse button on the string, you can change the string by
typing. The available editing commands include:

^h, delete, backspace

delete previous character.

^w, ^backspace, ^delete

delete previous word.

^d delete next character.

^u delete entire string.

^b, left-arrow

go back one character.

^f, right-arrow

go forward one character.

^n, down-arrow

go vertically down one line.

^p, up-arrow

go vertically up one line.

^<, ^comma, home

go to the beginning of the string.

^>, ^period, end

go to the end of the string.

^a go to beginning of the current line.

^e go to end of the current line.

^y, insert

insert the contents of the X or Mac cut buffer into the string at the current
point.

^c copy the current string to the X or Mac cut buffer.

enter, return, ^j, ^J

Go to new line.

left button down inside the string

move the cursor to the specified point.

^G Abort the edits and return the string to the way it was before editing started.

All other characters go into the string (except other control characters which beep). You
can also move the cursor with the mouse by clicking in the string.

(In X, to type to a window, the mouse cursor must be inside the window, so to type to the
“Hello World” string, the mouse cursor must be inside the Garnet window, and to type to
Lisp, the cursor should be inside the Lisp window. On the Mac, you have to click the mouse
on the title-bar of the window you want to type into, so you will have to click alternately
on the Garnet window and the lisp listener.)

Chapter 2: On-line Tour Through Garnet 32

If you make the text string be multiple lines, by typing a carriage return into it, then you
can control whether the lines are centered, left or right justified. This is controlled by
the :justification slot of MYTEXT, which can be :left, :center, or :right. (Before
typing these commands, hit the F1 key to exit main-event-loop if necessary).

* ‘(s-value MYTEXT :justification :right)’

:RIGHT

* ‘(opal:update MYWINDOW)’

NIL

* ‘(s-value MYTEXT :justification :center)’

:CENTER

* ‘(opal:update MYWINDOW)’

NIL

Of course, you can type to the string while it is centered or right-justified, and you can
move around the rectangle with the mouse and the string will still follow.

2.15 Higher-level Objects

Now, you are going to create instances of pre-created objects from the “Garnet Gadget
Set.” The Gadget Set contains a large collection of menus, buttons, scroll bars, sliders, and
other useful interaction techniques (also called “widgets”). You will be using a set of “radio
buttons” and a slider.

First, however, you should make the window bigger (in whatever way you do this in your
window manager).

2.15.1 Buttons

First, you will create a set of 3 “radio” buttons that will determine whether the text is
centered, left, or right justified. The parameter that tells the buttons what the labels
should be is called :Items. This slot is passed a quoted list. The radio buttons will appear
at the right of the string.

* ‘(create-instance ’MYBUTTONS gg:radio-button-panel

(:items ’(:center :left :right))

(:left 350)(:top 20))’

#k<MYBUTTONS>

* ‘(opal:add-component MYAGG MYBUTTONS)’

#k<MYBUTTONS>

* ‘(opal:update MYWINDOW)’

NIL

If your Lisp requires it, then type:

* ‘(inter:main-event-loop)’

Now, you can click on the radio buttons with the left mouse button, and the dot will move
to whichever one you click on.

Next, you will use a constraint to tie the value of the :justification field of the text object
to the value of the radio buttons. The current value of the radio buttons is conveniently kept
in the :value field. (Before typing these commands, hit the F1 key to exit main-event-
loop if necessary).

* ‘(s-value MYTEXT :justification (o-formula (gv MYBUTTONS :value)))’

Chapter 2: On-line Tour Through Garnet 33

#k<F2312> the number will be different

* ‘(opal:update MYWINDOW)’

NIL

If your Lisp requires it, then type:

* ‘(inter:main-event-loop)’

Now, whenever you press on one of the buttons, the text will re-adjust itself.

All of the built-in toolkit items have a large number of parameters to allow users to customize
their look and feel. For example, you can change the radio buttons to be horizontal instead
of vertical: (From now on, you will have to remember to hit the F1 key to exit main-event-
loop if necessary before typing commands without these reminders).

* ‘(s-value MYBUTTONS :direction :horizontal)’

:HORIZONTAL

* ‘(opal:update MYWINDOW)’

NIL

Now, change it back to be vertical:

* ‘(s-value MYBUTTONS :direction :vertical)’

:VERTICAL

* ‘(opal:update MYWINDOW)’

NIL

2.15.2 Slider

Next, you will do a similar thing to get the gray shade of the rectangle to be attached to
an on-screen slider. First, create a Garnet vertical slider object:

* ‘(create-instance ’MYSLIDER gg:v-slider

(:left 10)(:top 20))’

#k<MYSLIDER>

* ‘(opal:add-component MYAGG MYSLIDER)’

#k<MYSLIDER>

* ‘(opal:update MYWINDOW)’

NIL

If your Lisp requires it, then type:

* ‘(inter:main-event-loop)’

This slider can be operated in a number of ways, all using the left mouse button. Press on
the top arrow to move up one unit, and the down arrow to move down one. The double
arrow buttons move up and down by five (the increment amount can be changed by using
s-value on the :scr-incr and :page-incr slots of MYSLIDER). You can also press on
the black indicator arrow and drag it to a new position. Finally. you can press in the top
number area, then type a new number value, and then hit carriage return.

Of course the value returned by the slider does not affect anything yet. To change the color
of the rectangle, you will use the Garnet function Halftone, which takes a number from
0 to 100 and returns a :filling-style that is that percentage black. Connect the filling
style of the rectangle to the value returned by the slider:

* ‘(s-value MYRECT :filling-style

(o-formula (opal:halftone (gv MYSLIDER :value))))’

Chapter 2: On-line Tour Through Garnet 34

#k<F5940> the number will be different

* ‘(opal:update MYWINDOW)’

NIL

If your Lisp requires it, then type:

* ‘(inter:main-event-loop)’

Now when you change the value of the slider, the color of the rectangle will change. Note
that halftone only can generate 17 different gray colors, so a range of numbers for the slider
will generate the same color.

2.16 Playing Othello

Now you can play the Othello game we created using the Garnet Toolkit.

To bring up the game, type:

* ‘(start-othello)’

T

The game board will appear on the screen. There are various things you can control in
the game. You can put new pieces down on the board by just pressing with the left mouse
button. In Othello, you can put a piece in a position where you are next to the other
player’s marker, and one of your markers is in a straight line from where you are going to
play. If you try to place your marker in an illegal place, the game will beep. This game does
not try to play against you; you must handle both players (or get someone else to play with
you). If a player does not want to move (or has no legal moves), then the “Pass” menu item
can be selected. This implementation does not detect when the game is over. The current
score (which is the number of squares that the player controls) is shown in the top left box.

To start over, press on the menu button marked “Start.” This will start a new game with
a board that has the number of squares shown by the scroll bar. The default is 8 by 8. To
change the scroll bar value, press on the arrows. (Changing the scroll bar does not change
the current board; it takes affect the next time you hit “Start” from the menu.)

“Stop” just erases the board, and “Quit” exits the game. (You don’t have to quit before
going on to the next section.)

2.17 Modifying Othello

We created an editor that allows you to change what the Othello playing pieces look like.
This is editor is just a small toy program that was created quickly by David Kosbie in the
Garnet group especially for this tour.

If you quit out of the Othello game, bring it back up using (start-othello).

Othello has a tall window on the left side of the screen containing the current 2 Othello
playing pieces at the top: a white and a black circle. Underneath is a command button
(“Delete”) and 3 menus. The top left menu is for different types of objects: rectangles,
rounded rectangles, circles and ovals. The bottom left menu is for line styles (the way the
outlines of objects are drawn): no outline, dotted outline, thin, thicker or very thick outline.
The menu on the right is for how the inside of objects looks: no filling inside, white, grey,
black or various patterns.

Press with the left mouse button over any of the menus to change the current mode.

Chapter 2: On-line Tour Through Garnet 35

To draw a new object in either playing piece, just use the right mouse button to drag out
the dimensions for the new object. Press down the right button inside whichever piece you
want to modify where you want one corner of the new object to be, move the cursor while
holding down, and release at the other corner. The type, line styles, and inside of the new
object come from the current values of the menus.

Objects can be selected by pressing over them with the left mouse button. (Some objects
require that you press on the edge (border) of the object, and others allow you to press
anywhere inside.) When an object is selected, 12 small boxes are shown on the borders of
the object. (The small boxes are on the bounding rectangle of the object, which may be a
little confusing for circles.) The black boxes can be used to change the object’s size, and
the white boxes are used to move the object. Just press with the left button over one of
the boxes, and then adjust the size or position while holding down. The editor will not let
you move or grow an object so that it goes outside the game piece area.

The selected object can also be deleted or changed. Delete it by just hitting the Delete
button in the menu when the object is selected. If you press on a new line style or filling
style while an object is selected, the object’s outline and color will change. (You can’t
change an object’s type.) Note that as you select objects, the menus change to show the
object’s current styles.

Every time you edit one of the playing pieces, the Othello game display also changes to
reflect the edits. This is handled automatically by Garnet using inheritance.

2.18 Using GarnetDraw

There a useful utility called GarnetDraw which is a relatively simple drawing program
written using Garnet. Using this application, you can draw pictures with many of the
basic Garnet objects (like circles, rectangles, and lines), and then save the picture to a
file. Since the file format for storing the created objects is simply a Lisp file which creates
aggregadgets, you might be able to use GarnetDraw to prototype application objects (but
Lapidary is probably better for this).

GarnetDraw uses many sophisticated features of Garnet including gridding, PostScript
printing, selection of all objects in a region, moving and growing of multiple objects,
menubars, and the save-gadget and load-gadget dialog boxes.

To load and start GarnetDraw, type:

* ‘(garnet-load "demos:garnetdraw")’

* ‘(garnetdraw:do-go)’

GarnetDraw works like most Garnet programs: select in the palette with any button, draw
in the main window with the right button, and select objects with the left button. Select
multiple objects with shift-left or the middle mouse button. Change the size of objects by
pressing on black handles and move them by pressing on white handles. The line style and
color and filling color can be changed for the selected object and for further drawing by
clicking on the icons at the bottom of the palette.

You might want to save a picture to a file, and then bring the file up in your editor to see
the kind of code that GarnetDraw generates. There should be a top-level aggregadget that
has your drawn objects as components.

Chapter 2: On-line Tour Through Garnet 36

To quit GarnetDraw, either select "Quit" from the menubar, or type:

* ‘(garnetdraw:do-stop)’

2.19 Cleanup

If you are not in a Lisp which supports background processes, and you are running something
in Garnet, then you need to type F1 in a Garnet window or ^C in your Lisp window to get
back to the Lisp read-eval-print loop.

To get rid everything at once (MYWINDOW, the Othello game, and the editor for the
game pieces), just type:

* ‘(stop-tour)’

"Thank you for your interest in the Garnet Project"

Otherwise, to just get rid of Othello and the editor, you can hit on the “Quit” menu button
or type (stop-othello) to Lisp. To just get rid of MYWINDOW, type (opal:destroy

MYWINDOW).

The command that exits Lisp is different for different implementations. For CMU Common
Lisp, type: ‘* (quit)’

for Lucid Common Lisp, type: ‘* (system:quit)’

for LispWorks, type: ‘* (bye)’

for Allegro Common Lisp, type: ‘* :ex’

and for MCL, type: ‘* (quit)’

This returns you to the shell (or to the finder on the Mac), and you can log out. It is not
necessary to run (stop-othello) or (stop-tour) before quitting Lisp.

If the quit command doesn’t work for any reason, you can probably quit by typing ^Z to
pause to the shell and then kill the lisp process (or just log out).

2.20

We hope you have enjoyed your tour through Garnet. There are, of course, many features
and capabilities that have not been demonstrated. These are described fully in the various
chapters and papers about the Garnet project and its parts. The next step might be to run
the Gilt interface builder, since it does not require that you learn much about how Garnet
works. See the Gilt chapter.

〈undefined〉 [Appendix: List of commands], page 〈undefined〉, This appendix lists all the
commands that the tour has you type. This is useful as a quick reference if you need to
restart due to an error. These commands are stored in the file tourcommands.lisp which
is stored in the demos source directory (usually garnet/src/demos/tourcommands.lisp).
If you have this document in a window on the screen, you can copy-and-paste to move text
from below into your Lisp window. Note: do not just load tourcommands, since it will run
all the demos and quickly quit; just copy the commands one-by-one from the file.

This listing does not show the prompts or Lisp’s responses to these commands.

[First, load the Garnet software. You will have to replace xxx with your directory path to
Garnet:]

(load "/xxx/garnet/garnet-loader")

Chapter 2: On-line Tour Through Garnet 37

(garnet-load "demos:tour")

[Start here after Garnet and the tour software is loaded:]

(create-instance ’MYWINDOW inter:interactor-window)

(opal:update MYWINDOW)

(create-instance ’MYAGG opal:aggregate)

(s-value MYWINDOW :aggregate MYAGG)

(gv MYWINDOW :aggregate)

(create-instance ’MYRECT MOVING-RECTANGLE) ; In the USER package

(opal:add-component MYAGG MYRECT)

(opal:update MYWINDOW)

(s-value MYRECT :filling-style opal:gray-fill)

(opal:update MYWINDOW)

(create-instance ’MYTEXT opal:text (:left 200)(:top 80)

(:string "Hello World"))

(opal:add-component MYAGG MYTEXT)

(opal:update MYWINDOW)

(s-value MYTEXT :top 40)

(opal:update MYWINDOW)

(s-value MYTEXT :top (o-formula (gv MYRECT :top)))

(opal:update MYWINDOW)

(s-value MYRECT :top 50)

(opal:update MYWINDOW)

(create-instance ’MYMOVER inter:move-grow-interactor

(:start-where (list :in MYRECT))

(:window MYWINDOW))

#-(or cmu allegro lucid lispworks apple) ;only do this if your Lisp is NOT a recent

(inter:main-event-loop) ;version of CMU, Allegro, Lu-

cid, or LispWorks

;type F1 or ^C to exit when finished.

(create-instance ’MYTYPER inter:text-interactor

(:start-where (list :in MYTEXT))

(:window MYWINDOW)

(:start-event :rightdown)

(:stop-event :rightdown))

#-(or cmu allegro lucid lispworks apple) ;only do this if your Lisp is NOT a recent

(inter:main-event-loop) ;version of CMU, Allegro, Lu-

cid, or LispWorks

;type F1 or ^C to exit when finished.

Chapter 2: On-line Tour Through Garnet 38

(s-value MYTEXT :justification :right)

(opal:update MYWINDOW)

(s-value MYTEXT :justification :center)

(opal:update MYWINDOW)

(create-instance ’MYBUTTONS gg:radio-button-panel

(:items ’(:center :left :right))

(:left 350)(:top 20))

(opal:add-component MYAGG MYBUTTONS)

(opal:update MYWINDOW)

#-(or cmu allegro lucid lispworks apple) ;only do this if your Lisp is NOT a recent

(inter:main-event-loop) ;version of CMU, Allegro, Lu-

cid, or LispWorks

;type F1 or ^C to exit when finished.

(s-value MYTEXT :justification (o-formula (gv MYBUTTONS :value)))

(opal:update MYWINDOW)

#-(or cmu allegro lucid lispworks apple) ;only do this if your Lisp is NOT a recent

(inter:main-event-loop) ;version of CMU, Allegro, Lu-

cid, or LispWorks

;type F1 or ^C to exit when finished.

(s-value MYBUTTONS :direction :horizontal)

(opal:update MYWINDOW)

(s-value MYBUTTONS :direction :vertical)

(opal:update MYWINDOW)

(create-instance ’MYSLIDER gg:v-slider

(:left 10)(:top 20))

(opal:add-component MYAGG MYSLIDER)

(opal:update MYWINDOW)

#-(or cmu allegro lucid lispworks apple) ;only do this if your Lisp is NOT a recent

(inter:main-event-loop) ;version of CMU, Allegro, Lu-

cid, or LispWorks

;type F1 or ^C to exit when finished.

(s-value MYRECT :filling-style (o-formula

(opal:halftone (gv MYSLIDER :value))))

(opal:update MYWINDOW)

#-(or cmu allegro lucid lispworks apple) ;only do this if your Lisp is NOT a recent

(inter:main-event-loop) ;version of CMU, Allegro, Lu-

cid, or LispWorks

;type F1 or ^C to exit when finished.

Chapter 2: On-line Tour Through Garnet 39

[To just get Othello to run, execute the following line. You do not have to enter any of the
previous code to run Othello and the editior (except for the software loading, of course).]

(start-othello)

[To just load and run GarnetDraw, execute the following lines.]

(garnet-load "demos:garnetdraw")

(garnetdraw:do-go)

[Cleaning up and quitting:]

;;; * To quit all editors and demos and destroy all windows

(stop-tour)

(garnetdraw:do-stop) ; if running

;;; * To leave lisp

#+cmu (quit) ; in CMU Common Lisp

#+lucid (system:quit) ; in Lucid Common Lisp

#+allegro :ex ; in Allegro Common Lisp

#+lispworks (bye) ; in LispWorks Common Lisp

#+apple (quit) ; in MCL

**

Later, have another section on more details of objects, etc.

**

**

CREATING A GRAPHICS EDITOR (Optional)

**

left button moves objects

right button edits text

shift-left creates a new object

shift-right deletes object under mouse

scroll bar and menu as before for specifying props of next

new object

create another window

create an aggregadget of a rectangle, line, and editable-string as a prototype

** or use predefined one; would prefer to do this part using Lapidary****

40

create an aggregate to hold the objects

create a new version of the scroll bar and x-boxes to in another new window

define the create and delete functions

create all the interactors

@ref{References}

41

3 Garnet Tutorial

Andrew Mickish [No value for “date”]

3.1 Abstract

This tutorial has been designed to introduce the reader to the basic concepts of Garnet.
The reader should have already taken the Garnet Tour before starting the tutorial.

3.2 Take the Tour

Before beginning this tutorial, you should have already completed the Garnet Tour, available
in a separate document. The Tour was a series of exercises intended to acquaint you with
a few of the features of Garnet, while giving you a feel for the interactive programming
aspects of Garnet. This Tutorial investigates all of those features in greater depth, while
explaining the fundamental principles behind objects, inheritance, constraints, interactors,
and the actual writing of code.

In the Garnet Tour, you were given some background information about how to load Garnet,
how to access the different Garnet packages, garbage collection, the main-event-loop for
interactors, etc. It may be helpful to review this information from the first few sections of
the Tour before starting the Tutorial.

3.3 Load Garnet

Using the instructions from the Tour, load Garnet into your lisp process. Also, type in the
following line so that references to the KR package can be eliminated (we will explicitly
reference the other Garnet packages):

(use-package :KR)

3.4 The Prototype-Instance System

The basic idea behind programming in Garnet is creating objects and displaying them in
windows on the screen. An object is any of the fundamental data types in Garnet. Lines,
circles, aggregates and windows are all objects. These are all prototype objects — you make
copies of these objects and customize the copies to have your desired size and position,
as well as other graphic qualities such as filling styles and line styles. When you make a
customized copy of an object, we say you create an instance of the object. Thus, Garnet is
a prototype-instance system.

3.5 Inheritance

When instances are created, an inheritance link is established between the prototype and
the instance. Inheritance is the property that allows instances to get values from their
prototypes without specifying those values in the instances themselves. For example, if
we set the filling style of a rectangle to be gray, and then we create an instance of that
rectangle, then the instance will also have a gray filling style. Naturally, this leads to an
inheritance hierarchy among the objects in the Garnet system. In fact, there is one root
object in Garnet – the view-object – that all other objects are instances of (except for

Chapter 3: Garnet Tutorial 42

interactors, which have their own root). Figure [opal-inheritance], page 43, shows some of
the objects in Garnet and how they fit into the inheritance hierarchy. (The average user
will never be concerned with the actual view-object or graphical-object prototypes.)

Chapter 3: Garnet Tutorial 43

View-Object

Window

Graphical-Object

Aggregate
Aggregadget

Aggrelist

Bitmap

Multipoint

Arc

Rectangle

Line

Circle

Oval

Text

Figure 3.1: The inheritance hierarchy among some of the Garnet prototype objects. All
of the standard shapes in garnet are instances of the graphical-object prototype. As an
example of inheritance, the circle and oval objects are both special types of arcs, and
they inherit most of their properties from the arc prototype object. The Gadgets (the
Garnet widgets) are not pictured in this hierarchy, but most of them are instances of the
aggregadget object.

Chapter 3: Garnet Tutorial 44

To see an example of inheritance, let’s create an instance of a window and look at some of
its inherited values. After you have loaded Garnet, type in the following code.

(create-instance ’MY-WIN inter:interactor-window

(:left 800) (:top 100))

(opal:update MY-WIN) ; To make the window appear

The window should appear in the upper-right corner of your screen. In the definition of the
MY-WIN schema, we gave a value of 800 to the :left slot and a value of 100 to the :top

slot. Let’s check these slots in MY-WIN to see if they are correct. Type in the following
lines.

(gv MY-WIN :left) ; Should be 800

(gv MY-WIN :top) ; Should be 100

The function gv gets the values of slots from an object. If you got the right values for the
:left and :top slots of MY-WIN, then you see that the values you supplied during the
create-instance call are still being used by MY-WIN. These are values that are held in
the instance itself. On the other hand, try typing in the following lines.

(gv MY-WIN :width)

(gv MY-WIN :height)

We did not supply values to the :width and :height slots of MY-WIN when it was created.
Therefore, these values are inherited from the prototype. That is, they were defined in the
interactor-window object when it was created, and now MY-WIN inherits those values
as its own. We could, however, override these inherited values. Let’s change the width and
height of MY-WIN using s-value, the function that sets the values of slots.

(s-value MY-WIN :width 100)

(s-value MY-WIN :height 400)

(opal:update MY-WIN) ; To cause the changes to appear

The dimensions of the window should change, reflecting the new values we have supplied
to its :width and :height slots. If we were to now use gv to look at the width and height
of MY-WIN, we would get back the new values, since the old ones are no longer inherited.

The inheritance hierarchy which was partially pictured in Figure [opal-inheritance], page 43,
is traced from the leaves toward the root (from right to left) during a search for a value.
Whenever we use gv to get the value of a slot, the object first checks to see if it has a local
value for that slot. If there is no value for the slot in the object, then the object looks to its
prototype to see if it has a value for the slot. This search continues until either a value for
the slot is found or the root object is reached. When no inherited or local value for the slot
is found, the value nil is returned (which, by the way, looks just the same as a user-defined
local value of nil for a slot).

Since we are now finished with the example of MY-WIN, let’s destroy it so it does not
interfere with future examples in this tutorial. Type in the following line.

(opal:destroy MY-WIN)

3.6 Prototypes

When programming in Garnet, inheritance among objects can eliminate a lot of duplicated
code. If we want to create several objects that look similar, we could create each of them

Chapter 3: Garnet Tutorial 45

from scratch and copy all the values that we need into each object. However, inheritance
allows us to define these objects more efficiently, by creating several similar objects as
instances of a single prototype.

Figure 3.2: Three instances created from one prototype rectangle.

Chapter 3: Garnet Tutorial 46

To start, look at the picture in Figure [proto-rects], page 45. We are going to define three
rectangles with three different filling styles and put them in a window. First, let’s create
a window with a top-level aggregate. (For now, just think of an aggregate as an object
which contains several other objects.) As we add our objects to this aggregate, they will be
displayed in the window.

(create-instance ’WIN inter:interactor-window

(:left 750)(:top 80)(:width 200)(:height 400))

(create-instance ’TOP-AGG opal:aggregate)

(s-value WIN :aggregate TOP-AGG)

(opal:update win)

Now let’s consider the design for the rectangles. The first thing to notice is that all of the
rectangles have the same width and height. Therefore, we will create a prototype rectangle
which has a width of 40 and a height of 20, and then we will create three instances of that
rectangle. To create the prototype rectangle, type the following.

(create-instance ’proto-rect opal:rectangle

(:width 40) (:height 20))

This rectangle will not appear anywhere, because it will not be added to the window. But
now we need to create the three actual rectangles that will be displayed. Since the prototype
has the correct values for the width and height, we only need to specify the left, top, and
filling styles of our instances.

(create-instance ’r1 proto-rect

(:left 20) (:top 20)

(:filling-style opal:white-fill))

(create-instance ’r2 proto-rect

(:left 40) (:top 30)

(:filling-style opal:gray-fill))

(create-instance ’r3 proto-rect

(:left 60) (:top 40)

(:filling-style opal:black-fill))

(opal:add-components top-agg r1 r2 r3) ; give the aggregate three components

(opal:update win)

After you update the window, you can see that the instances R1, R2, and R3 have inherited
their :width and :height from PROTO-RECT. You may wish to use gv to verify this.
With these three rectangles still in the window, we are ready to look at another important
use of inheritance. Try changing the width and height of the prototype as follows.

(s-value proto-rect :width 30)

(s-value proto-rect :height 40)

(opal:update win)

The result should look like the rectangles in Figure [changed-proto], page 47. Just by
changing the values in the prototype rectangle, we were able to change the appearance of
all its instances. This is because the three instances inherit their width and height from the
prototype, even when the prototype changes.

Chapter 3: Garnet Tutorial 47

Figure 3.3: The instances change whenever the prototype object changes.

For our last look at inheritance in this section, let’s try to override the inherited slots in
one of the instances. Suppose we now want the rectangles to look like Figure [override],
page 48. In this case, we only want to change the dimensions of one of the instances. The
following lines should change the appearance of the black rectangle accordingly.

Chapter 3: Garnet Tutorial 48

(s-value R3 :width 100)

(opal:update WIN)

The rectangle R3 now has its own value for its :width slot, and no longer inherits it from
PROTO-RECT. If you change the :width of the prototype again, the width of R3 will not
be affected. However, the width of R1 and R2 will change with the prototype, because
they still inherit the values for their :width slots. This shows how inheritance can be used
flexibly to make specific exceptions to the prototype object.

Figure 3.4: The width of R3 is overridden, so it is no longer inherited from the prototype.

3.7 Default Values

Because of inheritance, all instances of Garnet prototype objects have reasonable
default values when they are created. As we saw in section [inheritance], page 41, the
interactor-window object has its own :width. So, if an instance of it is created without
an explicitly defined width, the width of the instance will be inherited from the prototype,
and it can be considered a default value.

3.8 The Inspector

An important tool for examining properties of objects is the Inspector. This tool is loaded
with Garnet by default, and resides in the package garnet-debug. The Inspector is de-
scribed in detail in the Debugging chapter that starts on page 〈undefined〉 [debug], page 〈un-
defined〉, of this reference chapter.

To run the inspector on our example of three rectangles, position the mouse over R3 (the
black rectangle) in the window, and hit the HELP key. If your keyboard does not have a
HELP key, or hitting it does not seem to do anything, you can start the Inspector chapterly

Chapter 3: Garnet Tutorial 49

by typing (gd:Inspector R3) into the lisp listener. The Inspector window that appears
will look like figure [inspector], page 49.

Showing #k<R3>

Show Object Show in New Re-Fetch Dependencies Done Done All

Flash Search Notify Break Clear Breaks Inherited Slots Objects

#k<R3>

:IS-A = (#k<PROTO-RECT>)
:LEFT = 60
:TOP = 40
:WIDTH = 100
:VISIBLE - #k<F16-259-260-261-264> (V) = T
:FILLING-STYLE = #k<OPAL:BLACK-FILL>
:PARENT = #k<TOP-AGG>
:UPDATE-INFO = #<Update-Info dirty-p NIL invalid-p NIL>
:WINDOW = #k<WIN>

Figure 3.5: The Inspector displaying the slots and values of rectangle R3.

The local slots and values for R3 are shown in the Inspector window. Inherited slots are not
shown, like :height or :line-style (assuming that you did not set these slots yourself,

Chapter 3: Garnet Tutorial 50

installing local values in R3). If you have a color screen, some slots are red, indicating that
these slots are public "parameters" of the object (we discuss parameters more in section
〈undefined〉 [[], page 〈undefined〉parameters]).

It is very easy to change properties of an object with the Inspector. For example, to change
the :width of R3 using the inspector, click the mouse on the value of the :width slot (which
is 100 in figure 〈undefined〉 [[], page 〈undefined〉inspector]). Use standard Emacs commands
to change the value of the slot to something significantly different, like 20. When you hit
RETURN, the change will appear instantly in R3.

To add a new local value to R3 – that is, to override an inherited value with a new local
value – you have to add an extra line to the Inspector window. In our example, R3 does
not have a local value for :height, since its value is inherited from the prototype PROTO-
RECT. To override this value, click the cursor at the end of a line, and type ^j to add a
new line to the display. Now you can type ":height = 100" and hit RETURN to install
the new slot/value pair. The change should be reflected instantly in R3.

You can bring up other Inspector windows by positioning the mouse over another object
and hitting HELP again, or you can select text that is already displayed in the Inspec-
tor and using the "Show Object" or "Show in New" buttons. For example, to examine
the opal:black-fill object that is the value of R3’s :filling-style slot, either click-
and-drag or double-click on the #k<OPAL:BLACK-FILL> value and press the "Show in New"

button. The object will be displayed in a new window.

When you are finished with the Inspector, you can click on the "Done" or "Done All"

buttons to make the Inspector windows disappear.

Significantly more detail about the Inspector is included in the Debugging chapter, including
how to explore the Prototype/Instance hierarchy of objects, and how to use the Inspector
for debugging more compilcated examples.

3.9 Parameters

Most objects in Garnet have a list of parameters, which are stored in the :parameters slot.
This is a list of all customizable properties of the object. For example, gv opal:rectangle

:parameter yields:

(:LEFT :TOP :WIDTH :HEIGHT :LINE-STYLE :FILLING-STYLE :DRAW-FUNCTION

:VISIBLE)

These can be considered the "public" slots of opal:rectangle, which can be given cus-
tomized values when instances are created. If values are not supplied for these slots when
instances are created, the default values will be inherited from the prototype object.

There are other slots that change when instances of opal:rectangle are added to a window,
such as the :window and :parent slots, but these slots are not intended to be set chapterly.
Since they are "read-only" slots, they are not included in the :parameters list.

Several tools in Garnet rely heavily on the :parameters slot. As discussed in section
[inspector-sec], page 48, the Inspector displays the parameter slots in red, so that they are
easily identified. The gg:prop-sheet gadget which is used in Gilt and Lapidary looks at the
:parameters slot to determine which slots should be displayed for the user to customize.
These objects are discussed thoroughly in later sections of this reference chapter.

Chapter 3: Garnet Tutorial 51

The typical Garnet user will not have to worry much about the :parameters slot. All of
the slots that are in the list are documented in this chapter, so it is really just another
way to access the same information about properties of objects. For details on defining
:parameters slots for your own objects, see the KR chapter. Unless you are defining your
own list for a special object, the :parameters slot should be considered read-only.

3.10 Destroying Objects

Before moving on to the next section, destroy the window so that it does not interfere with
future examples in this tutorial. Type the following line.

(opal:destroy WIN)

Destroying the window will also destroy all of the objects that were added to its aggregate.
We can no longer manipulate R1, R2, and R3, since they were destroyed by the previous
call. However, the PROTO-RECT was never added to the top-level aggregate, and it was
not destroyed. You could destroy this object now with a destroy call, but we will be using
this object again in Section [destroying], page 51. So, leave the object residing in memory
for now.

When an object is destroyed, its variable name becomes unbound and the memory space
that was allocated to the object is freed. You can destroy any object, including windows.
If you destroy a window, all objects inside of it are automatically destroyed. Similarly, if
you destroy an aggregate, all objects in it are destroyed. When you destroy a graphical
object (like a line or a circle), it is automatically removed from any aggregate it might be
in and erased from the screen.

If a prototype object is destroyed (i.e., an object that has had instances created from it),
then all of the instances of that object will be recursively destroyed.

Occasionally in the course of developing a program, you may (either accidentally or inten-
tionally) define a new object which happens to have the same name as an old object. When
the new object is created, its variable name is set to the new object, and the old object
by the same name is destroyed. Also, all of the instances of the old object are recursively
destroyed.

For example, in Section [prototypes], page 44, above, we created the object PROTO-RECT,
which still exists in memory. If we now enter the following new schema definition for an
object by the same name, then the old PROTO-RECT will be destroyed.

(create-instance ’PROTO-RECT opal:rectangle)

When the new schema is entered, a warning is given that the old object is being destroyed.
You can safely ignore this message, assuming that you intended to override the definition
of the old schema.

3.11 Unnamed Objects

Sometimes you will want to create objects that do not have a particular name. For example,
you may want to write a function that returns a rectangle, but it will be called repeatedly
and should not destroy previous instances with new ones. In this case, you should return
an unnamed rectangle from the function which can be used just like the named objects we
have created earlier in this tutorial.

Chapter 3: Garnet Tutorial 52

As an example, the following code creates an unnamed object and internally generates a
unique variable name for it. Instead of supplying a quoted name to create-instance, we
give it the value nil.

(create-instance NIL opal:rectangle

(:left 10) (:top 10) (:width 75) (:height 50))

When you enter this schema definition, the create-instance call will return the generated
internal name of the rectangle – something like RECTANGLE-123. This name has a unique
number as a suffix that prevents it from being confused with other rectangles in Garnet.
You can now use the generated name to refer to the object.

(gv RECTANGLE-123 :top) ; Replace this name with the name of your rectangle.

Usually it is convenient to assign an unnamed object to a local variable. The following line
creates a circle and assigns it to the new variable MY-CIRCLE.

(setf MY-CIRCLE (create-instance NIL opal:circle))

Now MY-CIRCLE will have the generated circle as its value. If the same line were entered
again, the old circle would not be destroyed, but the variable MY-CIRCLE would still point
to a new one. This can be useful inside a function that uses a let clause – every time the
let is executed, new objects are assigned to the local variables, but the old objects still
remain in memory and are not destroyed. Section [function], page 90, contains an example
of how unnamed objects might be used in a function.

3.12 Lines, Rectangles, and Circles

The Opal package provides different graphical shapes including circles, rectangles, round-
tangles, and lines. There are also several different kinds of text, and some special objects
like bitmaps and arrowheads. Each graphical object has special slots that determine its
appearance, which are documented in the Opal chapter. (For example, the line uses the
slots :x1, :y1, :x2, and :y2.) See the section "Specific Graphical Objects" in the Opal
chapter for details of how each object works. Examples of creating instances of graphical
objects appear throughout this tutorial.

3.13 Aggregates

In order to put a large number of objects into a window, we might create all of the objects
and then add them, one at a time, to the window. However, this is usually not how we
organize the objects conceptually. For example, if we were to create a sophisticated interface
with a scroll bar, several buttons, and labels for the buttons, we would not want to add each
rectangle in the scroll bar and the buttons individually. Instead, we would think of creating
the scroll bar from its composite rectangles, then creating the buttons along with their
labels, and then adding the scroll bar assembly and the button assembly to the window.

Grouping objects together like this is the function of the aggregate object. Any graphical
object can be a component of an aggregate - lines, circles, rectangles, and even other
aggregates. Usually all of the components of an aggregate are related in some way, like they
are all parts of the same button.

Two other objects, the aggregadget and the aggrelist, are also used to group objects,
and usually appear more often in Garnet programs. Aggregadgets and aggrelists are

Chapter 3: Garnet Tutorial 53

instances of aggregate, and they have special features that make them very useful in
creating objects. These objects will be discussed further in Section [aggregadgets], page 55.

The top-level object in a window is always an aggregate. This aggregate contains all of the
objects in that window. Therefore, for an object to appear in a window it either has to be
a component of the top-level aggregate, or it has to be a component of another aggregate
which, at the top of its aggregate hierarchy, is a component of the top-level aggregate.

When aggregates have other aggregates as components, an aggregate hierarchy is formed.
This hierarchy describes the way that objects are grouped together. Figure [v-scroll-
hierarchy], page 54, shows how the objects that comprise a vertical scroll bar might be
conceptually organized.

Chapter 3: Garnet Tutorial 54

Scroll Bar

Gray Background

Indicator

Text

Top Trill Box

Bottom Trill Box

Frame

Arrow

Frame

Arrow

25

Figure 3.6: One possible hierarchy for the objects that make up a scroll bar.

In the scroll bar hierarchy, all of the leaves correspond to shapes that appear in the scroll
bar. The leaves are always Opal graphic primitives, like rectangles and text. The nodes
top-trill-box and bottom-trill-box are both aggregates, each with two components.
And, of course, the top-level scroll-bar node is an aggregate.

Chapter 3: Garnet Tutorial 55

This aggregate hierarchy should not be confused with the inheritance hierarchy that was
discussed earlier. Components of an aggregate do not inherit values from their parents.
Instead, relationships among aggregates and components must be explicitly defined using
constraints, a concept which will be discussed shortly in this tutorial.

When an object is added to an aggregate, its :parent slot is set to point to that aggregate.
Therefore, in Figure [v-scroll-hierarchy], page 54, the :parent of the bottom-trill-box is
the scroll-bar aggregate. This :parent slot is called a pointer slot because its value is
another Garnet object. Pointer slots are discussed further in section [aggregadgets], page 55.

The functions add-component, remove-component, and move-component are used to ma-
nipulate the components of an aggregate. Descriptions of these and other functions for
components may be found in the "Aggregate Objects" section of the Opal chapter.

3.14 Aggregadgets, Aggrelists, and Aggregraphs

Aggregadgets and aggrelists are types of aggregates. With these objects, an aggregate and
its components can basically be defined simultaneously. In aggregadgets, all the components
are defined with a list in the :parts slot. In an aggrelist, a single object is defined to be an
"item-prototype", and the aggrelist automatically generates several instances of that object
to make its components. The aggregraph is a type of aggregadget, where all the components
are nodes and arcs that make up a graph. Figures [opal-inheritance], page 43, and [v-scroll-
hierarchy], page 54, were created using Garnet aggregraphs. For several examples and
a complete discussion of how to use aggregraphs, see the Aggregadgets, Aggrelists, and
Aggregraphs Reference chapter.

3.14.1 Aggregadgets

When you create an aggregadget, you may list all of the objects that you want as components
of the aggregadget in the :parts slot. The list is specified using the standard Lisp backquote
macro, and there are usually many function calls and objects inside the list that must be
evaluated with a comma. As an example of an aggregadget, we will analyze the following
schema definition, but it is not necessary to type it in. This code contains a few references
that have not been discussed in this tutorial yet, but it serves the purpose of giving us a
plain aggregadget to study.

(create-instance ’AGG opal:aggregadget

(:left 10) (:top 20)

(:parts

‘((:my-circle ,opal:circle

(:left 60) (:top 70)

(:width 100) (:height 100)

(:line-style ,opal:dashed-line))

(:my-rect ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width 80) (:height 40)

(:filling-style ,opal:black-fill)

(:line-style NIL)))))

Chapter 3: Garnet Tutorial 56

The :parts slot in the AGG object contains a list of lists, with each internal list being a
definition of a component. The components of AGG will be a circle and a rectangle, to
which we have given the arbitrary names :my-circle and :my-rect. These names, which
are preceded by a colon, will be the names of new slots in the aggregadget. That is, two
pointer slots will be created in AGG, named :my-circle and :my-rect, which will have
the circle and rectangle objects as their values. We say these are pointer slots because they
point to other objects.

Other pointer slots which are automatically created are the :parent slots of both the circle
and the rectangle. Since these objects are being added as components to the aggregadget,
their :parent slots are set as with aggregates. Thus, a two-way path of communication is
established between the aggregadget and each of its components – the :parent slot points
up, and the :my-circle slot points down.

Notice that the :parts list is backquoted (with a ‘ instead of a ’). Using this backquote
syntax, we can then use commas to evaluate the names of objects inside the list. The
references to be evaluated are the two graphical object prototypes (the opal:circle and the
opal:rectangle) and the graphical qualities (opal:dashed-line and opal:black-fill).
Commas are also used to evaluate the o-formula calls, which establish constraints among
objects (constraints are discussed in the chapter [constraints], page 674). If the commas
were not present inside the :parts list, then the names of all the Garnet objects would not
be dereferenced, and they would be treated as mere atoms, not objects. Similarly, the calls
to o-formula would appear as simple quoted lists instead of function calls.

An important difference between aggregates and aggregadgets is that when you create an
instance of an aggregadget, the instance will automatically have components that match
those in the prototype. That is, if we created an instance of AGG, called AGG-INSTANCE,
then AGG-INSTANCE would automatically have a circle and rectangle component just
like AGG. In contrast, when you create an instance of an aggregate, the components are
not automatically generated, and you would have to create and add them to the instance
chapterly.

Other examples of aggregadget definitions can be found in sections [aggregadget-ex],
page 65, and [big-example], page 76, in this tutorial.

3.14.2 Aggrelists

An aggrelist allows you to create and easily arrange objects into a nicely formatted graphical
list. The motivation for aggrelists comes from the arrangement of groups of objects like
button panels, tic-marks, and menu choices, where all the components of an aggregate are
similar and should appear in a vertical or horizontal list.

In an aggrelist, a single item-prototype is defined, and then this object is automatically
copied several times to make the components of the aggrelist. The :left, :top, and other
slots of the components are automatically given values that will neatly lay out the compo-
nents in a list, so that the programmer does not have to do any calculations for the positions
of the objects.

As with aggregadgets, aggrelists use the backquote syntax to define the item prototype.
There are many customizable aspects of aggrelists, such as whether to orient the components
vertically or horizontally, the distance between each object, etc. Since there are so many
customizable slots, please see the Aggregadgets and Aggrelists Reference chapter for a

Chapter 3: Garnet Tutorial 57

discussion of how to use aggrelists. Section [big-example], page 76, in this tutorial includes
an example of the definition of an aggrelist.

3.15 Windows

When we want to add an object to a window, what we really mean is that we want to add
the object to the window’s top-level aggregate (or to an aggregate at a lower level in that
window’s aggregate hierarchy). Every window has one top-level aggregate, and all objects
that appear in the window are components in its aggregate hierarchy.

Any object must be added to a window in order for it to be shown on the screen. Addi-
tionally, a window must be updated before any changes made to it (or the objects in it)
will appear. Windows are updated when you explicitly issue a call to opal:update, and
they are also continuously updated when interactors are running and changing objects in
the window (during the main-event-loop, discussed in Section [interactors], page 684).

3.16 Gadgets

The Garnet gadgets are a set of ready-made widgets that can be treated as regular graphical
objects. They have slots that can be customized with user-defined values, and are added to
windows just like graphical objects. Generally, they are objects that are commonly found
in an interface including scroll bars, menus, buttons and editable text fields. In the Tour,
you created instances of the radio button panel and the vertical slider. There are also more
sophisticated gadgets like scrolling windows, property sheets (to allow quick editing of the
slots of objects), and selection handles (for moving and growing objects).

Most of the gadgets come in two versions – one called the Garnet Style, and one modeled
after the OSF/Motif style. Examples of how to use the gadgets are found in demonstration
programs at the end of each of the gadget files, which can be executed by commands like
(garnet-gadgets:menu-go). For detailed descriptions of all the available gadgets, see the
Gadgets Reference chapter.

3.17 Constraints

In the course of putting objects in a window, it is often desirable to define relationships
among the objects. For example, you may want the tops of several objects to be aligned,
or you might want a set of circles to have the same center, or you may want an object to
change color if it is selected. Constraints are used in Garnet to define these relationships
among objects.

Although all the examples in this section use constraints on the positions of objects, it should
be clear that constraints can be defined for filling styles, strings, or any other property of a
Garnet object. Many examples of constraints can be found in other sections of this tutorial.
Additionally, much of the KR Reference chapter is devoted to the discussion of constraints
among objects. The sections "Constraint Maintenance" and "Slot and Value Manipulation
Functions" should be of particular interest.

3.18 Formulas

A formula is an explicit definition of how to calculate the value for a slot. If we want to
constrain the top of one object to be the same as another, then we define a formula for the

Chapter 3: Garnet Tutorial 58

:top slot of the dependent object. With constraints, the value of one slot always depends
on the value of one or more other slots, and we say the formula in that slot has dependencies
on the other slots.

An important point about constraints is that they are constantly maintained by the system.
That is, they are evaluated once when they are first created, and then they are continually
re-evaluated when any of their dependencies change. Thus, if several objects depend on the
top of a certain rectangle, then all the objects will change position whenever the rectangle
is moved.

Chapter 3: Garnet Tutorial 59

Figure 3.7: Three objects that are all aligned with the same top. The top of the gray
rectangle is constrained to the white rectangle, and the top of the black circle is constrained
to the top of the gray rectangle.

As our first example of defining constraints among objects, we will make the window in
Figure [align-top], page 59. Let’s begin by creating the white rectangle at an absolute

Chapter 3: Garnet Tutorial 60

position, and then create the other objects relative to it. Create the window and the first
box with the following code.

(create-instance ’CONSTRAINTS-WIN inter:interactor-window ; Create the window

(:left 750)(:top 80)(:width 260)(:height 100))

(create-instance ’TOP-AGG opal:aggregate) ; Create an aggregate

(s-value CONSTRAINTS-WIN :aggregate TOP-AGG) ; Assign the ag-

gregate to the window

(opal:update CONSTRAINTS-WIN) ; Make the win-

dow appear

(create-instance ’WHITE-RECT opal:rectangle ; Create a rectangle

(:left 20) (:top 30)

(:width 60) (:height 40)

(:filling-style opal:white-fill))

(opal:add-components TOP-AGG WHITE-RECT) ; Add the rect-

angle to the window

(opal:update CONSTRAINTS-WIN) ; Make changes in the win-

dow appear

We are now ready to create the other objects that are aligned with WHITE-RECT. We could
simply create another rectangle and a circle that each have their top at 30, but this would
lead to extra work if we ever wanted to change the top of all the objects, since each object’s
:top slot would have to be changed individually. If we instead define a relationship that
depends on the top of WHITE-RECT, then whenever the top of WHITE-RECT changes,
the top of the other objects will automatically change, too. Define the schema for the gray
rectangle as follows.

(create-instance ’GRAY-RECT opal:rectangle

(:left 110)

(:top (o-formula (gv WHITE-RECT :top))) ; Constrain the top of this rect-

angle to the top of WHITE-RECT

(:width 60) (:height 40)

(:filling-style opal:gray-fill))

(opal:add-components TOP-AGG GRAY-RECT)

(opal:update CONSTRAINTS-WIN)

You can see that without specifying an absolute position for the top of the gray rectangle,
we have constrained it to always have the same top as the white rectangle. The formula in
the :top slot of the gray rectangle was defined using the functions o-formula and gv. The
o-formula function is used to declare that an expression is a constraint. When gv is used
inside a formula, it causes a dependency to be established on the referenced slot, so that
the formula will be reevaluated when the value in the referenced slot changes.1

1 There is another function called g-value that is similar to gv, except that it never causes dependencies to be
established. Older versions of Garnet required that gv only be used inside formulas, and g-value to be used
ouside. The gv function has since been enhanced so that it can be used everywhere. It would be unusual to
ever need to use g-value.

Chapter 3: Garnet Tutorial 61

To see if our constraint is working, try changing the top of the white rectangle with the
following instructions and notice how the gray rectangle moves with it. Try setting the top
to other values, if you wish.

(s-value WHITE-RECT :top 50)

(opal:update CONSTRAINTS-WIN)

The important thing to notice is that the value of the :top slot of GRAY-RECT changes
as the top of the WHITE-RECT changes. This shows that the formula in GRAY-RECT is
being re-evaluated whenever its depended values change.

Now we are ready to add the black circle to the window. We have a choice of whether to
constrain the top of the circle to the white rectangle or the gray rectangle. Since we are
going to be examining these objects closely in the next few paragraphs, let’s constrain the
circle to the gray rectangle, resulting in an indirect relationship with the white one. Define
the black circle with the following code.

(create-instance ’BLACK-CIRCLE opal:circle

(:left 200)

(:top (o-formula (gv GRAY-RECT :top)))

(:width 40) (:height 40)

(:filling-style opal:black-fill))

(opal:add-components TOP-AGG BLACK-CIRCLE)

(opal:update CONSTRAINTS-WIN)

At this point, you may want to set the :top of the white rectangle again just to see if the
black circle follows along with the gray rectangle.

3.19 Cached Values

An interesting question might have occurred to you – what happens if you set the :top of
the gray rectangle now? Setting the value of a slot which already has a formula in it does
not destroy the existing constraint. However, it does override the current cached value of
the formula. Try setting the :top of the gray rectangle now.

(s-value WHITE-RECT :top 30) ; Return everything to its original position

(opal:update CONSTRAINTS-WIN)

(s-value GRAY-RECT :top 40)

(opal:update CONSTRAINTS-WIN)

The position of WHITE-RECT will remain unchanged, since it was defined with an abso-
lute position. However, the new value that we gave for the top of the gray rectangle has
repositioned GRAY-RECT and BLACK-CIRCLE. Previously, the formula in the :top slot
of GRAY-RECT had correctly computed its own top, getting the value from the :top slot
of WHITE-RECT. Now, however, we replaced that cached value with our absolute value of
40.

To show that the formula is still alive and well in the :top slot of GRAY-RECT, try setting
the :top slot of WHITE-RECT again.

(s-value WHITE-RECT :top 10)

(opal:update CONSTRAINTS-WIN)

Chapter 3: Garnet Tutorial 62

Since the top of GRAY-RECT depends on WHITE-RECT, its formula will be recomputed
whenever the top of WHITE-RECT changes. There is now a new cached value for the :top
of GRAY-RECT, a result of re-evaluating the formula.

3.20 Formulas and s-value

It is important to distinguish the behavior of s-value when it is used on a slot with a formula
in it, versus using it on a slot with an absolute value in it (like the number 5). Setting the
value of a slot that already has a formula in it will not destroy the old formula. Instead,
only the cached value of the formula is changed, and the formula will be re-evaluated if any
of its dependencies change.

On the other hand, s-value will replace one absolute value with another absolute value,
and the old value will never appear again. That is, if an object was created with some
particular absolute value for a slot, and we changed that slot with s-value, then the new
value will be permanent until the slot is explicitly set again with s-value.

The one exception to the above rules is when the new value is a formula itself. Using s-value
to set a new formula will always obliterate what was previously in the slot, whether it was
an absolute value or a formula.

3.21 Using the :obj-over Slot

When designing an interface, you may want a box to be drawn around an object to show
that it is selected. In the usual case, you will want to define only one box that will be
drawn around different objects, and it would be nice if the box changed size when it was
over objects of different size. The traditional Garnet approach to this problem is to use
constraints in the dimension slots of the selection box that depend on the dimensions of the
object it is over.

Chapter 3: Garnet Tutorial 63

Figure 3.8: A selection box drawn around an object.

In the traditional approach, we use the slot :obj-over in the selection box to specify which
object the selection box should be drawn around. The :obj-over slot is a pointer slot,
since it contains an object as its value (pointer slots were discussed in section 〈undefined〉
[[], page 〈undefined〉aggregadgets]). Then, we define formulas for the dimensions of the

Chapter 3: Garnet Tutorial 64

selection box which depend on the :obj-over slot. The formulas in the following schema
definition should be clear.

(create-instance ’SEL-BOX opal:rectangle

(:obj-over GRAY-RECT) ; A pointer slot

(:left (o-formula (- (gvl :obj-over :left) 10)))

(:top (o-formula (- (gvl :obj-over :top) 10)))

(:width (o-formula (+ 20 (gvl :obj-over :width))))

(:height (o-formula (+ 20 (gvl :obj-over :height))))

(:line-style opal:line-4)) ; A line with a thickness of 4 pixels

(opal:add-components TOP-AGG SEL-BOX)

(opal:update CONSTRAINTS-WIN)

Now if you set the :obj-over slot of the selection box to be a different object, the position
and dimensions of SEL-BOX will change according to the object.

(s-value SEL-BOX :obj-over BLACK-CIRCLE)

(opal:update CONSTRAINTS-WIN)

You may have noticed that we performed computations in the formulas above, instead of
just using values directly as in the GRAY-RECT and BLACK-CIRCLE objects. In fact,
formulas can contain any lisp expression. Also, the formulas above use the function gvl

instead of gv, which was used earlier. We use gvl here because we are referencing a slot,
:obj-over, in the same schema as the formula. Previously, we used gv to look at a slot in
a different object.

Another point of interest in these formulas is the use of indirect references. In the :left

formula above, the pointer slot :obj-over is referenced, and then its :left slot is refer-
enced, in turn. It is important to distinguish between this case and the case where a value
is stored in the same object as the formula, as in the following example.

Suppose we want the selection box to become invisible if no object is currently selected.
Using s-value, we can set the :visible slot of SEL-BOX to have a formula which will
cause the box to disappear when its current selection is nil. (We could have also defined
this formula in the create-instance call.)

(s-value SEL-BOX :visible (o-formula (gvl :obj-over)))

Clearly, if :obj-over is set to nil, then the value in the :visible slot will also become nil,
and the box will become invisible. When :obj-over is again set to be some object, then
the :visible slot will have a non-NIL value, and the box will appear in the appropriate
position. Previously, if we had set :obj-over to nil, then updating the window would have
caused an error when the formulas tried to access the :left, :top, :width, and :height

of the non-existent selected object.

We are finished with the objects from this section, but the next section will continue to
use the same window. So, to remove the old objects from the window, use the function
remove-components.

(opal:remove-components TOP-AGG WHITE-RECT GRAY-RECT BLACK-CIRCLE SEL-BOX)

(opal:update CONSTRAINTS-WIN)

Chapter 3: Garnet Tutorial 65

3.22 Constraints in Aggregadgets

As mentioned in section [aggregates], page 199, the :parent slot of a component is auto-
matically set to its parent aggregate when it is attached. Since aggregadgets are instances
of aggregates, all of the components defined in an aggregadget have their :parent slot set
in this way. In this section, we will examine how this slot can be used to communicate
between components of an aggregadget.

The aggregadget we will use in this example will make the picture of concentric circles in
Figure [concentric-circles], page 66. Suppose that we want to be able to change the size
and position of the circles easily, and that this should be done by setting as few slots as
possible.

Chapter 3: Garnet Tutorial 66

Figure 3.9: An aggregadget with three circles as components.

From the picture, we see that the dimensions of the black circle are the same as the di-
mensions of the entire group of objects. That is, if a bounding box were drawn around the
black circle, all the other objects would be inside the bounding box, too. Therefore, it will

Chapter 3: Garnet Tutorial 67

be helpful to put slots for the size and position of this circle in the top-level aggregadget,
and have all the circles reference these top-level values through formulas.

To start, let’s create an aggregadget with only one component – the black circle – and then
redefine the aggregadget with the other components later. The following code creates this
one-component aggregate.

(create-instance ’CON-CIRCLES opal:aggregadget

(:left 20) (:top 20)

(:width 100)

(:height (o-formula (gvl :width)))

(:parts

‘((:black-circle ,opal:circle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (gvl :parent :width)))

(:height ,(o-formula (gvl :width)))

(:filling-style ,opal:black-fill)))))

(opal:add-component TOP-AGG CON-CIRCLES)

(opal:update CONSTRAINTS-WIN)

All those commas are needed because we want the Opal objects and the calls to o-formula

to be evaluated inside the backquoted list. If the commas were not present, then those
forms would become inert atoms and lists instead of objects and function calls.

The black circle in the aggregadget gets its position and dimensions from the top-level slots
in CON-CIRCLES. The communication link used here is the :parent slot, which points
from the component to the aggregadget. The function gvl is used in the formulas for
the black circle because the :parent slot is in the same object as the formulas. Notice
that the black circle does not "inherit" any values from its parent. Creating components
in an aggregadget sets up an aggregate hierarchy, where values travel back-and-forth over
constraints, not inheritance links. If you want a component to depend on values in its
parent, you have to define constraints.

The other components of CON-CIRCLES will be defined analogously, but with a little
more computation in the formulas to get them to line up properly. Before typing in the
new definition of CON-CIRCLES, remove the old aggregadget from the window with the
following instruction.

(opal:remove-components TOP-AGG CON-CIRCLES)

(opal:update CONSTRAINTS-WIN)

And now we are ready to redefine CON-CIRCLES again, this time with an extra top-level
slot to reduce redundant calculations, and of course with the other two circles.

(create-instance ’CON-CIRCLES opal:aggregadget

(:left 20) (:top 20)

(:width 100)

(:height (o-formula (gvl :width)))

(:radius/3 (o-formula (round (gvl :width) 6)))

(:parts

‘((:black-circle ,opal:circle

Chapter 3: Garnet Tutorial 68

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (gvl :parent :width)))

(:height ,(o-formula (gvl :width)))

(:filling-style ,opal:black-fill))

(:gray-circle ,opal:circle

(:left ,(o-formula (+ (gvl :parent :left)

(gvl :parent :radius/3))))

(:top ,(o-formula (+ (gvl :parent :top)

(gvl :parent :radius/3))))

(:width ,(o-formula (- (gvl :parent :width)

(* 2 (gvl :parent :radius/3)))))

(:height ,(o-formula (gvl :width)))

(:filling-style ,opal:gray-fill))

(:white-circle ,opal:circle

(:left ,(o-formula (+ (gvl :parent :gray-circle :left)

(gvl :parent :radius/3))))

(:top ,(o-formula (+ (gvl :parent :gray-circle :top)

(gvl :parent :radius/3))))

(:width ,(o-formula (- (gvl :parent :gray-circle :width)

(* 2 (gvl :parent :radius/3)))))

(:height ,(o-formula (gvl :width)))

(:filling-style ,opal:white-fill)))))

(opal:add-components TOP-AGG CON-CIRCLES)

(opal:update CONSTRAINTS-WIN)

The gray circle gets its size and position from the top-level slots just like the black circle,
only it is one-third the size. The white circle is the most interesting case, where it gets its
position and dimensions from the gray circle. Not only does the white circle communicate
with the aggregadget through the :parent slot, but it also uses the slot :gray-circle

which was automatically created in the aggregadget (see section 〈undefined〉 [[], page 〈unde-
fined〉aggregadgets]). Thus, the formulas in the white circle trace up the aggregate hierarchy
to the parent aggregadget, and then back down into another component.

To examine these pointer slots more closely, try executing the following line.

(gv CON-CIRCLES :white-circle)

The value returned by this gv call is the internally generated name of the white circle. This
name was generated with a unique suffix number so that it will not be confused with some
other white circle in Garnet (see Section [unnamed-objects], page 51). You can also look at
slots of the components directly, by adding slot names to the end of the gv call, like

(gv CON-CIRCLES :white-circle :top)

or even

(gv CON-CIRCLES :white-circle :parent)

This is the end of the section regarding constraints. Destroy the window we have been using
to keep it from interfering with future examples in the tutorial.

(opal:destroy CONSTRAINTS-WIN)

Chapter 3: Garnet Tutorial 69

3.23 Interactors

Interactors are used to communicate with the mouse and keyboard. Sometimes you may
just want a function to be executed when the mouse is clicked, but often you will want
changes to occur in the graphics depending on the actions of the mouse. Examples include
moving objects around with the mouse, editing text with the mouse and keyboard, and
selecting an object from a given set.

The fundamental way that the interactors communicate with graphical objects is that they
set slots in the objects in response to mouse movements and keyboard key strokes. That is,
they generate side effects in the objects that they operate on. For example, some interactors
set the :selected and :interim-selected slots to indicate which object is currently being
operated on. When objects are defined with formulas that depend on these special slots,
the appearance of the objects (i.e., the graphics of the interface) can change in response to
the mouse.

It is important to note that all of the gadgets come with their interactors already defined.
Therefore, you do not need to create interactors that change the gadgets.

In this section we will see some examples of how to change graphics in conjunction with
interactors. Section [trace-inter], page 96, describes how to use an important debugging
function for interactors called trace-inter. Although this tutorial only gives examples
of using the button-interactor and move-grow-interactor, the Interactors chapter dis-
cusses and provides examples for all six types of Garnet interactors.

3.24 Kinds of Interactors

The design of the interactors is based on the observation that there are only a few kinds
of behaviors that are typically used in graphical user interfaces. Currently, Garnet sup-
ports seven types of interactive behavior, which allows a wide variety of user actions in an
interface. Below is a list of the available interactors, which are described in detail in the
Interactors chapter.

Menu-Interactor

For selecting one or more choices from a set of items. Useful in menus, etc.,
where the mouse may be held down and dragged while moving over the items
to be selected.

Button-Interactor

For selecting one or more choices from a set of items. Useful in single buttons
and panels of buttons where the mouse can only select one item per mouse click.

Move-Grow-Interactor

For moving and changing the size of an object. Useful in scroll bars and graphics
editors.

Two-Point-Interactor

For obtaining one or two points in a window from the user. Useful in specifying
the size and position of a new object to be created.

Angle-Interactor

For getting the angle that the mouse moves around a point. Useful in circular
gauges or for "stirring motions".

Chapter 3: Garnet Tutorial 70

Text-Interactor

For editing strings. Most useful for small strings, since Garnet does not support
complicated word-processing applications.

Gesture-Interactor

For recognizing gestures drawn by the user (e.g., the user draws a rough shape
that Garnet recognizes as a square).

Animator-Interactor

For executing a function at regular intervals, allowing rapid updating of graph-
ics.

There are also several interactors that work with the multifont-text object. This object
and its associated interactors are discussed in the Opal chapter.

3.25 The Button Interactor

In this example, we will perform an elementary operation with an interactor. We will
create a window with a white rectangle inside, and then create an interactor that will make
it change colors when the mouse is clicked inside of it. First, create the window with the
white rectangle.

(create-instance ’INTER-WIN inter:interactor-window

(:left 750)(:top 80)(:width 250)(:height 250))

(create-instance ’TOP-AGG opal:aggregate)

(s-value INTER-WIN :aggregate TOP-AGG)

(opal:update INTER-WIN)

(create-instance ’CHANGING-RECT opal:rectangle

(:left 20) (:top 30)

(:width 60) (:height 40)

(:filling-style (o-formula (if (gvl :selected)

opal:black-fill

opal:white-fill)))

(:selected NIL)) ; Set by the interactor

(opal:add-components TOP-AGG CHANGING-RECT)

(opal:update INTER-WIN)

From the definition of the :filling-style formula, you can see that if the :selected slot
in CHANGING-RECT were to be set to be non-NIL, then its color would turn to black.
Conveniently, setting the :selected slot is one of the side effects of the button-interactor.
The following code defines an interactor which will set the :selected slot of CHANGING-
RECT, which will cause it to change colors.

(create-instance ’COLOR-INTER inter:button-interactor

(:window INTER-WIN)

(:start-where (list :in CHANGING-RECT))

(:start-event :leftdown))

; Unless using CMU, Allegro, Lucid, LispWorks, or MCL

Chapter 3: Garnet Tutorial 71

(inter:main-event-loop)

; Hit F1 while the mouse is in the Garnet window to exit

The main-event-loop function causes Garnet to start paying attention to events (like
clicking the mouse) that trigger the interactors. (A background process in CMU, Allegro,
Lucid, LispWorks, and MCL always pays attention to events.) Now you can click on the
rectangle repeatedly and it will change from white to black, and back again. From this
observation, and knowing how we defined the :filling-style of CHANGING-RECT, you
can conclude that the button-interactor is setting (and clearing) the :selected slot of
the object. This is one of the functions of the button-interactor. When you are ready
to resume typing in the Lisp process, you have to hit the F1 key while the mouse is in the
Garnet window to get a new prompt. (You may execute the main-event-loop call again
at any Lisp prompt.)

Chapter 3: Garnet Tutorial 72

Figure 3.10: The rectangle CHANGING-RECT when its :selected slot is nil (the default),
and when it is set to T by the interactor (when the mouse is clicked over it).

Chapter 3: Garnet Tutorial 73

3.26 A Feedback Object with the Button Interactor

The method we used in the previous section with the button-interactor involved setting
the :selected slot of the selected object. There is another way to use the button interactor
which involves using feedback objects. A feedback object is some object that indicates the
currently selected object. For example, it is often desirable that the actual selected object
not move or change color, but rather that a separate object follow the mouse or appear over
the selection.

In an earlier example in section [obj-over-slot], page 62, we defined a selection box which
works just like a feedback object. When the :obj-over slot of the selection box was set to
the name of the selected object, then the box appeared around the selected object. In this
example, we will redefine the objects from that section and create an interactor to work on
them.

The following code is analogous to what was presented in section [obj-over-slot], page 62,
but here the three selectable objects are defined as components in an aggregadget. Type
in the following aggregadget and feedback object, and add them to the current window.
Notice that because of the :visible formula in FEEDBACK-RECT, that rectangle will be
invisible when the window is first updated.

(create-instance ’AGG opal:aggregadget

(:top 100)

(:parts

‘((:white-rect ,opal:rectangle

(:left 20)

(:top ,(o-formula (gvl :parent :top)))

(:width 60)

(:height 40)

(:filling-style ,opal:white-fill))

(:gray-rect ,opal:rectangle

(:left 110)

(:top ,(o-formula (gvl :parent :top)))

(:width 60)

(:height 40)

(:filling-style ,opal:gray-fill))

(:black-circle ,opal:circle

(:left 200)

(:top ,(o-formula (gvl :parent :top)))

(:width 40)

(:height 40)

(:filling-style ,opal:black-fill)))))

(create-instance ’FEEDBACK-RECT opal:rectangle

(:obj-over NIL) ; A pointer slot to be set by the interactor

(:visible (o-formula (gvl :obj-over)))

(:left (o-formula (- (gvl :obj-over :left) 10)))

(:top (o-formula (- (gvl :obj-over :top) 10)))

(:width (o-formula (+ 20 (gvl :obj-over :width))))

(:height (o-formula (+ 20 (gvl :obj-over :height))))

Chapter 3: Garnet Tutorial 74

(:line-style opal:line-4))

(opal:add-components TOP-AGG AGG FEEDBACK-RECT)

(opal:update INTER-WIN)

Notice that the :obj-over slot of FEEDBACK-RECT is a pointer slot, as usual. When
:obj-over is set with the name of an object, the FEEDBACK-RECT will appear over
the object because of the way we defined its position and dimension formulas. In this
example, we will not set :obj-over by hand, as we did previously. Instead, we will create
a button-interactor to set the slot for us.

The following code defines an interactor which uses the FEEDBACK-RECT to indicate
which object is selected. Since all of the selectable objects are in the same aggregate, we
can tell the interactor to start whenever the mouse is clicked over any component of AGG.

(create-instance ’SELECTOR inter:button-interactor

(:window INTER-WIN)

(:start-where (o-formula (list :element-of AGG))) ; Work on the com-

ponents of AGG

(:final-feedback-obj FEEDBACK-RECT)

(:how-set :toggle))

; Unless using CMU, Allegro, Lucid, LispWorks, or MCL

(inter:main-event-loop)

; Hit F1 while the mouse is in the Garnet window to exit

Now when you click on the objects, the feedback object will appear over the selected object.
The reason is that the button-interactor sets the :obj-over slot of the feedback object.
Since the interactor is a toggling interactor (according to its :how-set slot), the :obj-over
slot will be reset to nil when the selected object is clicked on again.

If you entered the main-event-loop, remember to hit the F1 key before typing in the next
example.

3.27 The Move-Grow Interactor

From the previous example, you can see that it is easy to change the graphics in the window
using the mouse. We are now going to define several more objects in the window and create
an interactor to move them.

The side effect of the move-grow-interactor is that it sets the :box slot of the selected
object (as well as the feedback object, if any) to be a list of four values – the left, top,
width, and height of the object. When formulas are defined in the :left, :top, :width,
and :height slots which depend on the :box slot, then the position and dimensions of the
object will change whenever the :box slot changes.

The idea goes like this: Suppose the current value of the :box slot in a rectangle is ’(0 0 40
40). Since the :left and :top slots are constrainted to the :box slot, the rectangle appears
at the position (0,0). To move the object, the user clicks and drags on the rectangle until
it is at position (50,50). When the user lets go, then the interactor automatically sets the
:box slot to ’(50 50 40 40). Since the :box slot has changed, the formulas in the :left and
:top slot are re-evaluated, and the rectangle appears at the new position.

Chapter 3: Garnet Tutorial 75

The following code creates a prototype circle and several instances of it. With a little study,
it should be clear how the position and dimension formulas work with respect to the :box

slot. All of the circles are then added to an aggregate, and this aggregate is added as a
component to the top-level aggregate.

(create-instance ’MOVING-CIRCLE opal:circle

(:box ’(0 0 40 40)) ; This slot will be set by the interactor

(:left (o-formula (first (gvl :box)))) ; Get the first value in the list

(:top (o-formula (second (gvl :box))))

(:width (o-formula (third (gvl :box))))

(:height (o-formula (fourth (gvl :box)))))

(create-instance ’M1 MOVING-CIRCLE

(:box ’(120 30 40 40)))

(create-instance ’M2 MOVING-CIRCLE

(:box ’(30 100 60 60)))

(create-instance ’M3 MOVING-CIRCLE

(:box ’(120 100 80 80)))

(create-instance ’CIRCLE-AGG opal:aggregate)

(opal:add-components CIRCLE-AGG M1 M2 M3)

(opal:add-components TOP-AGG CIRCLE-AGG)

(opal:update INTER-WIN)

If you want to try setting the :box slot of any of these objects, you will see how the position
and dimension of each circle depend on it. Be sure you set the :box slot to be a list of four
positive numbers, or an error will occur!

Now let’s create an instance of the move-grow-interactor, which will cause the moving
circles to change position. The following interactor works on all the components of the
aggregate CIRCLE-AGG. Remember to execute the inter:main-event-loop call to start
the interactors working.

(create-instance ’MG-INTER inter:move-grow-interactor

(:window INTER-WIN)

(:start-where (list :element-of CIRCLE-AGG))) ; Work on the compo-

nents of CIRCLE-AGG

; Unless using CMU, Allegro, Lucid, LispWorks, or MCL

(inter:main-event-loop)

; Hit F1 while the mouse is in the Garnet window to exit

Now if you press and drag in any of the circles, they will follow the mouse. This is because
the interactor sets the :box slot of the object that it is pressed over, and the :left and
:top slots of the objects depend on the :box slot.

Chapter 3: Garnet Tutorial 76

It is worth noting once again that the move-grow-interactor does not set the :left, :top,
etc. slots of the selected object. It instead sets the :box slot of the selected object, and the
user is required to define formulas that depend on the :box slot.

3.28 A Feedback Object with the Move-Grow Interactor

Now let’s add a feedback object to the window that will work with the moving circles. In
this case, the feedback object will appear whenever we click on and try to drag a circle.
The mouse will actually drag the feedback object, and then the real circle will jump to the
final position when the mouse is released.

Our feedback object will be a circle with a dashed line. The DASHED-CIRCLE object
defined below will have two slots set by the interactor. The :box slot will be set while
the mouse is held down and dragged, and the :obj-over slot will be set to point to the
circle being dragged. Given our MOVING-CIRCLE prototype, the feedback object is easy
to define.

(create-instance ’DASHED-CIRCLE MOVING-CIRCLE

; Inherit all the :left, :top, etc. formulas that depend on the :box slot.

(:obj-over NIL) ; Set by the interactor

(:visible (o-formula (gvl :obj-over)))

(:line-style opal:dashed-line))

(opal:add-components TOP-AGG DASHED-CIRCLE)

The :visible slot is set with a formula because we only want the feedback object to be
visible when it is being used with the interactor. Now, we will redefine the move-grow
interactor to use DASHED-CIRCLE as a feedback object. (Redefining the MG-INTER will
destroy the old instance, so don’t worry if a warning appears.)

(create-instance ’MG-INTER inter:move-grow-interactor

(:window INTER-WIN)

(:start-where (list :element-of CIRCLE-AGG))

(:feedback-obj DASHED-CIRCLE))

Now when you move the circles with the mouse, the feedback object will follow the mouse,
instead of the real circle following it directly.

Since we have finished this section on interactors, destroy the window so that it does not
interfere with the next example. Type the following line.

(opal:destroy INTER-WIN)

3.29 Creating a Panel of Text Buttons

In this section, we will go through a comprehensive example that pulls together all the
concepts that have been discussed in this tutorial. The final objective will be the panel of
text buttons in Figure [text-buttons], page 422. We will use an aggregadget to assemble
a group of objects into a single button, then use an aggrelist to make multiple copies of
the text button and organize them into a list for the panel, and finally create a button
interactor to manage the panel.

Chapter 3: Garnet Tutorial 77

3.29.1 The Limitations of Aggregates

Before starting the aggregadget for this example, let’s take a look at the use of an aggregate.
This will help to demonstrate the usefulness of aggregadgets. First, create a window with
a top-level aggregate and update it:

(create-instance ’BUTTON-WIN inter:interactor-window

(:left 800)(:top 10)(:width 200)(:height 400))

(create-instance ’TOP-AGG opal:aggregate)

(s-value BUTTON-WIN :aggregate TOP-AGG)

(opal:update BUTTON-WIN)

The TOP-AGG aggregate is the top-level aggregate for the window. If we want any object
to appear in the window, it will have to be added to TOP-AGG, or added to an aggregate
further below in TOP-AGG’s aggregate hierarchy. We will keep TOP-AGG as the top-level
aggregate throughout this example, but we will be changing its components continually.

Now we can begin adding objects to TOP-AGG (throughout this discussion you should
periodically check Figure [text-buttons], page 422, to see why we are creating particular
objects). Let’s start by assembling a button. We will first create a couple of rectangles that
have a fixed position so that we get the window in Figure [two-rects], page 78. Since we
want the rectangles to have the same dimensions, we can make a prototype object and then
create two instances with appropriate position values.

(create-instance ’PROTO-RECT opal:rectangle

(:width 100) (:height 50))

(create-instance ’R1 PROTO-RECT

(:left 40) (:top 40)

(:filling-style opal:black-fill))

(create-instance ’R2 PROTO-RECT

(:left 20) (:top 20)

(:filling-style opal:gray-fill))

(opal:add-components TOP-AGG R1 R2)

(opal:update BUTTON-WIN)

Chapter 3: Garnet Tutorial 78

Figure 3.11: The two rectangles R1 and R2, which are instances of PROTO-RECT.

Keeping in mind our goal of making a panel of text buttons, one problem should be immedi-
ately clear. In order to make several buttons with this method, we will have to calculate the
position of every rectangle in the interface and explicitly create an object for it. This will
be time consuming, to say the least, and motivates us to investigate how constraints will

Chapter 3: Garnet Tutorial 79

help avoid tedious calculations. So, as the first step in pursuing a more fruitful approach,
let’s remove the rectangles from the window and move on to aggregadgets. To remove the
rectangles, execute:

(opal:remove-components TOP-AGG R1 R2)

(opal:update BUTTON-WIN)

3.29.2 Using an Aggregadget for the Text Button

When we create an aggregadget, we essentially create an aggregate and add the components
(along with pointer slots) all at once. Our task is to build an aggregadget with two rectangles
as components which will look like Figure [two-rects], page 78. Since we already know what
we want the rectangles to look like in the window, putting a simple aggregadget together
using our previously defined R1 and R2 rectangles is straightforward. However, the key
to avoiding tedious calculations of the positions of our rectangles is to generalize the code.
That is, we want the positions of our components to be formulas rather than absolute
numbers.

For the present, let’s assume that we will always be giving absolute numbers to our top-
level aggregadget (but not its components). The first problem we want to address is how to
devise formulas for the positions of the rectangles. By referring back to Figure [two-rects],
page 78, we see that the entire aggregate has its upper-left coordinate at one corner of the
gray rectangle, and its lower-right coordinate on the shadow. Therefore, it is a reasonable
design decision to put the left and top of the gray rectangle at the left, top corner of
the aggregadget, and then put the shadow 20 pixels further below and to the right. The
following code shows the definition of our new BUTTON aggregadget with formulas defined
for the positions of the rectangle components.

(create-instance ’BUTTON opal:aggregadget

(:left 20) (:top 20)

(:shadow-width 100) (:shadow-height 50)

(:parts

‘((:shadow ,opal:rectangle

(:left ,(o-formula (+ 20 (gvl :parent :left))))

(:top ,(o-formula (+ 20 (gvl :parent :top))))

(:width ,(o-formula (gvl :parent :shadow-width)))

(:height ,(o-formula (gvl :parent :shadow-height)))

(:filling-style ,opal:black-fill))

(:gray-rect ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (gvl :parent :shadow-width)))

(:height ,(o-formula (gvl :parent :shadow-height)))

(:filling-style ,opal:gray-fill)))))

(opal:add-components TOP-AGG BUTTON)

(opal:update BUTTON-WIN)

After studying the BUTTON schema for a moment, several features stand out. First, there
are two slots called :shadow-width and :shadow-height defined in the top-level schema,
which are used by the width and height formulas of the component rectangles. The presence

Chapter 3: Garnet Tutorial 80

of these slots at the top-level will make it easier to change the appearance of the button in
the future – if we want to make it wider, we only need to change one slot, :shadow-width,
instead of all the components’ :width slots.

Next, it should be clear that the formulas in the :left and :top slots of the components
will place the rectangles at the appropriate positions relative to each other, with the shadow
further down and to the right. Finally, it is important that the shadow comes first in the
order of defining the components. Objects are drawn on the screen in the order that they are
added to an aggregate, so we definitely want the gray rectangle to come after the shadow.

Notice that there is no "inheritance" going on in the BUTTON aggregadget. When we
want a component to get a value from its parent, we have to explicitly define a constraint
that gets that value.

We have just finished the first step in creating a text button. Although there is more code
in the aggregadget example than in the previous example with rectangles R1 and R2, the
aggregadget code is simple and flexible. Also, almost all of the formulas that you will write
in the future will resemble those in this example. The only difference will be the names of
the slots and the arithmetic that is appropriate for the situation.

Now we are ready to add more objects to the button. To do this, we will not add objects to
BUTTON while it is in the window. Instead, we will remove the old BUTTON aggregadget
from the window and write a new one from scratch. Most of the code that we have already
written will be reused, however, and if you still have a copy of the previous example on your
screen, you will be able to cut-and-paste it. So execute the command that will remove the
button from the top-level aggregate:

(opal:remove-components TOP-AGG BUTTON)

(opal:update BUTTON-WIN)

3.29.3 Defining Parts Using Prototypes

Before constructing an aggregadget with additional components, let’s look at another way
to define components in aggregadgets. This method will make it easier for us to develop
the BUTTON aggregadget by condensing some of the code and eliminating a lot of typing.

In the previous example, the components were instances of rectangles. Another way to
define components is to define them as prototypes separate from the aggregadget, and then
create instances of those prototypes in the aggregadget :parts slot. The following code
comes from this alternate method for defining aggregadgets.

(create-instance ’SHADOW-PROTO opal:rectangle

(:left (o-formula (+ 20 (gvl :parent :left))))

(:top (o-formula (+ 20 (gvl :parent :top))))

(:width (o-formula (gvl :parent :shadow-width)))

(:height (o-formula (gvl :parent :shadow-height)))

(:filling-style opal:black-fill))

(create-instance ’GRAY-PROTO opal:rectangle

(:left (o-formula (gvl :parent :left)))

(:top (o-formula (gvl :parent :top)))

(:width (o-formula (gvl :parent :shadow-width)))

(:height (o-formula (gvl :parent :shadow-height)))

Chapter 3: Garnet Tutorial 81

(:filling-style opal:gray-fill))

(create-instance ’BUTTON opal:aggregadget

(:left 20) (:top 20)

(:shadow-width 100) (:shadow-height 50)

(:string "Button")

(:parts

‘((:shadow ,SHADOW-PROTO)

(:gray-rect ,GRAY-PROTO))))

(opal:add-components TOP-AGG BUTTON)

(opal:update BUTTON-WIN)

Notice that this way of looking at aggregadgets is entirely consistent with the previous
aggregadget definition. In the :parts slot of our new button, we have created instances
just like before, but we have not explicitly defined any slots in the components. It does
not matter whether we set slots in the prototype objects or in the parts definitions. Using
this abbreviation method for defining aggregadgets, we can now avoid retyping the slot
definitions for the old components and move on to talking about new ones.

It should be noted that the SHADOW-PROTO and GRAY-PROTO rectangles can not
be added to a window by themselves. If you were to try this, you would get an error
when Garnet tried to evaluate any of the formulas that we defined. This is because there
is no :parent for either the SHADOW-PROTO or the GRAY-PROTO, which is clearly
needed by the formulas. But when instances of these rectangles are added to the BUTTON
aggregadget, their :parent slots are set to be the parent aggregadget.

As usual, remember to remove the current BUTTON from the window using
remove-components.

3.29.4 The Label of the Button

Referring to Figure [text-buttons], page 422, again, we see that the text button needs a
white rectangle to be centered over the gray one, and text should be centered inside the
white rectangle. We will want the string of the text object to be a top level slot in the
aggregadget so that we can change it easily. Thus, we need to place a constraint in the text
object to retrieve it (remember the text object does not "inherit" the string from its parent
just because it is a component). Other than that, the addition of the new components to
the BUTTON aggregadget is straightforward. Using the abbreviation method for defining
aggregadgets, we get the following code (the components SHADOW-PROTO and GRAY-
PROTO were defined above).

(create-instance ’WHITE-PROTO opal:rectangle

(:left (o-formula (+ 7 (gvl :parent :gray-rect :left))))

(:top (o-formula (+ 7 (gvl :parent :gray-rect :top))))

(:width (o-formula (- (gvl :parent :gray-rect :width) 14)))

(:height (o-formula (- (gvl :parent :gray-rect :height) 14)))

(:filling-style opal:white-fill))

(create-instance ’TEXT-PROTO opal:text

(:left (o-formula (+ (gvl :parent :white-rect :left)

Chapter 3: Garnet Tutorial 82

(round (- (gvl :parent :white-rect :width)

(gvl :width))

2))))

(:top (o-formula (+ (gvl :parent :white-rect :top)

(round (- (gvl :parent :white-rect :height)

(gvl :height))

2))))

(:string (o-formula (gvl :parent :string))))

(create-instance ’BUTTON opal:aggregadget

(:left 20) (:top 20)

(:shadow-width 100) (:shadow-height 50)

(:string "Button")

(:parts

‘((:shadow ,SHADOW-PROTO)

(:gray-rect ,GRAY-PROTO)

(:white-rect ,WHITE-PROTO)

(:text ,TEXT-PROTO))))

(opal:add-components TOP-AGG BUTTON)

(opal:update BUTTON-WIN)

Although the centering formulas for the :left and :top slots of the text object are a
little more complicated, they are basic calculations that find the proper position of the text
based on the dimensions of the white rectangle. Another aspect of the formulas is that
they reference not only slots in the parent object, but also slots in their sibling objects.
Specifically, in the white-rect part, the :left formula looks up the aggregate tree to the
:parent, and then looks down again into the gray-rect. The same tracing of the aggregate
tree is involved in the text formulas for :left and :top.

3.29.5 Instances of the Button Aggregadget

It should be clear by now that aggregadgets are particularly useful for organizing and
defining components. After creating the four prototype objects by themselves, we were able
to define BUTTON with the compact aggregadget above. And with our current definition
of BUTTON, we will now see another significant use of aggregadgets. The following code
creates several instances of the BUTTON aggregadget, which we can use as a prototype.
When you add these instances to the window, you see that component rectangles and text
are generated automatically for the instances.

(create-instance ’BUTTON-1 BUTTON

(:left 130) (:top 80)

(:shadow-width 60)

(:string "abcd"))

(create-instance ’BUTTON-2 BUTTON

(:left 10) (:top 120)

(:string "Button-2"))

Chapter 3: Garnet Tutorial 83

(opal:add-components TOP-AGG BUTTON-1 BUTTON-2)

(opal:update BUTTON-WIN)

Button

abcd

Button-2

Figure 3.12: The BUTTON object and two instances of it.

Chapter 3: Garnet Tutorial 84

This feature of aggregadgets means that you do not need to chapterly create objects indi-
vidually and add them to the window. Instead, you can create a group of objects, and then
create instances of the group.

Before moving to the next section, remember to remove your three button objects from the
window with remove-components.

3.29.6 Making an Aggrelist of Text Buttons

Even though instances of the aggregadget will automatically generate components, the in-
stances BUTTON-1 and BUTTON-2 show that we still need to chapterly supply coordinates
to the aggregadget in order to position it. When we create the finished text button panel in
Figure [text-buttons], page 422, we don’t want to calculate the position of each text button
in the window. (Notice that this is similar to the problem we faced several sections ago –
that we didn’t want to compute the position of each rectangle within a text button.) The
solution to this problem (as before) is to use a special type of aggregate that will generate
components for us. This time, we will use an aggrelist.

Just for a start, let’s create a simple itemized aggrelist. We will supply an item-prototype
and a number to the aggrelist, and it will generate that number of instances of the item-
prototype. Specifically, we want the aggrelist to make five copies of the BUTTON aggre-
gadget. So, let’s try the following code.

(create-instance ’PANEL opal:aggrelist

(:left 30) (:top 10)

(:items 5)

(:item-prototype BUTTON))

(opal:add-components TOP-AGG PANEL)

(opal:update BUTTON-WIN)

Chapter 3: Garnet Tutorial 85

Button

Button

Button

Button

Button

Figure 3.13: An aggrelist with an :items value of 5 and the BUTTON aggregadget as its
:item-prototype.

By supplying the number 5 in the :items slot, we tell the aggrelist to make five copies of
its item-prototype. And, because this is an aggrelist, all the copies of the prototype are
automatically appropriate :left and :top coordinates. It turns out that we only had to

Chapter 3: Garnet Tutorial 86

give the position of the left and top of the aggrelist; all the calculations for the buttons
were handled internally. There are many customizable slots for aggrelists that change the
appearance of the aggrelist – like whether to make the panel horizontal or vertical, how
much space to put between the items, etc. A list of these slots is in the Aggregadgets
chapter, which you can try out later.

The next step in the development of our panel is to give each button an appropriate label.
To do this, we need to supply a list of labels to the aggrelist. The proper place to do this
is in the :items slot. As we just saw, if you give the :items slot a number, the aggrelist
generates that number of items. If instead you give it a list, then it will generate the same
number of components as there are items in the list. We will also have to change the
BUTTON prototype so that its :string slot pays attention to the list of items we supply.
The following code makes this change to the BUTTON prototype in the definition of the
aggrelist, so we don’t have to redefine the BUTTON aggregadget.

(create-instance ’PANEL opal:aggrelist

(:left 30) (:top 10)

(:items ’("Mozart" "Chopin" "Strauss" "Beethoven" "Vivaldi"))

(:item-prototype

‘(,BUTTON

(:string ,(o-formula (nth (gvl :rank) (gvl :parent :items)))))))

(opal:add-components TOP-AGG PANEL)

(opal:update BUTTON-WIN)

The :rank slot in the :string formula above is put into each component generated by the
aggrelist. Even though there is no :rank in our definition of BUTTON, when the aggrelist
generates its components, it ranks the objects in the order that they are created and stores
these ranks in the :rank slot (ranks start at 0). This makes it easy to find the item in the
:items list that corresponds to each component.

Since we are going to be redefining objects again, remember to remove the PANEL object
from the window before going on.

3.29.7 Adding an Interactor

We are almost finished with the text button panel. At this point, the panel that we have
written is still a passive graphical object – if you press on it with the mouse, it acts just like
a pile of rectangles and does nothing at all. Therefore, the next step is to add an interactor
that will cause the appearance of the buttons to change whenever we click the mouse on it.
Suppose we choose to use a button-interactor for our interface between the mouse and
the panel. By applying the principles discussed in the interactor section of this tutorial, we
can write the following code for our interactor.

(create-instance ’PRESS-PROTO inter:button-interactor

(:window (o-formula (gvl :operates-on :window)))

(:start-where (o-formula (list :element-of (gvl :operates-on))))

(:start-event :leftdown))

The code for this interactor is short and simple. It is a prototype object just like the
rectangles, but it happens to be an interactor. The :operates-on reference in the formulas
is analogous to the :parent slot in objects, and the slot is automatically created when the

Chapter 3: Garnet Tutorial 87

interactor is attached to an aggregadget or aggrelist. In interactors, the :operates-on slot
points to the aggregadget that it is attached to, just like the :parent slot of a graphical
object points to its aggregate. Notice that we have supplied values for the two required
slots in an interactor. The :window slot points to the window of the aggregadget that the
interactor will be attached to, which is reasonable since we want the interactor to work in
the same window that the graphics appear in. The value in the :start-where slot tells the
interactor to start whenever the mouse is clicked over any component of the aggrelist (that
is, over any button).

Before we attach this interactor to the PANEL aggregadget, we are going to have to change
a few of the formulas in the button and its components. The question to ask is – how
should the graphics change when we press the mouse over the button? By looking at the
full text-buttons picture in Figure [text-buttons], page 422, we see that the gray rectangle
should move down and to the right, settling over the shadow. Therefore, we will have to
change the formulas for the :left and :top of the gray rectangle. We do not have to
change the :left and :top slots of the white rectangle or text because they are already
constrained to the gray rectangle’s position.

As you recall from the "Interactors" section of this tutorial, the button-interactor sets
the :selected slot of the object it operates on when it is clicked on with the mouse.
Additionally, the interactor will also set the :interim-selected slot of the object while
the mouse is being held down over it. With this in mind, it would be useful to make the
gray rectangle formulas depend on the :interim-selected slot of the aggregadget, since
the gray rectangle should settle over the black rectangle when the mouse is held down over
the button. A new GRAY-PROTO object that will respond to the interactor follows.

(create-instance ’GRAY-PROTO opal:rectangle

(:left (o-formula (if (gvl :parent :interim-selected)

(gvl :parent :shadow :left)

(gvl :parent :left))))

(:top (o-formula (if (gvl :parent :interim-selected)

(gvl :parent :shadow :top)

(gvl :parent :top))))

(:width (o-formula (gvl :parent :shadow-width)))

(:height (o-formula (gvl :parent :shadow-height)))

(:filling-style opal:gray-fill))

The new formulas in the :left and :top of the new GRAY-PROTO now look at the
:interim-selected slot of the button. When the mouse is clicked over a button, the
button’s :interim-selected slot will be set to T, causing the gray rectangle to be moved
down and to the right. When the mouse is released, the :interim-selected slot will be
set back to nil, and the gray rectangle will return to its normal position.

If you refer back to the definitions of the other components, you will see why the gray
rectangle is the only component that we had to change. The white rectangle depended
on the position of the gray rectangle, and the text was centered inside the white one.
Thus, when the gray rectangle’s position changed, the change was propagated to all of the
dependent formulas, resulting in uniform movement of the components.

There is one final note to make before we can complete the panel. When the gray rectangle
is pushed down onto the shadow, the dimensions of the button are going to change. That

Chapter 3: Garnet Tutorial 88

is, when the gray rectangle covers the shadow completely, then the button’s aggregate has
smaller dimensions than if the two rectangles are spread out a bit. If left unchecked, this will
cause unexpected behavior because the aggrelist keeps the components arranged according
to their width and height. For this reason, we will have to supply our own :width and
:height values to the BUTTON aggregadget within our definition of the PANEL. To see
the problem for yourself, you may want to leave out the :width and :height values in the
following code just to see what happens. Then you will certainly want to try the code again
with the values in place.

(create-instance ’BUTTON opal:aggregadget

(:left 20) (:top 20)

(:width 120) (:height 70) ; The dimensions of the two rectangles plus their offset

(:shadow-width 100) (:shadow-height 50)

(:string "Button")

(:parts

‘((:shadow ,SHADOW-PROTO)

(:gray-rect ,GRAY-PROTO)

(:white-rect ,WHITE-PROTO)

(:text ,TEXT-PROTO))))

(create-instance ’PANEL opal:aggrelist

(:left 30) (:top 10)

(:items ’("Mozart" "Chopin" "Strauss" "Beethoven" "Vivaldi"))

(:item-prototype

‘(,BUTTON

(:string ,(o-formula (nth (gvl :rank) (gvl :parent :items))))))

(:interactors

‘((:press ,PRESS-PROTO))))

(opal:add-components TOP-AGG PANEL)

(opal:update BUTTON-WIN)

; Required if you are not using CMU, Allegro, Lucid, LispWorks, or MCL

(inter:main-event-loop) ; To start the interactors.

; Hit F1 in the Garnet window to exit.

Chapter 3: Garnet Tutorial 89

Mozart

Chopin

Strauss

Beethoven

Vivaldi

Figure 3.14: The finished text button panel.

Once you have entered the main-event-loop (not necessary in CMUCL, Allegro, Lucid,
LispWorks, or MCL), you can click on any of the buttons and they will respond. The
movement comes from the interactor setting the :interim-selected slot of the button
that you press on, which causes the :left and :top slots of the components to be re-

Chapter 3: Garnet Tutorial 90

evaluated. When you let go, the :interim-selected slot is cleared, and the components
return to their original position.

Remember to destroy the window when you are finished with this example.

(opal:destroy BUTTON-WIN)

3.30 Referencing Objects in Functions

If a function that returns an object is only going to be called once, then it is usually
appropriate to explicitly name the objects in each create-instance call. This is the
method used in the demonstration functions that accompany the gadgets. However, if a
function is called repeatedly and returns objects which will be used at the same time, then
unnamed objects should probably be used.

For example, the function below will create and return windows with messages in them. If
the window in the function was explicitly named (say ’WIN or something), then each call
to the function would destroy the previous window instance while creating the new one.

(defun Make-Win (left top string)

; Create unnamed objects and assign them to local variables

(let ((win (create-instance NIL inter:interactor-window

(:left left) (:top top)

(:width 100) (:height 100)))

(agg (create-instance NIL opal:aggregate))

(message (create-instance NIL opal:text

(:left 20) (:top 40)

(:string string))))

; Manipulate the objects according to their local names

(s-value win :aggregate agg)

(opal:add-component agg message)

(opal:update win)

win)) ; Return the internal name of the new window

(setf Win-List (list (Make-Win 100 100 "Hello")

(Make-Win 190 120 "Window 2")

(Make-Win 70 190 "Third Win")))

Each time Make-Win is called, a window is created, an aggregate is attached, and a text
object is added to the aggregate. We kept a list of the internal names of the windows in
Win-List because we will want to destroy them later. Each of the windows in the list can
be manipulated as usual (using s-value, etc.) by referring to their generated names.

Chapter 3: Garnet Tutorial 91

Hello

Window 2

Third Win

Figure 3.15: Three windows created with the function Make-Win.

To clean up the windows generated from Make-Win, you could use dolist to destroy the
whole list, or chapterly destroy the windows individually while referring to their generated
names.

Chapter 3: Garnet Tutorial 92

3.31 Hints and Caveats

There is a small chapter devoted to optimizations that can be added to your Garnet pro-
grams that make them smaller and faster. This section lists a few suggestions that are
sometimes required by Garnet programs, in addition to helping your programs be more
efficient.

3.32 Dimensions of Aggregates

3.32.1 Supply Your Own Formulas to Improve Performance

Although it is usually not necessary to specify the :width and :height of an aggregate, the
programmer can almost always define formulas that will be more efficient than the default
formulas for computing the bounding box. The default formulas look at all the components
of the aggregate and compute the appropriate bounding box, but they are completely generic
and make no assumptions about the arrangement of the components. Since you will know
where the components will appear on the screen, you can usually supply simple formulas
that depend on only a few of the components.

For example, if you created an aggregadget out of nested rectangles, where there was one
outer rectangle and several others inside of it, then you would want to define dimension
formulas for the aggregate that depend only on the outer rectangle and ignore the inner
ones. Otherwise, the default formulas would check every rectangle before deciding on the
correct width and height of the aggregate.

3.32.2 Ignore Feedback Objects in Dimension Formulas

A good reason to define your own formulas for the :width and :height slots of aggregates
is that you usually don’t want the feedback object to be considered in the bounding box
calculation.

3.32.3 Include All Components in the Aggregate’s Bounding Box

Components of aggregates should always be inside the bounding boxes of the aggregates.
That is, you should not make the :left of an aggregate be 40, and then the left of a
component be (- 40 offset). This will put the component outside of the bounding box of
the aggregate (too far to the left), and Garnet will not be able to update the aggregate
properly.

The solution here is to make the left of the aggregate be the same as the leftmost component,
and then make the component inherit that left. Of course, if you have several components
which all have different lefts, then you will have to add offsets to the lefts of the other
components.

3.33 Dimensions of Windows

Don’t make the size of windows depend on the size of the objects inside. This will lead to
frequent refreshing of the entire window, causing very poor performance.

3.34 Formulas

Chapter 3: Garnet Tutorial 93

3.34.1 The Difference Between formula and o-formula

The difference between formula and o-formula is somewhat confusing. The preferred form
is (o-formula (expression)) because the expression will be compiled when the the file is
compiled. Then, at run-time, the expression for the constraint executes as compiled code
when the formula needs to be re-evaluated. (This works by expanding the code in-line to
create a lambda expression, for which the compiler generates code.) When the (formula

’(expression)) form is used, the expression is interpreted at run-time, so the constraint
executes much slower.

The disadvantage of o-formula, however, is that because it is a macro, variable references
do not create lexical closures. This means that variables referenced inside an o-formula

will not be expanded into their actual value inside the expression. The variable name will
instead remain inside the expression, and if its value ever changes, the new value will be
reflected when the expression is reevaluated.

On the other hand, using the form (formula ‘(... ,*variable* ...)) puts the value of
variable permanently in the formula, and eliminates the reference to *variable*. If
all your object references use (gvl ...) to get values out of slots of the object ("paths" in
aggregadgets), then this is not relevant, and you should use o-formula.

As an example, let’s start with a global variable and two formulas that use the variable.
One formula will be an o-formula, and one will be a plain formula. Note: lisp> represents
the prompt for the lisp listener.

lisp> (setf *width* 100)

100

lisp> (create-schema ’A

(:left 10)

(:right1 (o-formula (+ (gvl :left) *width*)))

(:right2 (formula ‘(+ (gvl :left) ,*width*))))

Object A

#k<A>

lisp> (gv A :right1)

110

lisp> (gv A :right2)

110

lisp>

So in both cases the formula computed the sum of the left and the current value of *width*.
Now, what happens if we change *width*? At first, it seems that nothing happens. Just
changing the value of the variable will not cause the formulas to recompute – only things
that are gv’ed have dependencies, and Garnet doesn’t know that the variable’s value has
changed yet.

lisp> (setf *width* 22)

22

lisp> (gv A :right1)

110

lisp> (gv A :right2)

110

Chapter 3: Garnet Tutorial 94

lisp>

But now let’s change the value of the :left slot, which will invalidate both formulas and
will cause them to recompute.

lisp> (s-value A :left 33)

33

lisp> (gv A :right1)

55

lisp> (gv A :right2)

133

lisp>

Now they recomputed, and the difference is obvious. In the o-formula, the *width* variable
reference was still hanging around, and that expression used the current value of *width*.
A ps of the o-formula shows it’s still there:

lisp> (ps (get-value A :right1))

#k<F74>

lambda: (+ (gvl :left) *width*)

cached value: (55 . T)

on schema #k<A>, slot :RIGHT1

NIL

lisp>

On the other hand, the plain formula got rid of the *width* variable when the "," derefer-
enced it.

lisp> (ps (get-value A :right2))

#k<F73>

lambda: (+ (gvl :left) 100)

cached value: (133 . T)

on schema #k<A>, slot :RIGHT2

NIL

lisp>

Notice the 100 replaced *width* in the definition of the formula.

One occasion where this distinction between formula and o-formula comes up is the cre-
ation of objects while iterating over a list. The following code correctly dereferences the
variable obj when constructing formulas.

(dolist (obj objlist)

(create-instance NIL opal:rectangle

(:left (formula ‘(gv ,obj :left)))

))

Chapter 3: Garnet Tutorial 95

3.34.2 Avoid Real Number Divide

In all graphical objects, the position and dimension slots :left, :top, :width, and :height

all take integer values. Therefore, the integer divide functions round, floor, and ceiling,
etc. should be used more frequently than / for division.

3.35 Feedback Objects

If all of the components of an aggregate are selectable, then any feedback object should be
put in a separate aggregate so that the feedback object itself is not selectable.

3.36 Debugging

The Debugging Tools Reference chapter documents many functions that are useful in an-
swering the most common questions that users have when developing Garnet code. The
functions will help you find objects, explain the values of particular slots, describe inher-
itance and aggregate hierarchies, and inspect constraints and interactors. This section
describes the most commonly used functions for examining Garnet objects.

3.37 The Inspector

There is a powerful debugging tool called the Inspector which allows you to examine and
change slot values of your objects without typing into the lisp listener. This tool can be
invoked by hitting the HELP key while the mouse is positioned above the object to be
examined.

You can easily try this tool if you have any Garnet window with objects in it. Sections
[prototypes], page 44-[inspector-sec], page 48, of this tutorial provide a simple example
window with step-by-step interaction with the Inspector.

3.38 PS

kr:PS object

The function ps (which stands for "print schema") is used to examine individual schemas.
When ps is called with a Garnet object, a list of all the object’s slots and values will be
printed. By default, any slot whose value is inherited from a prototype is not printed unless
gv has already been called on that slot.

The ps function resides in the KR package, and is fully documented in the KR chapter.
There are several switches and global variables that control the amount of information that
ps prints.

3.39 Flash

[Function]garnet-debug:flash object &optional n
The function flash helps you to visually locate object in a window by flashing the
bounding box of object from black to white n times. The object must already be in
a window in order for it to flash. If flash is unable to flash the object, then the
function will try to give you some explanation of why the object will not flash.

Chapter 3: Garnet Tutorial 96

3.40 Ident

[Function]garnet-debug:ident
The function ident takes no parameters. After you call ident, Garnet waits for the
next input event in any Garnet window, like clicking the mouse. If you click over an
object, then the name of the object will be printed along with some other information
about the object and the window.

Clearly, this function is useful if there are many objects in a window and you forget
the names of all of them. A more interesting application is when there are unnamed
objects in the window (that is, they were given NIL for a name in their schema
definition and now have only internal names) and you want to analyze or manipulate
an unnamed object. Then, ident will return the internal name of the object clicked
on, and that name can be used in gv or s-value calls as usual.

3.41 Trace-Inter

inter:Trace-Inter &optional interactor[No value for ‘‘[’’]function]

inter:Untrace-Inter[No value for ‘‘[’’]function]

The function trace-inter is often used to find out why an interactor is not working as
you expected. Interactor problems most often arise from improper definitions of either the
interactors or the objects they work on. Using trace-inter can help to narrow the reasons
for the unexpected behavior.

Executing untrace-inter will turn off the tracing for interactors.

97

4 KR: Constraint-Based Knowledge
Representation

KR is a very efficient knowledge representation language implemented in Common Lisp. It
provides powerful frame-based knowledge representation with user-defined inheritance and
relations, and an integrated object-oriented programming system. In addition, the system
supports a constraint maintenance mechanism which allows any value to be computed from
a combination of other values. KR is simple and compact and does not include some
of the more complex functionality often found in other knowledge representation systems.
Because of its simplicity, however, it is highly optimized and offers good performance. These
qualities make it suitable for many applications that require a mixture of good performance
and flexible knowledge representation.

4.1 KR: Introduction

This document is the reference manual for the KR system. KR implements objects, also
known as schemata, which can contain any amount of information and which can be con-
nected in arbitrary ways. All Garnet objects are implemented as KR schemata. KR kr can
also be used as a very efficient frame-based representation system. Simplicity and efficiency
are its main design goals and differentiate it sharply from more conventional frame systems,
as discussed in KR-KER.

In addition to the basic representation of knowledge as a network of schemata, KR provides
object-oriented programming and an integrated constraint maintenance system. Constraint
maintenance is implemented through (formulas), which constrain certain values to combi-
nations of other values. The constraint system is closely integrated with the basic object
system and is part of the same program interface.

Close integration between objects and constraint maintenance yields several advantages.
First of all, constraint maintenance is seen as a natural extension of object representation;
the same access functions work on regular values and on values constrained by a formula.
Second, the full power of the representation language is available in the specification of
constraints. Third, since the two mechanisms are integrated at a fairly low level, the
constraint maintenance system offers very good performance. These advantages make the
KR constraint maintenance system a practical tool for the development of applications that
require flexibility, expressive power, and performance comparable to that obtained with
conventional data structures.

In addition to being one of the building blocks of the Garnet project, KR can be used as a
self-contained knowledge representation system. Besides Garnet, KR is used in the Chinese
Tutor CHINESE-TUTOR CHINESE-TUTOR-SHANGHAI, an intelligent tutoring system
designed to teach Chinese to English speakers, and in speech understanding researchMINDS
currently underway at Carnegie Mellon.

This document describes version 3.0.0+ of KR, which is part of release 3.0.0+ of the Garnet
system. Several aspects of this version differ from previous versions of the system, such
as the ones described in previous reports KRTR2 KR. The present document overrides all
previous descriptions.

The orientation of this manual is for users of KR as an object system. Users who are more
interested in using KR as a knowledge representation system should consult a previous
paper kr-ker. This manual begins with a description of the features of the system that

Chapter 4: KR: Constraint-Based Knowledge Representation 98

beginners are most likely to need. Some of the less common features are only presented
near the end of the document, in order to avoid obscuring the description with irrelevant
details. Sections 6 and 7 contain the detailed description of the program interface of KR.
This is a complete description of the system and its features. Most application programs
will only need a small number of features, described in section 6.

4.2 Structure of the System

KR is an object system implemented in Common Lisp CommonLisp. It includes three
closely integrated components: object-oriented programming), constraint maintenance, and
knowledge representation.

The first component of KR is an object oriented programming system based on the
prototype-instance paradigm. Schemata can be used as objects, and inheritance can be
used to determine their properties and behavior. Objects can be sent messages, which are
implemented as procedural attachments to certain slots; messages are inherited through
the same mechanism as values.

Instead of the class-instance paradigm, common in object-oriented programming languages,
KR implements the more flexible prototype-instance paradigm liebermanprototypes, which
allows properties of instances to be determined dynamically by their prototypes. This means
that the class structure of a system can be modified dynamically as needed, without any
need for recompilation.

The second component of KR implements constraint maintenance. Constraint maintenance
is implemented through formulas, which may be attached to slots and determine their values
based on the values of other slots in the system.

Constraint maintenance is closely integrated with the other components. The user, for
example, does not need to know which slots in a schema contain ordinary values and which
ones are constrained by a formula, since the same access primitives may be used in both
cases.

The third component, frame-based knowledge representation, stores knowledge as a net-
work of chunks of information. Networks in KR are built out of unstructured chunks, i.e.,
schemata. Each schema can store arbitrary pieces of information, and is not restricted to a
particular format or data structure. Information is encoded via attribute-value pairs.

Values in a schema can be interpreted as links to other schemata. This enables the system
to support complex network structures, which can be freely extended and modified by
application programs. KR provides simple ways to specify the structure of a network and
the relationship among its components.

4.3 Basic Concepts

This section describes the basic elements of KR, i.e., objects. More details about the
design philosophy of the system and some of the internal implementation may be found
in KR, which describes a previous version of the system that did not support constraint
maintenance.

4.3.1 Main Concepts: Schema, Slot, Value

An object in KR is known as a schema. A schema is the basic unit of representation and
consists of an optional name, a set of slots, and a value for each slot. The user can assemble

Chapter 4: KR: Constraint-Based Knowledge Representation 99

networks of schemata by placing a schema as the value in a slot of another schema; this
causes the two schemata to become linked.

A schema may be namedor unnamed. Named schemata are readily accessible and are most
useful for interactive situations or as the top levels of a hierarchy, since their names act
as global handles. Unnamed schemata do not have meaningful external names. They are,
however, more compact than named schemata and account for the vast majority of schemata
created by most applications. Unnamed schemata are automatically garbage-collected when
no longer needed, whereas named schemata have to be destroyed explicitly by the user.

The name of a named schema is a symbol. When a named schema is created, KR auto-
matically creates a special variable by the same name and assigns the schema itself as the
value of the special variable. This makes named schemata convenient to use.

A schema may have any number of slots, which are simply attribute-value pairs. The slot
name indicates the attribute name; the slot value (if there is one) indicates its value. Slot
names are keywords, and thus always begin with a colon. All slots in a schema must have
distinct names, but different schemata may very well have slots with the same name.

Each slot may contain only one value. A value is the actual data item stored in the schema,
and may be of any Lisp type. KR provides functions to add, delete, and retrieve the value
from a given slot in a schema.

The printed representation of a schema shows the schema name followed by slot/value pairs,
each on a separate line. The whole schema is surrounded by curly braces. For example,

#k<fido>

:owner = #k<john>

:color = #k<brown>

:age = 5

The schema is named FIDO and contains three slots named :owner, :color, and :age.
The slot :age contains one value, the integer 5.

The default printed name of a schema is of the form #k<name>, where name is the actual
name of the schema. This representation makes it very easy to distinguish KR schemata
from other objects. Note, however, that this convention is only used when printing, and is
not used when typing the name of a schema.

In order to illustrate the main features of the system, we will repeatedly use a few schemata.
We present the definition of those schemata at this point and will later refer to them as
needed. These schemata might be part of some graphical package, and are used here purely
for explanation purposes. In practice, there is no need to define such schemata in a Garnet
application, since the Opal component of Garnet (see the Opal manual) already provides a
complete graphical object system.

The following KR code is the complete definition of the example schemata:

Chapter 4: KR: Constraint-Based Knowledge Representation 100

(create-instance ’my-graphical-object nil

(:color :blue))

(create-instance ’box-object my-graphical-object

(:thickness 1))

(create-instance ’rectangle-1 box-object

(:x 10)

(:y 20))

(create-instance ’rectangle-2 box-object

(:x 34)

(:y (o-formula (+ (gvl :left-obj :y) 15)))

(:left-obj rectangle-1))

The exact meaning of the expressions above will become clear after we describe the func-
tional interface of the system. Briefly, however, the example can be summarized as follows.
The schema my-graphical-object is at the top of a hierarchy of graphical objects. The
schema box-object represents an intermediate level in the hierarchy, and describes the
general features of all graphical objects which are rectangular boxes. box-object is placed
below my-graphical-object in the hierarchy, and its :is-a slot points to the schema
my-graphical-object. This is done automatically by the macro create-instance.

Finally, two rectangles (rectangle-1 and rectangle-2) are created and placed below
box-object in the hierarchy. rectangle-1 defines the values of the two slots :x and
:y directly, whereas rectangle-2 uses a formula for its :y slot. The formula states that
the value of :y is constrained to be the :y value of another schema plus 15. The other
schema can be located by following the :left-obj slot of rectangle-2, as specified in the
formula, and initially corresponds to rectangle-1.

Figure 4.1 shows the four schemata after the definitions above have been executed. Relations
are indicated by an arrow going from a schema to the ones to which it is related.

Chapter 4: KR: Constraint-Based Knowledge Representation 101

Figure 4.1: The resulting network of schemata

Asking the system to print out the current status of schema rectangle-2 would produce
the following output:

#k<RECTANGLE-2>

:IS-A = #k<BOX-OBJECT>

:LEFT-OBJ = #k<RECTANGLE-1>

:Y = #k<F2289>(NIL . NIL)

:X = 34

Note that slot :y contains a formula, which is printed as #k<F2289>(NIL . NIL). This is
simply an internal representation for the formula and will yield the correct value of :y when
needed.

4.3.2 Inheritance

The primary function of values is to provide information about the object represented by
a schema. In the previous example, for instance, asking the system for the :x value of
rectangle-1 would simply return the value 10.

Values can also perform another function, however: They can establish connections between
schemata. Consider the :left-obj slot in the example above: if we interpret rectangle-1
as a schema name, then the slot tells us that the schema rectangle-2 is somehow related
to the schema rectangle-1. Graphically, this will mean that the position of rectangle-2
is partially determined by that of rectangle-1.

KR also makes it possible to use values to perform inheritance, i.e., to control the way
information is inherited by a particular schema from other schemata to which it is connected.
Inheritance allows information to be arranged in a hierarchical fashion, with lower-level
schemata inheriting most of their general features from higher-level nodes and possibly
providing local refinements or modifications. A connection that enables inheritance of values

Chapter 4: KR: Constraint-Based Knowledge Representation 102

is called an inheritance relation . Inheritance relations always contain a list of values; in
many cases, this is a list of only one value.

The most common example of inheritance is provided by the :is-a relation . If schema A
is connected to schema B by the :is-a relation,1 then values that are not present in A may
be inherited from B.

Consider the schema rectangle-1 in our example. If we were to ask "What is the color
of rectangle-1?", we would not be able to find the answer by just looking at the schema
itself. But since we stated that rectangle-1 is a box object, which is itself a graphical
object, the value can be inherited from the schema my-graphical-object through two
levels of :is-a. The answer would thus be "rectangle-1 is blue." Inheritance is possible
in this case because the slot :is-a is pre-defined by the system as a relation.

4.4 Object-Oriented Programming

This section describes the object-oriented programming component of KR. This component
entails two concepts: the concept of message sending, and the concept of prototype/instance.

4.4.1 Objects

The fundamental data structure in KR is the schema, which is equivalently referred to as an
object. Objects consist of data (represented by values in slots) and methods (represented by
procedural attachments, again stored as values in slots). Methods are similar to functions,
except that a method can do something different depending on the object that it is called
on. A procedural attachment is invoked by "sending a message" to an object; this means
that a method by the appropriate name is sought and executed. Different objects often
provide different methods by the same name, and thus respond to the same message by
performing different actions.

The data and methods associated with an object can be either stored within the object or
inherited. This allows the behavior of objects to be built up from that of other objects.
The object-oriented component of KR allows some combination of methods , since a method
is allowed to invoke the corresponding method from an ancestor schema and to explicitly
refer to the object which is handling the message. Method combination, however, is not
as developed as in full-fledged object-oriented programming systems such as CLOS CLOS-
X3J13.

4.4.2 Prototypes vs. Classes

The notion of prototype in KR is superficially similar to that of class in conventional object-
oriented programming languages, since a prototype object can be used to partially determine
the behavior of other objects (its instances) . A prototype, however, plays a less restricting
role than a class. Unlike classes, prototypes simply provide a place from which the values
of certain slots may be inherited. The number and types of slots which actually appear in
an instance is not in any way restricted by the prototype . The same is true for methods,
which are simply represented as values in a slot.

Prototypes in KR serve two specific functions: they provide an initialization method ,
and they provide default constraints . When a KR schema is created via the function

1 In other words, if schema B appears as a value in the :is-a slot of schema A.

Chapter 4: KR: Constraint-Based Knowledge Representation 103

create-instance , and its prototype has an :initialize method, the method is invoked
on the instance itself. This results in a uniform mechanism for handling object-dependent
initialization tasks.

4.4.3 Inheritance of Formulas

If a prototype provides a constraint for a certain slot, and the slot is not explicitly redefined
in an instance, the formula which implements the constraint is copied down and installed
in the instance itself. The formula, however, is not actually copied down until a value is
requested for that slot (e.g., when gv is used). This is a convenient mechanism through
which a prototype may partially determine the behavior of its instances. Note that this
behavior can be overridden both at instance-creation time (by explicitly specifying values
for the instance) and at any later point in time.

4.5 Constraint Maintenance

This section describes the constraint maintenance component of KR. The purpose of con-
straint maintenance is to ensure that changes to a schema are automatically propagated to
other schemata which depend on it.

4.5.1 Value Propagation

The KR constraint system offers two distinct mechanisms to cause changes in a part of net-
work to propagate to other parts of the network. The first mechanism, value propagation,
ensures that the network is kept in a consistent state after a change. The second mecha-
nism, demon invocation, allows certain actions to be triggered when parts of a network are
modified. Demons are described in section [demons], page 130.

Value propagation is based on the notion of dependency of a value on another. Value de-
pendencies are embodied in formulas. Whenever a value in a slot is changed, all slots whose
values depend on it are immediately invalidated, although not necessarily re-evaluated.
This strategy, known as lazy evaluation, does not immediately recompute the values in the
dependent slots, and thus it typically does less work than an eager re-evaluation strategy.
The system simply guarantees that correct values are recomputed when actually needed.

4.5.2 Formulas

Formulas represent one-directional connections between a dependent value and any number
of depended values. Formulas specify an expression which computes the dependent value
based upon the depended values, as well as a permanent dependency which causes the
dependent value to be recomputed whenever any of the other values change.

Formulas can contain arbitrary Lisp expressions, which generally reference at least one
particular depended value. The Lisp expression is used to recompute the value of the
formula whenever a change in one of the depended values makes it necessary.

Formulas are not recomputed immediately when one of the depended values changes. This
reduces the amount of unnecessary computation. Moreover, formulas are not recomputed
every time their value is accessed. Each formula, instead, keeps a cache of the last value
it computed. Unless the formula is marked invalid, and thus needs to be recomputed,
the cached value is simply reused. This factor causes a dramatic improvement in the
performance of the constraint maintenance system, since under ordinary circumstances the
rate of change is low and most changes are local in nature.

Chapter 4: KR: Constraint-Based Knowledge Representation 104

Figure 4.2: Successive changes in depended values

Figure 14.25, part (a), shows an example of a formula installed on slot :y of schema point-2.
The formula depends on two values, i.e., the value of slots :y1 and :y2 in schema point-1.
The formula specifies that slot :y is constrained to be the sum of the two values divided by
2, i.e., the average of the two values. Figure 4.1, part (b), shows the internal state of the
formula in a steady-state situation where the formula contains a valid cached value. Under
these circumstances, any request for the value of slot :y would simply return the cached
value, without recomputing the formula.

Parts (c) and (d) show the effects of changes to the depended values. Changes are illustrated
by small rectangles surrounding the modified information. The first change is to slot :y1
and causes the value in the formula to be marked invalid. Note that the formula is not
actually recomputed at this point, and the cached value is left untouched. The second
change is to slot :y2 and does not cause any action to occur, since the formula is already
marked invalid.

Finally, part (e) shows what happens when the value in slot :y is eventually needed. The
value of the formula is recomputed and again cached locally; the cache is marked as valid.
The system is then back to steady state. Note that the formula was recomputed only once,
when needed, rather than eagerly after each value changed.

4.5.3 Circular Dependencies

Constraints may involve circular chains of dependency. Slot A, for instance, might depend
on slot B, which in turn depends on slot A; see section [degrees], page 143, for an example
of a situation where this arises fairly naturally. Circular dependencies may also be used to
provide a limited emulation of two-way constraint maintenance.

KR is able to deal with circular dependencies without any trouble. This is handled during
formula evaluation; if a formula is evaluated and requests a value which depends of the
formula itself, the cycle is broken and the cached value of the formula is used instead. This
algorithm guarantees that the network is left in a consistent state, even though the final
result may of course depend on where evaluation started from.

Chapter 4: KR: Constraint-Based Knowledge Representation 105

4.5.4 Dependency Paths

Typical formulas contain embedded references to other values and schemata. The formula in
Figure [formulas], page 104, for example, contains an indirect reference to schema point-1

through the contents of the :other slot. Such references are known as dependency paths .
Whenever a formula is evaluated, its dependency paths are used to recompute the updated
value.

It is possible for a dependency path to become temporarily unavailable. This would happen,
for instance, if schema point-1 in Figure [formulas], page 104, was deleted, or if slot :other
in schema point-2 was temporarily set to nil. KR handles such situations automatically.
If a formula needs to be evaluated but one of its dependency paths is broken, the current
cached value of the formula is simply reused. This makes it completely safe to modify
schemata that happen to be involved in a dependency path, since the system handles the
situation gracefully.

4.5.5 Constraints and Multiple Values

Unlike earlier versions of KR, version 3.0.0+ supports constraints on multiple values in a
slot. The functional interface, however, is not complete and therefore certain operations
are not fully supported at the time of this writing. Functions which support constraints
on multiple values are easily identified because they accept a position parameter which
determines what value is affected.

The interaction between constraints and multiple values will be completely specified in fu-
ture versions of KR. For the time being, most applications should simply be aware that
constraints on the first value in a slot are supported universally, whereas some of the func-
tionality may be unavailable for constraints on values other than the first one.

4.6 Functional Interface: Common Functions

This section contains a list of the more common functions and macros exported by the KR
interface. It includes the functionality that most Garnet users are likely to need and covers
schema representation, object-oriented programming, and constraint maintenance. Section
[additional-functions], page 119, describes parts of the system that are less commonly used.

All functions and variables are defined and exported by the KR package. The easiest
way to make them accessible to an application program is to execute the following line:
(use-package :kr)

Throughout this and the following section, we will use the schemata defined in section
[kr-examples], page 99, as examples. All examples assume the initial state described there.

4.6.1 Schema Manipulation

This group includes functions that create, modify, and delete whole schemata.

[Macro]kr:create-instance object-name prototype &rest slot-definitions
This macro creates an instance of the prototype with certain slots filled in; if prototype
is nil, the instance will have no prototype. The instance is named object-name. If
object-name is nil, an unnamed object is created and returned. If object-name is a
symbol, a special variable by that name is created and bound to the new object.

Chapter 4: KR: Constraint-Based Knowledge Representation 106

The slot-definitions, if present, are used to create initial slots and values for the object.
Each slot definition should be a list whose first element is the name of a slot, and
whose second element is a value for that slot.

In addition to this basic slot-filling behavior, this macro also performs three operations
that are connected to inheritance and constraint maintenance. First of all, create-
instance links the newly created object to the prototype via the :is-a link, thus
making it an instance.

Second, if the prototype contains any slot with a formula, and the slot-definitions do
not redefine that slot, create-instance copies the formula down into the instance. This
means that the prototype can conveniently provide default formulas for any slot that
is not explicitly defined by its instances.

Third, if either the prototype or the object itself defines the :initialize method
, create-instance sends the newly created object the :initialize message. This is
done after all other operations have been completed, and provides an automatic way
to perform object-dependent initializations.

Example:

(create-instance ’rectangle-4 box-object (:x 14) (:y 15))

The following example demonstrates the use of the :initialize method at the pro-
totype level2:

(define-method :initialize box-object (schema)

(s-value schema :color :red)

(format t "~s initialized~%" schema))

(create-instance ’rectangle-4 box-object (:x 14) (:y 15))

;; prints out:

#k<RECTANGLE-4> initialized

Create-instance understands the :override keyword and the :name-prefix keyword;
see [create-options], page 137, for more details. The uniform declaration syntax with
the :declare keyword is used to define "local only slots", constant slots, and many
others (see section [uniform-syntax], page 120).

[Function]kr:ps schema
This function prints the contents of the schema. In its simplest form, described
here, the function is called with the schema as its sole argument, and prints out the
contents of the schema in a standard format. Optional arguments also allow you
to control precisely what is printed out; the more complicated form is described in
section [print-control-slots], page 139.

The following example shows the simple form of ps:

(ps RECTANGLE-1)

;; prints out:

#k<RECTANGLE-1>

2 Defining methods on Garnet objects is seldom necessary in practice, since real Opal prototypes already have
built-in :initialize methods.

Chapter 4: KR: Constraint-Based Knowledge Representation 107

:Y = 20

:X = 10

:IS-A = #k<BOX-OBJECT>

[Function]kr:schema-p thing
This predicate returns t if thing is a valid KR schema, nil otherwise. It returns nil
if thing is a destroyed schema. It also returns nil if thing is a formula.

(schema-p rectangle-1) ==> t

(schema-p ’random) ==> nil

[Function]kr:is-a-p schema thing
This predicate returns T if schema is related to thing (another schema) via the :is-a
relation, either directly or through an inheritance chain. It returns nil otherwise.

Note that thing may have the special value T, which is used as a "super-class" indica-
tor; in this case, is-a-p returns T if schema is any schema. If the schema is identical
to the thing, is-a-p also returns T.
Examples:

(is-a-p rectangle-1 box-object) ==> t

(is-a-p rectangle-1 my-graphical-object) ==> t

(is-a-p rectangle-1 rectangle-2) ==> nil

(is-a-p rectangle-1 t) ==> t

4.6.2 Slot and Value Manipulation Functions

This group includes the most commonly used KR functions, i.e., the ones that retrieve or
modify the value in a slot. This section presents KR value manipulation functions that deal
with constraints. A different set of primitive functions, which do not deal with constraints,
is described in Section [additional-functions], page 119.

4.6.3 Getting Values with g-value and gv

When called outside of a formula, g-value and gv behave identically. When used inside
a formula, the function gv not only returns the value of a slot, but also establishes a
dependency for the formula on the slot. This special property of gv is discussed in section
[gv-in-form], page 110.

Novice Garnet users only need to learn about gv, but g-value is supplied for the rare case
in which you want to retrieve a slot value from inside a formula without establishing a
dependency.

[Macro]kr:gv object &rest slot-names
[Macro]kr:g-value object &rest slot-names

These macros return the value in a slot of an object. If the slot is empty or not
present, they return nil. Inheritance may be used when looking for a value. G-value
and gv handle constraints properly: If a formula is currently installed in the slot, the
value is computed (if needed) and returned. G-value will work in place of gv in any
of the following examples:

(gv rectangle-1 :is-a) ==> #k<BOX-OBJECT>

Chapter 4: KR: Constraint-Based Knowledge Representation 108

(gv rectangle-1 :thickness) ==> 1 ; inherited

(gv rectangle-1 :color) ==> :BLUE

(gv rectangle-2 :y) ==> 35 ; computed formula

Although it is common to call g-value and gv with only one slot name, these macros
may actually be given any number of slot-names. The macros expand into repeated
calls to g-value and gv, where each slot is used to retrieve another object. The given
slot in the final object (which is, in general, different from the object) is then accessed.
For example:

(gv rectangle-2 :left-obj :x)

is equivalent to

(gv (gv rectangle-2 :left-obj) :x)

Both expressions return the value of the :x slot of the object which is contained in the
:left-obj slot of rectangle-2. One can think of the slot :left-obj as providing
the name of the place from which the next slot can be accessed. Such a slot is often
called a link, since it provides a link to another object which can be used to compute
values.

4.6.4 Setting Values with S-Value

[Function]kr:s-value object slot more-slots value
This function is used to set a slot with a given value or formula. The slot in the object
is set to contain the value. Like with g-value and gv, s-value can be given multiple
slots in argument list, when the slot to be set is several levels away from object. In
the normal case, value is an ordinary LISP value and simply supersedes any previous
value in the slot. If value is a formula (i.e. the result of a call to o-formula or
formula), the formula is installed in the slot and internal bookkeeping information is
set up appropriately.

If the slot already contains a formula, the following two cases arise. If value is also
a formula, the old formula is replaced and any dependencies are removed. If value is
not a formula, the old formula is kept in place, but the new value is used as its new,
temporary cached value. This means that the slot will keep the value until such time
as the old formula needs to be re-evaluated (because some of the values on which it
depends are modified).

s-value returns the new value of the slot.

Note that a setf form is defined for gv and g-value, and expands into s-value. This
allows a variety of LISP constructs to be used in combination with gv and g-value,
such as the idiom (incf (gv object slot)) which increments the value of a slot in
the object. For example,

;; Change value in depended slot from 20 to 21

(incf (gv rectangle-1 :y))

;; The constraint is propagated to RECTANGLE-2:

(gv rectangle-2 :y) ==> 36 ; recomputed

Constraint propagation is fully enforced during this operation, just as it would be in
the equivalent expression

(s-value rectangle-1 :y (1+ (gv rectangle-1 :y)))

Chapter 4: KR: Constraint-Based Knowledge Representation 109

4.6.5 formula and o-formula

[Macro]kr:o-formula form &optional initial-value
Given a form, this macro returns a formula (formulas are internally represented by
special structures). The form typically consists of Lisp expressions and gv or gvl

references (see below).
Examples:

(o-formula (gvl :above-gadget :x))

(o-formula (min (gvl :above-gadget :x)

(+ (gvl :other-gadget :width) 10)))

The first example creates a formula which causes the slot on which it is installed to
have the same value as slot :x of the object contained in slot :above-gadget of the
current object. The second formula is more complex and constrains the slot on which
it is installed to have as its value the minimum of two values. One value is computed
as before, and the other is computed by adding 10 to the :width slot of the object
contained in slot :other-gadget of the current object.

The form can also be an existing formula, rather than a Lisp expression. In this
case, the new formula is linked to the existing formula, and inherits the expression
from it. No local state is shared by the two formulas. This form of the call should
be used as often as possible, since inherited formulas are smaller and more efficient
than top-level formulas. An illustration of this case is given by the second call in the
following example, which creates a new formula that inherits its expression from the
first one:

(setf f (o-formula (+ (gvl :above :y)

(floor (gvl :above :height) 2))))

(setf g (o-formula f))

If an initial-value is specified, it is used as the initial cached value for the formula.
This cached value is recorded in the formula but marked invalid, and thus it is never
used under normal circumstances. The initial value is only used if the formula is
part of a circular dependency, or if one of its dependency paths is invalid. Most
applications need not be concerned about this feature.

A reader macro has been defined to abbreviate the definition of o-formulas. Instead
of typing (o-formula (...)), you could type #f(...), which expands into a call to
o-formula. For example, one may write:

(s-value a :left #f(gvl :top))

instead of the equivalent expression

(s-value a :left (o-formula (gvl :top)))

[Function]kr:formula form &optional initial-value
Given a form, this function returns a formula. It is similar to o-formula, except that
the code in form is not compiled until run-time, when the formula call is actually
executed.

Code that can be compiled early should use o-formula, which yields more efficient
formula evaluation and reduces the amount of storage. Formula might be required
when local variables are used in form, and are not set until run-time. See the "Hints

Chapter 4: KR: Constraint-Based Knowledge Representation 110

and Caveats" section of the Tutorial for more discussion of when a formula created
with formula might be needed.

[Macro]kr:formula-p thing
a predicate that returns t if the thing (any Lisp object) is a formula created with
o-formula or formula, nil otherwise.

4.6.6 gv and gvl in Formulas

[Macro]kr:gv object &rest slot-names
This macro, which we saw in section [g-value-and-gv], page 107, serves a special
purpose when used within formulas.

In addition to returning a value like g-value, gv records the dependency path and
ensures that the formula in which it is embedded is recomputed whenever the depen-
dency path or the value changes.

Note that the object can be any object, not just the one on which the formula con-
taining gv is installed. Specifying the reserved name :self for object ensures that the
path starts from the object on which the formula is installed. This can be achieved
more simply via gvl, as explained below.

The following examples show how to use gv within formulas:

(o-formula (gv rectangle-1 :y))

(o-formula (+ (gv :self :x) 15))

(o-formula (equal (gv :self :other :other :color)

(gv :self :color)))

As a special case, the expression (gv :self) (without any slot name) may be used
within a formula to refer to the object to which the formula is attached. This is
sometimes useful for formulas which need a way to explicitly reference the object on
which they are currently installed.

[Macro]kr:gvl slot &rest more-slots
This is a useful shorthand notation for (gv :self slot more-slots). It may only
be used within formulas, since it looks for slot in the object on which the surrounding
formula is installed. For example, the expression (gvl :color) returns the current
value of the :color slot in the object which contains the formula, and is equivalent
to the expression (gv :self :color).

4.6.7 Object-Oriented Programming

This group includes functions which support objected-oriented programming within KR.

[Macro]kr:define-method slot-name object arg-list &rest body
This macro defines a method named slot-name for the object. While object can be
any object, and in particular any instance, it is customary to define methods at the
level of prototypes; this allows prototypes to provide methods for all their instances.

The method is defined as a function whose argument list is arg-list and whose body
is given by the body. The method is installed on slot slot-name, which is cre-
ated if needed. In order to facilitate debugging, the function which implements the

Chapter 4: KR: Constraint-Based Knowledge Representation 111

method is given a meaningful name formed by concatenating the slot-name, the string
“-METHOD-”, and the name of the object. Example:

(define-method :print box-object (object)

(format t "A rectangle at (~D, ~D).~%"

(gv object :x) (gv object :y)))

After this, the :print method can be inherited by any instance of box-object.
Sending the message to rectangle-2, for example, would cause the following to
happen:

(kr-send rectangle-2 :print rectangle-2)

;; prints out:

A rectangle at (34, 35).

The generated name of the :printmethod, in this example, would be print-method-
box-object.

[Macro]kr:kr-send object slot &rest arguments
This macro implements the primitive level of message sending. The slot in object
should yield a Lisp function

object; the function is then called with the arguments specified in arguments. Note
that the function may be local to the object, or it may be inherited.

If the function, i.e., the value of the expression (g-value object slot), is NIL,
nothing happens and kr-send simply returns NIL. Otherwise, the function is invoked
and the value(s) it returns are returned by kr-send.

[Macro]kr:call-prototype-method &rest arguments
This macro can be used inside an object’s method to invoke the method attached to
the object’s prototype. It can only be used inside object methods. If a prototype of
the current object (i.e, the one which supplied the method currently being executed)
also defines a method by the same name, the prototype’s method is invoked with
arguments as the list of arguments. For example,

(define-method :notify a (object level)

;; Execute object-specific code:

;; ...

;; Now invoke :notify method from prototype, if any:

(call-prototype-method object level))))

(kr-send a :notify a 10)

First of all, kr-send invokes the method defined locally by object a. Since the method
itself contains a call to call-prototype-method, the hierarchy is searched for a pro-
totype of object a which also defines the :notify method. If one exists, that method
is invoked.

A method is free to supply a prototype method with any parameters it wants; this
can be accomplished simply by using different values in the call to call-prototype-

method. In the example above, for instance, we could have written (call-prototype-

method object (+ level 1)). It is customary, however, to invoke call-prototype-
method with exactly the same parameters as the original call.

Chapter 4: KR: Constraint-Based Knowledge Representation 112

Note that the name of the original object and the message name are not specified in
call-prototype-method. KR automatically provides the right values.

[Macro]kr:apply-prototype-method &rest args
The macro apply-prototype-method is similar to call-prototype-method, but the
method defined by the prototype is invoked using apply rather than funcall. This
macro may be useful for methods that take &rest arguments.

[Macro]kr:method-trace object message-name
This macro can be used to trace method execution. Trace information is printed
every time an instance of the object is sent the message named message-name. Since
this expands into a call to the primitive macro trace, the Lisp expression (untrace)

may be used later to eliminate trace information.
Example:

(method-trace box-object :print)

4.6.8 Reader Macros

A reader macro is defined by default for the #k<...> notation, which is produced by the
functions ps and gv when the variable kr::*print-as-structure* is non-NIL. This macro
allows objects written with the #k notation to be read back in as a KR object. If necessary,
this feature may be disabled by recompiling KR after pushing the keyword :no-kr-reader

onto the *features* list.

A second reader macro is defined for convenience, as discussed previously. This reader
macro allows o-formulas to be entered using the #f() notation, which expands into a call
to o-formula. For example, one may write:

(s-value a :left #f(gvl :top))

instead of the equivalent expression

(s-value a :left (o-formula (gvl :top)))

4.7 The Type-Checking System

KR supports complete type-checking for slots. Any slot in any object can be declared of a
certain type. Slots can be declared with one of the pre-defined types Garnet provides, which
cover most of the commonly occurring situations, or new types may be created as needed
using the macro def-kr-type (see section [creating-types], page 113). Type expressions use
the same syntax as in the Common Lisp type system. Type declarations are inherited, so
it is generally not necessary to specify types for the slots of an instance (unless, of course,
the instance is to behave differently from the prototype).

Every time the value of a typed slot changes, KR checks that the new value is compatible
with the declared type of the slot. If not, a continuable error is generated. More specifically,
the type of a value is checked against the type specification for a slot under the following
circumstances:

• when the slot is first created using create-instance: if a value is specified and the
value is of the wrong type, an error is generated;

• when a slot is set to a certain value using s-value;

• when the value in a slot is computed by a formula, and the formula is evaluated;

Chapter 4: KR: Constraint-Based Knowledge Representation 113

• when the type of a slot that already contains a value is changed using s-type (see
below).

This mechanism ensures that potential problems are detected immediately; without type-
checking, it would be possible for a bad value in a slot to cause hard-to-track errors later
on. For example, if a slot in an object is supposed to contain an integer value, a formula in
another object would typically assume that the value is correct, and compute an expression
such as (+ 10 (gv obj :left)). If the value in the slot :left is incorrectly set to NIL,
however, this would not cause an error until much later, when the formula is actually
recomputed and the operator + is given a null value. When type-checking is enabled, on the
other hand, the user would see an error immediately when the value is set to NIL, because
NIL does not meet the "integer" declaration.

The KR type-checking mechanism is independent of the lisp type system. Even if a type is
defined with lisp’s deftype, another corresponding type must be defined with KR’s def-kr-
type. The two types may have the same name. The important thing is that the new type
must be registered with KR’s type system.

Type-checking may be turned off completely, for maximum performance in finished systems,
by setting the variable kr::*types-enabled* to NIL. However, the performance overhead
associated with type-checking is small, and we recommend that you always keep type-
checking enabled. This ensures early detection of problems that might otherwise be difficult
to track down.

4.7.1 Creating Types

New types may be declared as needed with the macro def-kr-type, which is exported from
the KR package. The syntax of the macro is as follows:

[Macro]kr:def-kr-type name-or-type &optional args body doc-string
This macro defines a new type for KR’s type-checking mechanism. Every type used
in slot declarations must have been defined with def-kr-type. However, Garnet
already predefines the most common types, so you do not have to worry about those.

The macro may be called in two different styles, one named, one unnamed. The first
style is used to define types that have a name; you may then use either the name
or the corresponding expression in actual type declarations. The second style simply
defines a type expression, which is not named and hence must be used verbatim in
type declarations. Here are examples of the two styles:

(def-kr-type my-type () ’(or keyword null))

(def-kr-type ’(or keyword null))

The first style uses the same syntax as Lisp’s deftype; the body should be a type
expression acceptable to deftype, and is used for typechecking when the name is
used. In the current implementation of the type system, the args parameter should
always be NIL.3 With either example above you could then specify some object’s type
to be ’(or keyword null). With the first style, however, you could also specify the

3 The presence of the args parameter is to maintain consistency of syntax with the standard lisp function
deftype. If you need to pass a parameter to your predicate, then define the predicate using satisfies.

Chapter 4: KR: Constraint-Based Knowledge Representation 114

type to be ’my-type, which may be more convenient and easier to maintain in the
long run.

The named style also allows a doc-string to be specified. This is a human-readable
documentation string that is associated with the type, and is useful for debugging
purposes. For example, the first call above could be written as:

(def-kr-type my-type () ’(or keyword null)

"Either NIL or a keyword")

4.7.2 Declaring the Type of a Slot

Types are associated with slots either statically or dynamically. The former mechanism is
by far the most common, and is done at object creation time using the :declare option in
create-instance. For example, consider the following code:

(create-instance ’R1 opal:rectangle

:declare (:type (integer :left :top)

((integer 0) :width :height)

((or keyword null) :link-name))

(:link-name :PARENT)

(:left 10) (:height (+ 15 (o-formula (gvl :width)))))

The example declares that the values contained in slots :left and :top must be integers,
the values in slots :width and :height must be positive integers, and the value in slot
:link-name must be either a keyword or NIL. Note that this declaration is legal, as the type
(or keyword null) was declared above using def-kr-type. Note also that the declarations
for slots :left, :top, :width, and :height are, in fact, not necessary, as they would
normally be inherited from the prototype.

Types can also be associated with slots dynamically, i.e., after object creation time. This
is done with the function

[Function]kr:s-type object slot type &optional (check-p t)
This function changes the type declaration for the slot in the object to the given
type. If check-p is non-NIL (the default), the function signals a continuable error if
the value currently in the slot does not satisfy the new type. Setting check-p to NIL
disables the error; note that this should only be used with caution, as it may leave
the system in an inconsistent state (i.e., the slot may in fact contain an illegal value).
The function returns the type it was given.

The type associated with a slot can be retrieved by the function

[Function]kr:g-type object slot
If a type is associated with the slot, it is returned (more precisely, if the type is named,
the name is returned; otherwise, the type expression is returned). If there is no type,
the function returns nil.

4.7.3 Type Documentation Strings

Given a type (for example, something returned by g-type), its associated documentation
string can be retrieved using:

Chapter 4: KR: Constraint-Based Knowledge Representation 115

[Function]kr:get-type-documentation type
This function returns the human-readable type documentation string, or nil if there
is none.

Given a type, it is also possible to modify its string documentation, using the function:

[Function]kr:set-type-documentation type doc-string
This function associates the doc-string with the type. When an error message which
concerns the type is printed, the documentation string is printed in addition to the
raw type.

4.7.4 Retrieving the Predicate Expression

When types are named, g-type returns just the name of the type, rather than its associated
expression. Sometimes it is useful to retrieve the predicate of the type associated with the
type name. The following function serves this purpose:

[Function]kr:get-type-definition type-name
Given a symbol which names a KR type (i.e., a named type defined with def-kr-

type), this function returns the type expression that was used to define the type. If
no such expression is found, the function returns NIL.

4.7.5 Explicit Type-Checking

In addition to KR’s built-in type checking, which happens when the value in a slot is
changed, it is also possible to check whether a value is of the right type for a slot. This can
be done with the function:

[Function]kr:check-slot-type object slot value &optional (error-p t)
The function checks whether the given value is of the right type for the slot in the
object. If not, it raises a continuable error, unless error-p is set to nil; in this case,
it returns a string which describes the error. This function is called automatically by
KR any time a slot is modified, so you normally do not have to call it explicitly.

4.7.6 Temporarily Disabling Types

It is possible to execute a piece of code with type-checking temporarily disabled, using the
macro

[Macro]kr:with-types-disabled &body body
This macro is similar to others, such as with-constants-disabled. During the exe-
cution of the body, type-checking is disabled, and no errors are given if a value does not
meet the type specification of its slot. Just as with with-constants-disabled, this
macro should only be used with caution, as it may leave the system in an inconsistent
state.

4.7.7 System-Defined Types

The following type predicate can be used to declare types:

[Type Predicate]kr:is-a-p prototype
This is a type predicate, NOT a function or macro; it can only be used within type
specifiers. This predicate declares that the value in a slot should be an instance of

Chapter 4: KR: Constraint-Based Knowledge Representation 116

the prototype, either directly or indirectly. The predicate is true of all objects for
which a call to the function kr:is-a would return true. For example, the following
definition can be used as the type of all rectangles:

(def-kr-type rect-type () ’(is-a-p opal:rectangle))

Garnet defines a number of types, which cover the types of the most commonly used slots.
This is the list of pre-defined basic types:

[Garnet Type]t
Any value satisfies this type.

[Garnet Type]kr-boolean
Same as t, but specifically intended for slots which take a nil or non-nil value, often
used as boolean variables.

[Garnet Type]null
Only the value nil satisfies this type.

[Garnet Type]string
Strings satisfy this type.

[Garnet Type]keyword
All Lisp keywords satisfy this type.

[Garnet Type]integer
All integers (fixnums and bignums) satisfy this type.

[Garnet Type]number
This type includes all numbers: integers, floating point, complex numbers, and frac-
tions.

[Garnet Type]list
Any list satisfies this type.

[Garnet Type]cons
Any cons cell (lists and dotted pairs) satisfies this type.

[Garnet Type]schema
Any non-destroyed KR object satisfies this type.

Garnet also defines many non-basic types, which are typically used by many objects through-
out the system. The following types do not have a name. They are often used for slots in
Opal fonts, line styles, etc. Because they are predefined, you don’t need to call def-kr-type
for them.

[Garnet Type]’(real 0 1)
[Garnet Type]’(integer 0 1)
[Garnet Type]’(integer 0)
[Garnet Type]’(integer 1)

Chapter 4: KR: Constraint-Based Knowledge Representation 117

[Garnet Type]’(integer 2)
[Garnet Type]’(member 0 1 2 3)
[Garnet Type]’(or null integer)
[Garnet Type]’(or null (integer 0))
[Garnet Type]’(or keyword (integer 0))
[Garnet Type]’(or number null)
[Garnet Type]’(member :even-odd :winding)
[Garnet Type]’(or (member :below :left :right) list)
[Garnet Type]’(or keyword character list)
[Garnet Type]’(or list string)
[Garnet Type]’(or list (member t))
[Garnet Type]’(or list (satisfies schema-p))
[Garnet Type]’(or string atom)
[Garnet Type]’(or string (satisfies schema-p))
[Garnet Type]’(or function symbol)
[Garnet Type]’(or list integer function symbol)
[Garnet Type]’(or null function symbol)
[Garnet Type]’(or null keyword character)
[Garnet Type]’(or null string)
[Garnet Type]’(or null (satisfies schema-p))
[Garnet Type]’(or null string keyword (satisfies schema-p))
[Garnet Type]’(or string keyword (satisfies schema-p))

The following non-basic types are named, and have associated documentation strings. Users
can reference these types anywhere in Garnet programs. To access each type’s own docu-
mentation string, use get-type-documentation.

[Garnet Type]known-as-type
A keyword (this type is used in the :known-as slot)

[Garnet Type]aggregate
An instance of opal:aggregate

[Garnet Type]aggregate-or-nil
Either an instance of opal:aggregate or nil

[Garnet Type]bitmap
An instance of opal:bitmap

[Garnet Type]bitmap-or-nil
Either an instance of opal:bitmap or nil

[Garnet Type]color
An instance of opal:color

[Garnet Type]color-or-nil
Either an instance of opal:color or nil

[Garnet Type]font
Either an instance of opal:font or opal:font-from-file

Chapter 4: KR: Constraint-Based Knowledge Representation 118

[Garnet Type]font-family
One of :fixed, :serif, or :sans-serif

[Garnet Type]font-face
One of :roman, :bold, :italic, or :bold-italic

[Garnet Type]font-size
One of :small, :medium, :large, or :very-large

[Garnet Type]filling-style
An instance of opal:filling-style

[Garnet Type]filling-style-or-nil
Either an instance of opal:filling-style or nil

[Garnet Type]line-style
An instance of opal:line-style

[Garnet Type]line-style-or-nil
Either an instance of opal:line-style or nil

[Garnet Type]inter-window-type
A single inter:interactor-window, or a list of windows, or t, or nil.

[Garnet Type]window
An instance of inter:interactor-window

[Garnet Type]window-or-nil
Either an instance of inter:interactor-window or nil

[Garnet Type]fill-style
One of :solid, :stippled, or :opaque-stippled

[Garnet Type]draw-function
One of :copy, :xor, :no-op, :or, :clear, :set, :copy-inverted, :invert, :and,
:equiv, :nand, :nor, :and-inverted, :and-reverse, :or-inverted, :or-reverse

[Garnet Type]h-align
One of :left, :center, or :right

[Garnet Type]v-align
One of :top, :center, or :bottom

[Garnet Type]direction
Either :vertical or :horizontal

[Garnet Type]direction-or-nil
Either :vertical, :horizontal, or nil

[Garnet Type]items-type
List of items: ("Label2"...)

Chapter 4: KR: Constraint-Based Knowledge Representation 119

[Garnet Type]accelerators-type
List of lists: ((#\r "alt-r" #\meta-r)...)

[Garnet Type]filename-type
A string that represents a pathname

[Garnet Type]priority-level
An instance of inter:priority-level

4.8 Functional Interface: Additional Topics

This section describes features of KR that are seldom needed by casual Garnet users. These
features are useful for large application programs, especially ones which manipulate con-
straints directly, or for application programs which use the more advanced knowledge rep-
resentation features of KR.

4.8.1 Schema Manipulation

[Macro]kr:create-schema object-name &rest slot-definitions
This macro creates and returns a new object named object-name. It is much more
primitive than create-instance, since it does not copy down formulas from a prototype
and does not call the :initialize method.

If object-name is nil, an unnamed object is created and returned. If object-name is a
symbol, a special variable by that name is created and bound to the new object. The
slot-definitions, if present, are used to create initial slots and values for the object.
Each slot definition should be a list whose first element is the name of a slot, and
whose second element is the value for that slot.

create-schema understands the :override keyword and the :name-prefix keyword;
see [create-options], page 137, for more details.

Examples:

(create-schema ’rectangle-3 (:is-a box-object) (:x 70))

(create-schema ’rectangle-3 :override (:y 12)) ; add a slot

(create-schema nil (:is-a my-graphical-object))

[Macro]kr:create-prototype object &rest slot-definitions
This macro is slightly more primitive than create-instance. Unlike create-instance, it
does not allow a prototype to be specified directly. Moreover, it does not automatically
send the :initialize message to the newly created object. Like create-instance, it
copies formulas from any prototype into the newly created object.

The following two examples are roughly equivalent:

(create-instance nil box-object (:x 12))

;;; The hard way to do the same thing

(let ((a (create-prototype nil

(:is-a box-object) (:x 12))))

(kr-send a :initialize a))

Chapter 4: KR: Constraint-Based Knowledge Representation 120

Most applications will find create-instance much more convenient. The only case when
create-prototype should be used is when it is important that the :initialize

message not be sent to an object at creation time.

Create-prototype also understands the :override keyword and the :name-prefix
keyword; see [create-options], page 137, for more details.

[Function]kr:destroy-schema object
Destroys the object. Returns t if the object was destroyed, nil if it did not exist.
This function takes care of properly removing all constraint dependencies to and from
the object. Any formula installed on any slot of the object is also destroyed.

Usually, Garnet users do not call this function directly. Instead, they use
(opal:destroy object), which performs all necessary clean-up operations and
eventually calls destroy-schema.

[Function]kr:destroy-slot object slot
Destroys the slot from the object. The value previously stored in the slot, if there
was one, is lost. All constraints to and from object are modified accordingly. The
invalidate demon is run on the slot before it is destroyed, ensuring that any changes
caused by this action become visible to formulas that depend on the slot. Using
destroy-slot on slots that are declared constant gives a continuable error. Continuing
from the error causes the slot to be destroyed anyway. This behavior can be overridden
by using the macro with-constants-disabled.

[Function]kr:name-for-schema object
Given a object, this function returns its name as a string. The special notation #k<>
is never used, i.e., the name is the actual name of the object. The return value should
never be modified by the calling program.

4.8.2 Uniform Declaration Syntax

One syntax can be used for all kinds of declarations associated with slots in an object.
Declarations are generally specified at object creation time. In some cases (notably, in
the case of types), it is also meaningful to modify declarations after an object has been
created; in such cases, a separate function (such as s-type) is provided. (For details on the
type-checking mechanism, see Chapter [type-system], page 112.)

The general syntax for declarations in create-instance is as follows:

(create-instance instance prototype

[:declare ((declaration-1 [slot1 slot2 ...])

(declaration-2 [slot1 ...])

...)]

[:declare ((declaration-3 [slot1 ...])

...)]

slot-specifiers ...)

The keyword :declare introduces a list of declarations. The keyword may appear more than
once, which allows separate groups of declarations. Each group of declarations may contain
one or more declarations; if there is only one, a level of parentheses may be omitted. Each
declaration in a list consists of a keyword, which specifies what property is being declared,

Chapter 4: KR: Constraint-Based Knowledge Representation 121

followed by any number of slot names (including zero). All slots are declared of the given
property.

Consider the following, rather complex example:

(create-instance ’rec a

:declare ((:type (vector :box)

(integer :left :top)

((or (satisfies schema-p) null) :parent))

(:type ((member :yes :no) :value))

(:update-slots :left :top :width :height :value))

:declare (:type (list :is-a-inv))

(:left (o-formula (+ (gvl :parent :left) (floor (gvl :width) 2))))

(:top 10))

The first declaration group defines types (in two separate lists) and the list of update-slots
for the object. Slot :box is declared as a Lisp vector; left and top are declared as integers;
slot :parent must be either null or a valid KR object; and slot :value must contain either
the value :yes or the value :no. The second declaration group shows the simplified form, in
which only one declaration is used and therefore the outside parentheses are dropped.

The following keywords can be used to declare different slot properties:

:constant - The slots that follow are declared constant. Note that (in this case only) the
special value T indicates that the slots in the prototype’s :maybe-constant slot should be
used. (See section [constant-slots], page 125.)

:ignored-slots - The slots that follow will not be printed by the function ps. (See section
[print-control-slots], page 139.)

:local-only-slots - The values that follow should be lists of the form (slot-name copy-
down-p). The slot-name specifies the name of a slot which should be treated as local-only,
i.e., should not be inherited by the object’s instances. If copy-down-p is NIL, the slot will
have value NIL in the instances. Otherwise, the value from the object will be copied down
when instances are created and marked as local; this prevents further inheritance, even if
the value in the prototype is changed. (See section [local-only], page 136.)

:maybe-constant - Specifies the list of slots that can be made constant in this object’s
instances simply by specifying the special value T. (See section [constant-slots], page 125.)

:output - Specifies the list of output slots for the object, i.e., the slots that are computed
by formulas and may provide useful output values for communication with other objects.

:parameters - Specifies the list of parameters for the object, i.e., the slots designed to allow
users to customize the appearance or behavior of the object. This slot is used extensively
in the Garnet Gadgets to indicate user-settable slots.

:sorted-slots - Specifies the list of slots (in the appropriate order) that ps should always
print first. (See section [print-control-slots], page 139.)

:type - Introduces type declarations for one or more slots. (See chapter [type-system],
page 112.)

:update-slots - The list of update slots for the object, i.e., the slots that should trigger
the :invalidate-demon when modified. (See section [update-slots], page 131.)

Chapter 4: KR: Constraint-Based Knowledge Representation 122

4.8.3 Declarations in Instances

Most inherited declarations follow the standard KR scheme, where a :maybe-constant

or :update-slots declaration in an instance will completely override the declaration in
the prototype. One important exception is the :type declaration, which is additive from
prototype to instance. That is, all of the types declared in a prototype will be valid in its
instances, along with any new type declarations in the instance. So you do not need to
repeat type declarations in the instances of an object.

For other kinds of declarations besides :type, a convenient syntax has been provided for
specifying declarations in instances. If you want all the declarations in a prototype to
be inherited by the instance along with several new ones, you could either retype all the
declarations in the instance, or you could use the T and :except syntax. For example, it is
possible to write

(create-instance ’rec a

:declare ((:output T :new-slot)

(:parameters T :except :left)))

to indicate that object REC’s list of output slots includes all the ones declared in object A,
plus the :new-slot. Also, the list of parameter slots is equal to the one in A, minus the
slot :left.

Declarations made in a prototype can be eliminated with an empty declaration in an in-
stance. This may be particularly convenient for declarations such as

:declare ((:TYPE) (:MAYBE-CONSTANT))

in a call to create-instance would clear the :maybe-constant declarations from the
prototype, and eliminate all type declarations.

However, note that redefining the :constant declaration may not yield the expected results.
When a slot becomes constant in a prototype, that slot will be constant for all instances.
This makes sense because any formulas in the prototype that relied on the constant slot
have been eliminated, and cannot be restored in the instance. See section [constant-slots],
page 125, for an elaborate discussion of constant slots.

4.8.4 Examining Slot Declarations

The following functions may be used to determine what slot declarations are associated
with a particular slot in an object, or to retrieve all slot declarations for an object. Note
that there is no function to alter the declaration on an object after the object has been
created, as most properties can only be set meaningfully at object creation time.

[Function]kr:get-declarations object selector
Returns a list of all the slots in the object that have associated declarations of the
type given by selector, which should be one of the keywords listed above. If selector
is :type, the return value is a list of lists, such as

((:left (or integer null)) (:top (or integer null)))

If selector is one of other keywords, the function returns a list of all the slots that
have the corresponding declaration.

Chapter 4: KR: Constraint-Based Knowledge Representation 123

[Function]kr:get-slot-declarations object slot
This function returns a list of all the declarations associated with the slot in the
object. The list consists of keywords, such as :constant and :update-slot, or (in
the case of type declarations) a list of the form (:type type-specification).

4.8.5 Relations and Slots

KR supports special slots called relations. Relations serve two purposes: allowing inheri-
tance, and automatically creating inverse connections. In addition to a handful of prede-
fined relations, application programs can create new relations as needed via the function
create-relation (see below).

Slots such as :is-a, which enable knowledge to be inherited from other parts of a network,
are called inheritance relations. Inheritance along such relations proceeds depth-first and
may include any number of steps. The search terminates if a value is found, or if no other
object can be reached.

Any relation, including user-defined ones, may also be declared to have an inverse relation
. If this is the case, KR automatically generates an inverse link any time the relation is
used to connect one object to another. Imagine, for instance, that we defined :part-of to
be a relation having :has-parts as its inverse. Adding object A to the slot :part-of of
object B would automatically add B to the slot :has-parts of object A, thereby creating
a reverse link.

KR automatically maintains all relations and inverse relations, and the application pro-
grammer does not have to worry about them. In the example above, if slot :part-of in
object B is deleted, the value B is also removed from the slot :has-parts of object A. The
same would happen is object B is deleted. This ensures that the state of the system is
consistent at any point in time, independent of the particular sequence of operations.

The following functions handle user-defined relations and slots:

[Macro]kr:create-relation name inherits-p &rest inverses
Declares the slot name to be a relation. The new relation will have inverses (a
possibly empty list of slot names) as its inverse relations. If inherits-p is non-nil,
name becomes a relation with inheritance, and values may be inherited through it.

The following form defines the non-inheritance relation :has-parts and its two in-
verses, :part-of and :subsystem-of:

(create-relation :has-parts NIL :part-of :subsystem-of)

[Macro]kr:relation-p thing
This predicate returns nil if thing is not a relation, or a non-nil value if it is the
name of a relation slot.
Examples:

(relation-p :is-a) ==> non-NIL value

(relation-p :color) ==> NIL

[Function]kr:has-slot-p object slot
A predicate that returns t if the object contains a slot named slot, nil otherwise. Note
that slot must be local to the object; inherited slots are not considered. Examples:

(has-slot-p rectangle-1 :is-a) ==> T

(has-slot-p rectangle-1 :thickness) ==> NIL ; not local

Chapter 4: KR: Constraint-Based Knowledge Representation 124

[Macro]kr:doslots slot-var object &optional inherited &rest body
Iterates the body over all the slots of the object. The slot-var is bound to each
slot in turn. The body is executed purely for side effects, and doslots returns nil.
Example:

(doslots (slot rectangle-1)

(format t "Slot ~S has value ~A~%"

slot (gv rectangle-1 slot)))

;; prints out:

Slot :Y has value 20

Slot :X has value 10

Slot :IS-A has value #k<BOX-OBJECT>

By default, doslots only iterates over the local slots of object. But if the inherited
parameter is T, then all slots that have been inherited from the object’s prototype will
be iterated over as well. Note: Only those slots that have actually been inherited will
be included in the list of inherited slots. If they are merely defined in the prototype
and have not been gv’d in the instance, then they will not be included in the iteration
list. See the description of the function ps in section [print-control-slots], page 139,
for a way to display all the slots that could possibly be inherited by the object.

4.8.6 Constraint Maintenance

These functions are concerned with the constraint maintenance part of KR.

[Function]kr:change-formula object slot form
If the slot in object contains a formula, the formula is modified to contain the form
as its new function. change-formula works properly on any formula, regardless of
whether the old function was local or inherited from another formula. If formula
inheritance is involved, this function makes sure that all the links are modified as
appropriate. If the slot does not contain a formula, nothing happens.

Note that this function cannot be used to install a fixed value on a slot where a
formula used to be; change-formula only modifies the expression within a formula.

[Function]kr:recompute-formula object slot
This function can be called to force a formula to be recalculated. It may be used in
situations where a formula depends on values which are outside of KR (such as appli-
cation data, for example). The formula stored in the slot of the object is recalculated.
Formulas which depend on the slot, if any, are then marked invalid.

[Function]kr:mark-as-changed object slot
This function may be used to trigger constraint propagation for a object whose slot
has been modified by means other than s-value. Some applications may need to use
destructive operations on the value in a slot, and then notify the system that certain
values were changed. mark-as-changed is used for this purpose.

[Function]kr:copy-formula formula
This function returns a copy of the given formula, which should be a formula object.
The copy shares the same prototype with the formula, and its initial value is the
current cached value of the formula.

Chapter 4: KR: Constraint-Based Knowledge Representation 125

[Function]kr:move-formula from-object from-slot to-object to-slot
This function takes a formula from a slot in an object and moves it to another slot
in another object. This function is needed because one cannot move a formula from
one slot to another simply by storing the formula in some temporary variable (this
creates potentially serious problems with formula dependencies).

[Function]kr::make-into-o-formula formula &optional compile-p
This function modifies formulas created using the function formula to behave as if
they were created using o-formula. This is useful for tools like Lapidary that need
to construct formulas on the fly. The converted formulas will be handled properly
by functions such as opal:write-gadget. It is also possible to specify that the
formula’s expression be compiled during the transformation. If compile-p is non-NIL,
the formula’s expression is compiled in the process.

[Function]kr:g-cached-value object slot
This function is similar to gv if the slot contains an ordinary value. If the slot contains
a formula, however, the cached value of the formula is returned even if the formula is
invalid; the formula itself is never re-evaluated. Only advanced applications may need
this function, which in some cases returns out-of-date values and therefore should be
used with care.

[Function]kr:destroy-constraint object slot
If the slot of the object contains a formula, the constraint is removed and replaced
by the current value of the formula. The formula is discarded and all dependencies
are updated. Dependent formulas are notified that the formula has been replaced by
the formula’s value, even if the actual value does not change. If the slot contains an
ordinary value, this function has no effect.

Note that the expression (s-value object slot (gv object slot)) cannot be used
to simulate destroy-constraint. This is because s-value does not remove a formula
when it sets a slot to an ordinary value, and thus the expression above would simply
set the cached value of the formula without removing the formula itself.

[Macro]kr::with-dependencies-disabled &body body
This macro can be used to prevent the evaluation of gv and gvl inside formulas from
setting up dependencies. Inside the body of the macro, gv and gvl effectively behave
(temporarily) exactly like g-value. This macro should be used with great care, as it
may cause formulas not to be re-evaluated if dependencies are not set up correctly.

4.9 Constant Formulas

It is possible to declare that certain slots are constant, and cause all formulas that only
depend on constant slots to be eliminated automatically. The main advantage of this
approach is that it reduces storage and execution time.

A slot in an object can be declared constant at object creation time. This guarantees that
the application program will never change the value of the slot after the object is created.
When a formula is evaluated for the first time, KR checks whether it depends exclusively
on constant slots. If this is the case, the formula is eliminated and its storage is reused.

Chapter 4: KR: Constraint-Based Knowledge Representation 126

The slot on which the formula was originally installed takes the value that was computed
by the formula.

A slot can become constant in one of three ways. First, the slot may be declared constant
explicitly. This is done by listing the name of the slot in the :constant slot of an object
(see below for more details), or calling declare-constant on the slot after its object
has already been created. For example, adding the following code to create-instance

for object A will cause slots :left and :top to be declared constant in object A:
(:constant ’(:left :top)). Note that it is possible for the value of the :constant slot
to be computed by a formula, which is evaluated once at object creation time.

Second, a slot may become constant because it is declared constant in the object’s prototype.
In the example above, if object B is created with A as its prototype, slots :left and :top

will be declared constant in B, even if they are not explicitly mentioned in object B ’s
:constant slot.

Third, a slot may become constant because it contains a formula which depends exclusively
on constant slots. After the formula is removed, the slot on which it was installed is declared
constant. Thus, constants propagate recursively through formulas.4 If you cannot figure
out why a formula is not being eliminated, the function garnet-debug:why-not-constant

and related functions in the Debugging Tools Reference Manual may be useful.

To facilitate the creation of the list of constant slots for an object, the syntax of the
:constant slot is extended as follows. First, a prototype may specify a list of all the
slots that its instances may choose to declare constant. This is done by specifying a list
of slot names in the prototype, using the slot :maybe-constant. When this is done in the
prototype, an instance may choose to declare all of those slots constants by simply adding
the value t to its :constant slot. Note that t does not mean that all slots are constant; it
only means that all slots in the :maybe-constant list become constant.

It is also possible for the instance to add more constant slots as necessary. Consider the
following example:

(create-instance ’proto nil (:maybe-constant ’(:left :x1 :x2 :width)))

(create-instance ’inst proto (:constant ’(:top :height t)))

No slot is declared constant in the prototype, i.e., object PROTO, because the
:maybe-constant slot does not act on the object itself. However, because object INST
includes the value t in its :constant slot, the list of constant slots in the instance is
the union of the slots that are declared constant locally and the slots named in the
:maybe-constant slot of the prototype. Therefore, the following slots are constant in
INST: :left, :top, :width, :height, :x1, and :x2.

The slot :maybe-constant is typically used in prototypes to specify the list of all the
parameters of the instances, i.e., the slots that an instance may customize to obtain gadgets
with the desired appearance. Consider, for example, the prototype of a gadget. If the
application is such that a gadget instance will never be changed after it is created, the
application programmer may simply specify (:constant ’(T)). This informs the system
that all parameters declared by the creator of the prototype are, in fact, constant, and

4 In the most elegant programming style, a minimum number of constants will be declared in an object, and
formulas will be allowed to become constant because of their dependencies on the constant slots (rather
than bluntly declaring the formulas constant). This is certaintly not a requirement of programming with
constants, however.

Chapter 4: KR: Constraint-Based Knowledge Representation 127

formulas that depend on them can be eliminated once the gadget is created. All of the
standard objects and gadgets supply a :maybe-constant slot.

The syntax of the :constant slot also allows certain slots that appeared in the
:maybe-constant list to be explicitly excluded from the constant slots in an object. This
can be done by using the marker :except in the :constant slot. The slots following this
marker are removed from the list that was specified by the prototype. If a slot was not
mentioned in the prototype’s :maybe-constant slot, the :except marker has no effect on
the slot. The following is a comprehensive example of the syntax of the :constant slot:

(create-instance ’inst-2 proto

(:constant ’(:top :height t :except :width :x2)))

As a result, these slots are declared constant in object inst-2: :left, :top, :height, and
:x1.

It is an error to set slots that have been declared constant. This can happen in three
cases: a slot may be set using s-value after having been declared constant, a call to
create-instance may redefine in the instance a slot that was declared constant in the
prototype, or destroy-slot may be used. In all cases, a continuable error is signaled. Note
that this behavior can be overridden by wrapping the code in the macro with-constants-

disabled (see below).

[Function]kr:declare-constant object slot
The function declare-constant may be used to declare slots constant in an object
after creation time. The function takes an object and a slot, which is declared con-
stant. The behavior is the same as if the slot had been declared in the :constant

slot at instance creation time, although of course the change does not affect formulas
which have already been evaluated. The :constant slot of the object is modified ac-
cordingly: the new slot is added, and it is removed from the :except portion if it was
originally declared there. As a special case, if the second argument is t all the slots
that appear in the slot :maybe-constant (typically inherited from a prototype) are
declared constant. This is similar to specifying T in the :constant slot at instance
creation time.

If declare-constant is executed on a slot while constants are disabled (i.e., inside
of a with-constants-disabled body), the call will have no effect and the slot will
not become constant.

[Macro]kr:with-constants-disabled &body body
The macro with-constants-disabledmay be used to cause all constant declarations
to be temporarily ignored. During the execution of the body, no error is given when
slots are set that are declared constant. Additionally, constant declarations have no
effect when create-instance is executed inside this macro. This macro, therefore,
is intended for experienced users only.

Several functions in the garnet-debug package (loaded with Garnet by default) can
be helpful in determining which slots in your application should be declared constant
for maximum benefit, and can help you determine why some slots are not becoming
constant. These functions are documented in the Debugging Tools Reference Manual,
which starts on page debug:

Chapter 4: KR: Constraint-Based Knowledge Representation 128

[Function]gd:record-from-now
[Function]gd:Suggest-Constants object &key max (recompute-p t) (level 1)
[Function]gd:explain-formulas aggregate &optional (limit 50)

eliminate-useless-p
[Function]gd:find-formulas aggregate &optional (only-totals-p t) (limit 50)
[Function]gd:count-formulas object
[Function]gd:why-not-constant object slot

4.9.1 Efficient Path Definitions

The function kr-path can be used to improve the efficiency of formula access to slots that
are obtained via indirect links. Inside formula expressions, macros such as gv are used to
access a slot indirectly, traversing a number of objects until the last slot is obtained. This
is sometimes called a link or a path. For example, the expression (gvl :parent :parent

:left) will access the :left slot in the parent’s parent. If the application program can
guarantee that the intermediate path will not change, the function kr-path provides better
performance. The expression above could be written as:

(gv (kr-path 0 :parent :parent) :left)

The call to kr-path computes the object’s parent’s parent only once, and stores the result
as part of the formula. Subsequent evaluations of the formula only need to access the :left
slot of the target object. The syntax is:

[Macro]kr:kr-path path-number &rest slots
The path-number is a 0-based integer which indicates the number of this path within
the formula expression. In most cases, a formula contains only one call to kr-path,
and path-number is 0. If more than one path appears in a formula expression, different
numbers should be used. For example,

(or (gv (kr-path 0 :parent :parent) :left)

(gv (kr-path 1 :alternate :parent) :left))

Note that kr-path can only be used inside a formula expression.

4.10 Tracking Formula Dependencies

The function kr::i-depend-on can be used to find out all the objects and slots upon which
a certain formula depends directly. The syntax is:

[Function]kr::i-depend-on object slot
If the slot in the object does not contain a formula, this function returns nil. Oth-
erwise, the function returns a list of dotted pairs of the form (obj . slot), which
contains all the slots upon which the formula depends. Note that this is the list of only
those slots that are used by the formula directly; if some of those slots contain other
formulas, kr::i-depend-on does not pursue those additional formulas’ dependencies.

(create-instance ’a nil (:left 7))

(create-instance ’b a (:left 14) (:top #f(+ (gvl :left) (gv a :left))))

(gv b :top) ; set up the dependencies

(kr::i-depend-on b :top)

==> ((b . :left) (a . :left))

Chapter 4: KR: Constraint-Based Knowledge Representation 129

4.11 Formula Meta-Information

It is possible to associate arbitrary information (sometimes known as meta-information)
with formulas, for example for documentation or debugging purposes. Meta-information
is internally represented by a KR object which is associated with the formula; this allows
essentially any slot to be added to formulas. Meta-information can be inherited from parent
formulas, and is copied appropriately by functions such as copy-formula.

In addition, it is possible to access built-in formula information (such as the lambda ex-
pression that was used to create the formula) using exactly the same mechanism that is
used to access meta-information. This provides a single, well-documented way to access all
information associated with a formula.

4.11.1 Creating Meta-Information

Meta-information can be specified statically at formula creation time, and also dynamically
for already existing formulas. Static meta-information is specified by additional parameters
to the functions formula and o-formula. The additional parameters are slot specifications,
in the style of create-instance (except that, of course, special create-instance keywords
such as :declare or :override are not supported). For example, the expression:

(o-formula (gv a :top) 15

(:creator ’gilt) (:date "today"))

creates a new formula with initial value 15, and two meta-slots named :creator and :date.

Note that in order to specify meta-information statically, one has to specify the default
initial value for the formula, which is also an optional parameter.

Meta-information may also be created dynamically, using the function

[Function]kr:s-formula-value formula slot value
This function sets the value of the meta-slot slot in the formula to be the specified
value. If the formula does not already have an associated meta-object, one is created.

It is not possible to use this function to alter one of the built-in formula slots, such
as the formula’s lambda expression or its list of dependencies.

4.11.2 Accessing Meta-Information

Meta-information can be retrieved using the function g-formula-value. In addition to
slots that were specified explicitly, this function also makes it possible to retrieve the values
of all the special formula slots, such as the formula’s parent or its compiled expression.

[Function]kr:g-formula-value formula slot
The function returns the value of meta-slot slot for the formula. If the latter is not
a formula, or the meta-slot is not present, the function returns NIL. If the formula
inherits from some other formula, inheritance is used to find the meta-slot.

As a convenience, slot can also be the name of an internal formula slot, i.e., one of
the structure slots used by KR when handling formulas. Such slots should be treated
strictly as read-only, and should never be modified by application programs. The
built-in slot names are:

:depends-on

Returns the object, or list of objects, on which the formula depends.

Chapter 4: KR: Constraint-Based Knowledge Representation 130

:schema Returns the object on which the formula is currently installed.

:slot Returns the slot on which the formula is currently installed.

:cached-value

Returns the current cached value of the formula, whether or not the formula is
currently valid.

:valid Returns t if the formula is currently valid, nil otherwise.

:path Returns the path accessor associated with the formula, if any.

:is-a Returns the parent formula, or nil if none exists.

:function

Returns the compiled formula expression.

:lambda Returns the original formula expression, as a lambda list.

:is-a-inv

Returns the list of formulas that inherit from the formula, or nil. If there is
only one such formula, a single value (not a list) is returned.

:number Returns the internal field which encodes the valid/invalid bit, and the cycle
counter.

:meta returns the entire meta-object associated with the formula, or nil if none exists.

When the function ps is given a formula, it can print associated meta-information. The
latter is printed as an object, immediately after the formula itself. For example:

lisp> (create-instance ’A NIL

(:left (o-formula (gvl :parent :left) 100

;; Supply meta-information here

(:name "Funny formula")

(:creator "Application-1"))))

#k<A>

lisp> (ps (get-value A :left)) ; prints the following:

F8

lambda: (gvl :parent :left)

cached value: (100 . NIL)

on schema A, slot :LEFT

---- meta information (S7):

S7

:NAME = "Funny formula"

:CREATOR = "Application-1"

4.11.3 Demons

The demon mechanism allows an application program to perform a certain action when a
value is modified. This mechanism, which is totally controlled by the application program, is
independent from value propagation. Regular Garnet users do not need to know the contents

Chapter 4: KR: Constraint-Based Knowledge Representation 131

of this section, since Garnet already defines all appropriate demons. Garnet applications
should never modify the default demons, which are defined by Opal and automatically
update the graphical representation of the application’s objects.

4.11.4 Overview of the Demon Mechanism

A demon is an application-defined procedural attachment to a KR schema. Demons are
user-defined fragments of code which are invoked when certain actions are performed on
a schema. Whenever the value of a slot in a schema is modified (either directly or as the
result of value propagation), KR checks whether a demon should be invoked. This allows
application programs to be notified every time a change occurs.

Two separate demons invoked at different times allow an application program to have fine
control over the handling of value changes. These demons are only invoked on slots that
are listed in the :update-slots list of a schema (see section [update-slots], page 131).

The first demon is the invalidate demon. This demon is invoked every time a formula is in-
validated. At the time the demon is invoked, the formula has not yet been re-evaluated, and
thus it contains the old cached value. This demon is contained in the :invalidate-demon
slot of an object. This makes it possible for different objects to provide customized demons
to handle slot invalidation.

The second demon is the pre-set demon. It is invoked immediately before the value in a
formula is actually modified, and it is passed the new value. This allows the pre-set demon
to record the difference between the old and the new value, if needed. This demon is stored
in the variable kr::*pre-set-demon*. Garnet does not use the pre-set demon.

The relationship between value propagation and demon invocation is best illustrated by
showing the complete sequence of events for the invalidate demon. This is what happens
when s-value is called to set slot s of schema S to value v:

1. if slot s already contains value v, nothing happens.

2. otherwise, if slot s should trigger demons, the demon is invoked. the demon is called
with schema s in its old state, which means that slot s still contains its old value.

3. the change is recursively propagated. all slots whose value is a formula that depends
on slot s are invalidated. the process is similar to the one described in step 2, but there
is no check corresponding to step 1 at this point. demons are invoked normally on any
slot that is modified during this phase.

4. the value of slot s is finally changed to v.

Both the invalidate demon and the pre-set demon should be functions of three arguments.
The first argument is the schema which is being modified. The second argument is the name
of the slot which is being modified. The third argument is always nil for the invalidate
demon. For the pre-set demon, the third argument is the new value which is about to be
installed in the slot. This allows the pre-set demon to examine both the old value (which
is still in the slot) and the new value.

4.11.5 The :update-slots List

The KR demons are only invoked on slots that are listed in the :update-slots list of the
schema containing them. For example, Garnet defines a particular demon that is responsible
for redrawing the objects in a window as the values of their "interesting" slots change.

Chapter 4: KR: Constraint-Based Knowledge Representation 132

These "interesting" slots are declared in each object’s :update-slots declaration during
create-instance (the declaration is usually inherited from the prototype, so that typical
Garnet users will never see this declaration). The :update-slots list contains all the slots
in an object that should cause Opal’s special demon to be invoked when they are modified.

When an update-slot is modified, Opal’s demon will "invalidate" the (̆object), causing it to
be redrawn during the next pass of the update algorithm.

The :update-slots list can only be set directly at create-instance time. That is, after
an object is created it is no longer sufficient to modify the value of the :update-slots slot
to change whether a slot is an update-slot or not. This is because update-slots are internally
represented by a bit associated with the slot, which is set during the create-instance call.
Instead of setting the :update-slots slot, you must call the function:

[Function]kr::add-update-slot object slot &optional (turn-off nil)
If turn-off is nil (the default), the slot in the object is declared as an update-slot;
if turn-off is non-NIL, the slot is no longer an update slot. In addition to setting or
resetting the internal bit, the function also modifies the :update-slots slot accord-
ingly, by adding or removing the slot from the list.

4.11.6 Examples of Demons

The following example shows how to define the invalidate demon for an object, and how
the demon is invoked.

;; Define an invalidate demon

(defun inv-demon (schema slot v)

(declare (ignore v)) ; v is not used

(format t

"schema ~s, slot ~s is being invalidated.~%"

schema slot))

(create-schema ’a (:left 10)

(:top (o-formula (1+ (gvl :left))))

(:update-slots ’(:top))

(:invalidate-demon ’inv-demon))

(gv a :top) ==> 11

(s-value a :left 1)

;; prints out:

schema #k<A>, slot :TOP is being invalidated.

(gv A :top) ==> 2

4.11.7 Enabling and Disabling Demons

[Macro]kr:With-Demons-Disabled &body body
The body of this macro is executed with demons disabled. Constraints are propagated
as usual, but demons are not invoked.

This macro is often useful when making temporary changes to schemata which have
un update demon. This happens, for instance, when a program is changing graphical
objects but does not want to display the changes to the user, or when some of the

Chapter 4: KR: Constraint-Based Knowledge Representation 133

intermediate states would be illegal and would cause an error if demons were to run.
Objects may be freely modified inside the body of this macro without interference
from the demons.

kr:With-Demon-Disabled demon &body bodymacro

This is similar to with-demons-disabled, except that it allows a specific demon to be
disabled. Normally, when with-demons-disabled is used, all demons are disabled. This
macro allows all demons except a specific one to execute normally; only the specific demon
is disabled.

The forms in the body are executed, but the given demon is not invoked. For example, the
following will selectively disable the invalidate demon provided by object FOO:

(with-demon-disabled (gv FOO :invalidate-demon)

(s-value FOO :left 100))

While FOO’s own demon is not executed, formulas in other objects which depend on FOO’s
:left slot will be invalidated, and the corresponding invalidate demons will be invoked
normally.

kr:With-Demon-Enabled demon &body bodymacro

This macro enables a particular demon if it had been disabled, either explicitly or with
with-demons-disabled.

4.11.8 Multiple Inheritance

KR supports multiple inheritance : a schema may inherit values from more than one direct
ancestor. This can be accomplished in two ways. The first way is simply to connect the
schema to more than one ancestor schema through a relation. The relation slot, in other
words, may contain a list of slots. When performing inheritance, KR searches each ancestor
slot in turn until a value is found.

The second way to achieve multiple inheritance is by using more than one relation with
inheritance. Any schema may have several slots defined as relations with inheritance; in
this case, all relations are searched in turn until a value is found. The two mechanisms may
be combined, of course.

Application programs should not rely on the order in which KR searches different relations.
The particular order is implementation-dependent.

4.11.9 Inheritance: Implementation Notes

KR uses a mechanism which enables inheritance to behave in the dynamic fashion describe
above and, at the same time, to provide extremely efficient performance. This mechanism
is named eager inheritance .

Eager inheritance works as follows. The first time the value of a slot is requested, but the
value is not present locally, the value is obtained by inheritance as described above. At
this point, however, the value is also copied into the local schema (and in any intervening
schema, if necessary) with a special marker which indicates that the value was inherited.

The second time the value is requested, inheritance is no longer required and the value is
immediately found locally. This makes successive accesses to inherited values much faster,
and causes inheritance to be essentially as efficient as local values, no matter how many
levels of inheritance were originally used.

Chapter 4: KR: Constraint-Based Knowledge Representation 134

It is vital that inherited values which were copied down into children schemata be kept up
to date. Any change in the upper portions of the schema hierarchy might change what
values can be inherited by the lower levels, and inherited values which were copied down
must be modified. KR performs this task immediately when a value which was inherited
is changed, thus justifying the term eager inheritance. This technique ensures minimal
overhead for both access and update of inherited values, and provides superior performance
for the inheritance mechanism.

4.11.10 Local Values

This group contains functions which deal with local values in a slot. Some of these functions
do not treat formulas as special objects, and thus can be used to access formulas stored in
a slot (remember that functions like gv, for example, return the value of a formula, rather
than the formula object itself).

[Macro]kr:get-value object slot
Returns the value in the slot from object. If the slot is empty or not present, it returns
nil. Inheritance may be used when looking for a value. Given a slot that contains
a formula, get-value returns the formula itself, rather than its value. Therefore, its
use is limited to applications that manipulate formulas explicitly.

[Macro]get-values object slot
This macro returns a list of all the values in the slot of the object. If the slot is empty
or not present, it returns nil. Inheritance may be used when looking for values. This
macro does not deal with constraints, i.e., it does not cause formulas to be evaluated.
Examples:

(get-values my-graphical-object :is-a-inv) ==>

(#k<BOX-OBJECT>)

(get-values box-object :is-a-inv) ==>

(#k<RECTANGLE-2> #k<RECTANGLE-1>)

Since get-values does not deal with constraints, dovalues (see below) is the pre-
ferred way to access all values in a slot. An additional advantage is that the expression

(dovalues (item object slot) ...)

is potentially more efficient than the equivalent idiom

(dolist (item (get-values object slot)) ...)

which may create garbage in some situations.

A setf form for get-values is defined for get-values and expands into a call to
set-values.

[Function]set-values object slot values
This function stores a list of values in the slot of the object. The entire list may
subsequently be retrieved with get-values, or the first value may be retrieved with
g-value.

[Macro]dovalues (variable object slot &key local result formulas in-formula)
&rest body

dovalues executes the body with the variable bound in turn to each value in the slot
of the object. The body is executed purely for side effects, and DOVALUES normally

Chapter 4: KR: Constraint-Based Knowledge Representation 135

returns nil; if the keyword argument :result is specified, however, the given value
is returned. The body of dovalues should never alter the contents of the slot, since
this may cause unpredictable results.

If :local (default nil) is non-nil, dovalues only considers local values; otherwise,
it iterates over inherited values if no local values are present. If :formulas is T

(the default), any value which is expressed by a formula is computed and returned;
otherwise, the formula itself is returned. The latter is only useful for more advanced
applications. Examples:

(set-values rectangle-1 :vertices ’(3 6 72))

(dovalues (v rectangle-1 :vertices)

(format t "rectangle-1 has vertex ~S~%" v))

;; prints out:

rectangle-1 has vertex 3

rectangle-1 has vertex 6

rectangle-1 has vertex 72

(s-value-n rectangle-1 :vertices 2

(o-formula (+ (gvl :vertices) 15)))

(dovalues (v rectangle-1 :vertices)

(format t "rectangle-1 has vertex ~S~%" v))

;; prints out:

rectangle-1 has vertex 3

rectangle-1 has vertex 6

rectangle-1 has vertex 18

;;; example of :formulas nil

(dovalues (v rectangle-1 :vertices :formulas nil)

(format t "rectangle-1 has vertex ~S~%" v))

rectangle-1 has vertex 3

rectangle-1 has vertex 6

rectangle-1 has vertex #k<F2297>

dovalues may also be used inside formulas; in this case, :in-formula should be
set to T. The surrounding formula is then re-evaluated when any of the values in
the slot is changed, or whenever a value is added or deleted. dovalues with a non-
nil :in-formula option, therefore, behaves more like gv than like g-value. When
dovalues is used in this fashion, the keyword :self may be used to stand for the
object to which the formula is attached.

The following is an example of a formula which uses dovalues and is re-evaluated
when one of the values in the :components slot changes:

(o-formula (let ((is-odd NIL))

(dovalues (value :SELF :components

:in-formula T)

(if (odd value) (setf is-odd T)))

is-odd))

Chapter 4: KR: Constraint-Based Knowledge Representation 136

[Macro]kr:get-local-value object slot
Returns the value in the slot from object. If the slot is empty or not present, it
returns nil. Inheritance is not used, and only local values are considered. Given
a slot that contains a formula, get-local-value returns the formula itself, rather
than the formula’s value. Therefore, use of this macro is limited to applications that
manipulate formulas explicitly.

[Macro]get-local-values object slot
Similar to get-values, but only local slots are examined and inheritance is never used.
Examples:

(get-values rectangle-1 :thickness) ==> (1)

(get-local-values rectangle-1 :thickness) ==> NIL ; not local

This macro does not deal with constraints, i.e., it never causes formulas to be evalu-
ated.

[Macro]kr:g-local-value object slot &rest other-slots
This macro is very similar to g-value, except that it only considers local values.
Inheritance is never used when looking for a value.

[Macro]kr:gv-local object slot &rest more-slots
This macro is similar to gv, except that it only considers local values, and it never re-
turns an inherited value. gv-local should be used in situations where it is important
to only retrieve values that are local to the object.

[Function]append-value object slot value
This function adds the value to the end of the list of values in the slot of the object.

[Function]delete-value-n object slot position
This function deletes the position-th value from the slot of the object. position is a
0-based non-negative integer. This function does not deal with constraints properly,
and should not be used when the slot may contain formulas.

4.11.11 Local-only Slots

There are cases when certain slots in an object should not be inherited by any instance of
the object. An example of this situation might be a slot which is used as a unique identifier;
clearly, the slot should never be inherited, or else errors will occur. Such slots are called
local-only slots.

This effect can be achieved in KR by listing the names of all such slots in the prototype
object. The names are listed in the :local-only-slots declaration (the general declaration
syntax is discussed in section [uniform-syntax], page 120). This declaration should contain
a list of two-element sub-lists. The first element in each sub-list specifies the name of a
local-only slot. The second element can be t or nil.

the value nil specifies that the local-only slot is always initialized to nil in any instance
which does not define it explicitly. The value t, on the other hand, specifies that the current
value of the local-only slot in the prototype will be used to initialize the slot in the instance.
The value, however, is physically copied down into the instance, and thus inheritance is no
longer used for that instance. Modifying the value in the prototype, in particular, will have
no effect on the instance. This second option is used more rarely than nil.

Chapter 4: KR: Constraint-Based Knowledge Representation 137

Note that none of the above applies to slots whose value (in the prototype) is a formula.
Slots which contain formulas are always inherited, independent of whether the slot is listed
in :local-only-slots.

4.11.12 Schema Creation Options

Two special keywords can be used in the macros that create schemata. These options are
recognized by create-instance, create-schema, and create-prototype. They :

[Keyword]:override object-name
If the object-name in one of the object-creating macros names an existing object, that
object is normally deleted, together with its instances, and replaced by a brand new
object. The default behavior may be modified by using the keyword :override as part
of the slot-definitions. This keyword causes the existing object to be modified in place
and contain the union of its previous slots and those specified by create-schema.
Previous slots that are not mentioned in the call retain whatever values they had
before the operation. For example,

(create-schema ’rectangle-1 :override (:color :magenta))

adds a slot to the object RECTANGLE-1 if it already exists. Without the :override
keyword, this would have destroyed the object and created a new one with a single
slot.

[Keyword]:name-prefix string
The keyword :name-prefix may be used to specify a name prefix for unnamed ob-
jects. Unnamed objects are normally named after the object they are an instance
of; this option allows a specific string to be used as the name prefix. The option, if
specified, should be immediately followed by a string, which is used as the prefix.

Example:

(create-schema nil :name-prefix "ORANGE"

(:left 34)) ==> #k<ORANGE-2261>

4.11.13 Print Control

This section describes the slots that control what portions of an object are printed, and how
they are printed. The need for fine control over printing arises, for example, when certain
slots contain very large data structures that take a long time to print.

The print control slots are taken from the object which is specified as the print-control in
the complicated form of ps, described below. In many cases, the slots are actually inherited
by the object being printed.

[Function]kr:ps object &key types-p all-p (control t) (inherit nil) (indent 0)
(stream *standard-output*)

This form of ps prints the contents of the object, and allows fine control over what to
print and how. A possible behavior is to print out all slots and all values in object;
this happens when the control object is nil. It is possible, however, to cause ps to
ignore certain slots and to specify that others should be printed in a given order. It is
also possible to limit the number of elements printed for list values, thus preventing
annoyingly long lists of values.

Chapter 4: KR: Constraint-Based Knowledge Representation 138

The function ps can print out type information, if desired. This can be specified with
a non-null value for the new keyword parameter types-p (the default value is NIL).
Type declarations are printed in square brackets.

Supplying a non-NIL value for the all-p parameter will cause ps to print out all slots
of the object, including slots that do not currently have any value. The default for
all-p is nil.

The value of control should be one of four things:

nil which means that the object is printed in its entirety.

t the default, which means that the object itself is used as the control
object. In most cases, the control slots are inherited from an ancestor
of the object. All Opal prototypes, for example, define appropriate slots
which reduce the amount of information that is shown by ps.

object where object is used directly as the control object.

:default indicates that the KR-supplied default print control object should be
used. The name of the default print control object is print-schema-

control , an object in the KR package. This default object limits the
length of lists that are printed by ps to a maximum of ten for ordinary
slots, and five for the :is-a-inv slot.

If the inherit option is nil (the default), only local slots are printed. Otherwise, all
inheritable values from all prototypes of object are inherited and printed; inherited
values are clearly indicated in the printout. As discussed in Chapter [object-oriented-
prog], page 102, formulas are not copied down from prototypes until they are requested
by gv or g-value. Formulas that have not yet been copied down will not be shown
by ps, unless the inherit parameter is non-nil.

The :indent option is only used by debugging code which needs to specify an inden-
tation level. This option is not needed by regular application programs.

ps prints slots whose value is a formula in a special way. Besides the name of the
formula, the current cached value of the formula is printed in parentheses, followed
by t if the cache is valid or nil otherwise. Example:

(create-schema ’a

(:left 10) (:right (o-formula (+ (gvl :left) 25))))

(gv a :right) ==> 35

(ps a)

;; prints out:

#k<A>

:DEPENDED-SLOTS = (:LEFT #k<F2285>)

:RIGHT = #k<F2285>(35 . T)

:LEFT = 10

(s-value a :left 50)

(ps a)

;; prints out:

Chapter 4: KR: Constraint-Based Knowledge Representation 139

#k<A>

:DEPENDED-SLOTS = (:LEFT #k<F2285>)

:RIGHT = #k<F2285>(35 . NIL)

:LEFT = 50

The cached value is not correct, of course, but it will be recomputed as soon as its
value is requested because formula F2285 is marked invalid.

The function ps prints the expression of a formula, when given the formula as ar-
gument. A formula is printed with three pieces of information: the expression, the
cached value (which is printed as before), and the object and slot on which the formula
is installed.

If stream is specified, it is used for printing to a stream other than standard output.

4.11.14 Print Control Slots

If a control object is specified in a call to ps, it should contain (or inherit) six special slots.
These slots determine what ps does. The meaning of the print control slots is as follows:

• :sorted-slots contains a list of names of slots that should be printed before all other
slots, in the desired order.

• :ignored-slots contains a list of names of slots that should not be printed. A sum-
mary printed at the end of the object indicates which slots were ignored.

• :global-limit-values contains an integer, the maximum number of elements that
should be printed for each list that is a value for a slot. If a list contains more than
that many elements, ellipsis are printed after the given number to indicate that not all
elements of the list were actually displayed.

• :limit-values allows the same control on a slot-by-slot basis. It should contain lists
of the form (slot number). If a slot name appears in one of these lists, the number
specified there is used instead of the one specified in :global-limit-values.

• :print-as-structure can be t, in which case the #k<> notation is used when printing
object names, or nil, in which case only pure object names are printed.

• :print-slots is a list of the slots that are printed as part of the #k<> notation. It
is possible to cause ps to print a few slots from each object, inside the #k<> printed
representation; this may make it easier to identify different schemata. :print-slots

should contain a list of the names of the slots which should be printed this way. Note
that this option has no effect if schema names are not being printed with the #k<>
notation.

The following is a rather comprehensive example of fine control over what ps prints.

; Use top level of the hierarchy to control printing.

(create-schema ’top-object

(:ignored-slots :internal :width))

(create-schema ’colored-thing (:color :blue) (:x 10)

(:is-a top-object) (:width 12.5) (:y 20)

(:internal "some information"))

Chapter 4: KR: Constraint-Based Knowledge Representation 140

(dotimes (i 20) (create-instance NIL COLORED-THING))

Using ps with a null control prints out the whole contents of the schema:

(ps colored-thing :control nil)

;; prints out:

#k<COLORED-THING>

:IS-A-INV = #k<COLORED-THING-2265>

#k<COLORED-THING-2266> #k<COLORED-THING-2267>

#k<COLORED-THING-2268> #k<COLORED-THING-2269>

#k<COLORED-THING-2270> #k<COLORED-THING-2271>

#k<COLORED-THING-2272> #k<COLORED-THING-2273>

#k<COLORED-THING-2274> #k<COLORED-THING-2275>

#k<COLORED-THING-2276> #k<COLORED-THING-2277>

#k<COLORED-THING-2278> #k<COLORED-THING-2279>

#k<COLORED-THING-2280> #k<COLORED-THING-2281>

#k<COLORED-THING-2282> #k<COLORED-THING-2283>

#k<COLORED-THING-2284>

:INTERNAL = "Some information"

:Y = 20

:X = 10

:COLOR = :BLUE

:WIDTH = 12.5

:IS-A = #k<TOP-OBJECT>

Using the system-supplied default control object reduces the clutter in the :is-a-inv slot,
and also eliminates printing of schemata with the special #k<> convention:

(ps colored-thing :control :default)

COLORED-THING

:WIDTH = 12.5

:IS-A-INV = COLORED-THING-2265 COLORED-THING-2266

COLORED-THING-2267 COLORED-THING-2268

COLORED-THING-2269 ...

:INTERNAL = "Some information"

:Y = 20

:X = 10

:COLOR = :BLUE

:IS-A = TOP-OBJECT

We can make things even better by using the object itself to inherit the control slots. We
add sorting information and a global limit to the number of elements to be printed for each
list. We do this at the highest level in the hierarchy, so that every object can inherit the
information:

(s-value top-object :global-limit-values 3)

(s-value top-object :sorted-slots

’(:is-a :color :x :y))

Chapter 4: KR: Constraint-Based Knowledge Representation 141

(ps colored-thing)

;; prints out:

COLORED-THING

:IS-A = TOP-OBJECT

:COLOR = :BLUE

:X = 10

:Y = 20

:IS-A-INV = COLORED-THING-2265 COLORED-THING-2266

COLORED-THING-2267 ...

List of ignored slots: WIDTH INTERNAL

4.11.15 Slot Printing Functions

It is possible to use the basic mechanism used by the function ps to print or format
objects in a customized way. This facility is used by applications such as the
garnet-debug:inspector, which need full control over how objects are displayed. This
mechanism is supported by the following function.

[Function]kr::call-on-ps-slots object function &key (control t) inherit
(indent nil) types-p all-p

The function is called in turn on each slot that would be printed by ps. The keyword
arguments have exactly the same meaning as in ps. The function should take nine
arguments, as follows:

(lambda (object slot formula is-inherited valid real-value

types-p bits indent limits))

When the function is called, the first argument is the object being displayed; the
second argument is bound to each slot in the object, in turn. The formula is set to
NIL (for slots that contain non-formula values), or to the actual formula in the slot.
The parameter is-inherited is T if the value in the slot was inherited, NIL if the value
was defined locally. The parameter valid is NIL if the slot contains a formula whose
cached value is invalid; it contains T if the slot contains a valid formula, or any non-
formula value. The parameter real-value is whatever g-value would actually return.
The parameter types-p is set to T if the function should process type information
for the slot; its value simply reflects the value passed to kr::call-on-ps-slot. The
parameter bits contains the internal bitwise representation of the slot’s features and
type, as an integer. The parameter indent is the level of indentation. The parameter
limits is a number (the maximum number of values from the slot that are to be
processed by the function), or NIL if all values in the slot should be processed.

A similar function is used when only one slot in an object is to be processed:

[Function]kr::Call-On-One-Slot object slot function
This function returns T if the slot exists and the function was called, and NIL other-
wise.

4.11.16 Control Variables

The following variable can be set globally to achieve the same effect as the slot :print-as-
structure described above:

Chapter 4: KR: Constraint-Based Knowledge Representation 142

[Special Variable]kr::*print-as-structure*
This variable may be used to determine whether schema names are printed with the
notation #k<name> (the default) or simply as name. The former notation is more
perspicuous, since it makes it immediately clear which objects are KR schemata.
The second notation is more compact, and is obtained by setting kr::*print-as-

structure* to nil.

In addition to kr::*print-as-structure*, other special variables can be used to
control the behavior of the system. The following variables are used to control what
debugging information is printed. The default settings are such that very little de-
bugging information is printed.

[Special Variable]kr::*print-new-instances*
This variable controls whether a notification is printed when create-schema or create-
instance are compiled from a file. The message is printed when kr::*PRINT-NEW-
INSTANCES* is t (the default), and may be useful to determine how far into a file
compilation has progressed. Setting this variable to nil turns off the notification.

[Special Variable]kr::*warning-on-null-link*
This variable controls whether a notification is printed when a null link is encountered
during the evaluation of a formula. When the variable is nil (the default), the stale
value of the formula is simply reused without any warning. Setting the variable to t

causes a notification describing the situation to be printed; the formula then returns
the stale value, as usual.

[Special Variable]kr::*warning-on-circularity*
This variable controls whether a notification is printed when a circularity is detected
during formula evaluation. When the variable is nil (the default), no warnings are
generated. Setting the variable to t causes a notification describing the situation to
be printed.

[Special Variable]kr::*warning-on-create-schema*
This variable controls whether a notification is printed when create-instance creates
an object that has the same name as an old object, and the old object is destroyed.
If t (the default), then a warning will be printed when an object is redefined.

[Special Variable]kr::*warning-on-evaluation*
This variable controls whether a warning is printed whenever a formula is evaluated.
If its value is non-nil, then a warning will describe the object, slot, and name of any
formula that is evaluated. This can be useful for debugging.

[Special Variable]kr::*store-lambdas*
The variable kr::*store-lambdas* (default [No value for “t”]) may be set to nil

to prevent the expression of a formula from being stored in the formula itself. This
produces smaller run-time programs, but because the expression is lost it may be
impossible to dump a set of objects to a file using opal:write-gadget.

Chapter 4: KR: Constraint-Based Knowledge Representation 143

4.12 An Example

This section develops a more comprehensive example than the ones so far, and highlights
the operations with which most users of the system should be familiar. Note that this
example does not use graphical operations at all; refer to the Opal manual for examples of
graphical applications.

We will first construct a simple example of constraints and show how constraints work. The
example uses constraints to compute the equivalence between a temperature expressed in
degrees Celsius and in degrees Fahrenheit. This first part also illustrates how KR deals
with circular chains of constraints.

The second part of the example shows simple object-oriented programming techniques,
and illustrates many of the dynamic capabilities of KR. Note that this example is purely
indicative of a certain way to program in KR, and different programming styles would be
possible even for such a simple task.

4.12.1 The Degrees Schema

First of all, we will create the degrees schema as a demonstration of constraints in KR.
This is a schema with two slots, namely, :celsius and :fahrenheit. The schema can be
created with the following call to create-schema:

(create-schema ’DEGREES

(:fahrenheit (o-formula (+ (* (gvl :celsius) 9/5) 32)

32))

(:celsius (o-formula (* (- (gvl :fahrenheit) 32) 5/9)

0)))

;; and now:

(gv DEGREES :celsius) ==> 0

(gv DEGREES :fahrenheit) ==> 32

Each of the two slots contains a formula. The formula in the :celsius slot, for instance,
indicates that the value is computed from the value in the :fahrenheit slot, using the
appropriate expression. The initial value, moreover, is 32. The formula in the :fahrenheit
slot, similarly, is constrained to be a function of the value in the :celsius slot and is
initialized with the value 0.

It is clear that this example involves a circular chain of constraints. The value of :celsius
depends on the value of :fahrenheit, which itself depends on the value of :celsius. This
circularity, however, is not a problem for KR. The system is able to detect such circularities
and reacts appropriately by stopping value propagation when necessary.

Consider, for instance, setting the value of the :celsius slot:

(s-value DEGREES :celsius 20)

(gv DEGREES :celsius) ==> 20

(gv DEGREES :fahrenheit) ==> 68

Chapter 4: KR: Constraint-Based Knowledge Representation 144

As the example shows, KR propagates the change to the :fahrenheit slot, which is given
the correct value. Similarly, if we modify the value in the :fahrenheit slot, we have correct
propagation in the opposite direction:

(s-value DEGREES :fahrenheit 212)

(gv DEGREES :celsius) ==> 100

(gv DEGREES :fahrenheit) ==> 212

4.12.2 The Thermometer Example

Let us now build an example of a thermometer from which one can read the temperature in
both degrees Celsius and Fahrenheit, and show a more extensive application of constraints.
This example also shows the role of inheritance in object-oriented programming, and a
simple method combination.

We begin with temperature-device, a simple prototype which contains a formula to trans-
late degrees Celsius into Fahrenheit (the formula is the same we used in the previous ex-
ample) and a :print method which prints out both values:

(create-schema ’TEMPERATURE-DEVICE

(:fahrenheit

(o-formula (+ (* (gvl :celsius) 9/5) 32) 32)))

(define-method :print TEMPERATURE-DEVICE (schema)

(format t "Current temperature: ~,1F C (~,1F F)~%"

(gv schema :celsius)

(gv schema :fahrenheit)))

We now create two objects to hold the current temperature outdoors and indoors, and we
create the schema thermometer,

which will be the basic building block for other thermometers:

(create-schema ’OUTSIDE

(:celsius 10))

(create-schema ’INSIDE

(:celsius 21))

(create-instance ’THERMOMETER TEMPERATURE-DEVICE

(:celsius (o-formula (gvl :location :celsius))))

Note that thermometer can act as a prototype, since it provides a formula which constrains
the value of the :celsius slot to follow the value of the :celsius slot of a particular
location. Thermometer schemata created as instances of thermometer will then simply
track the value of temperature at the location with which they are associated. Note that
instances of thermometer inherit the :print method from temperature-device.

(create-instance ’TH1 THERMOMETER

(:location outside))

(create-instance ’TH2 THERMOMETER

(:location inside))

Chapter 4: KR: Constraint-Based Knowledge Representation 145

(kr-send TH2 :print TH2)

;; prints out:

Current temperature: 21.0 C (69.8 F)

(kr-send TH1 :print TH1)

;; prints out:

Current temperature: 10.0 C (50.0 F)

Since the temperature in the outside schema is 10, and thermometer th1 is associated with
outside, it prints out the current temperature outside. Changing the slot :location of th1
to inside would automatically change the temperature reading, because of the dependency
built into the formula in that slot.

We now want to specialize the thermometer in order to provide a new kind of thermometer
that keeps track of minimum and maximum temperature, as well as the current temper-
ature. We do this by creating an instance, min-max-thermometer, which inherits all the
features of thermometer and defines two new formulas for computing minimum and maxi-
mum temperatures. Note the initial values in the formulas. Also, we create an instance of
min-max-thermometer named min-max, and send it the :print message.

(create-instance ’MIN-MAX-THERMOMETER THERMOMETER

(:min (o-formula (min (gvl :min)

(gvl :location :celsius))

100))

(:max (o-formula (max (gvl :max)

(gvl :location :celsius))

-100)))

(create-instance ’MIN-MAX MIN-MAX-THERMOMETER

(:location outside))

(kr-send MIN-MAX :print MIN-MAX)

;; prints out:

Current temperature: 10.0 C (50.0 F)

The :print method inherited from temperature-device is not sufficient for our present
purpose, since it does not show minimum and maximum temperatures. We thus specialize
the :print method, but we still use the default :print method to print out the current
values. Let us specialize the method, print out the current status, change the temperature
outside a few times, and then print out the status again:

(define-method :print MIN-MAX-THERMOMETER (schema)

;; print out temperature, as before

(call-prototype-method schema)

;; print out minimum and maximum readings.

(format t "Minimum and maximum: ~,1F ~,1F~%"

(gv schema :min)

(gv schema :max)))

(kr-send MIN-MAX :print MIN-MAX)

Chapter 4: KR: Constraint-Based Knowledge Representation 146

;; prints out:

Current temperature: 10.0 C (50.0 F)

Minimum and maximum: 10.0 10.0

(s-value OUTSIDE :celsius 14)

(kr-send MIN-MAX :print MIN-MAX)

;; prints out:

Current temperature: 14.0 C (57.2 F)

Minimum and maximum: 10.0 14.0

(s-value OUTSIDE :celsius 12)

(kr-send MIN-MAX :print MIN-MAX)

;; prints out:

Current temperature: 12.0 C (53.6 F)

Minimum and maximum: 10.0 14.0

Note that the :fahrenheit slot in any of these schemata can be accessed normally, and the
constraints keep it up to date at all times:

(gv MIN-MAX :fahrenheit) ==> 268/5 (53.6)

Finally, we can add a method to reset the minimum and maximum temperature, in order
to start a new reading. This is shown in the next fragment of code:

(define-method :reset MIN-MAX-THERMOMETER (schema)

(s-value schema :min (gv schema :celsius))

(s-value schema :max (gv schema :celsius)))

(kr-send MIN-MAX :reset MIN-MAX) ; reset min, max

(kr-send MIN-MAX :print MIN-MAX)

;; prints out:

Current temperature: 12.0 C (53.6 F)

Minimum and maximum: 12.0 12.0

(s-value OUTSIDE :celsius 14)

(kr-send MIN-MAX :print MIN-MAX)

;; prints out:

Current temperature: 14.0 C (57.2 F)

Minimum and maximum: 12.0 14.0

Other choices of programming style would have been possible, ranging from entirely object-
oriented (i.e., without using constraints at all) to entirely demon-based.

4.13 Summary

KR provides excellent performance and three powerful paradigms: object-oriented program-
ming, knowledge representation, and constraint maintenance. The system is designed for
high performance and has a very simple program interface, which makes it easy to learn
and easy to use.

147

The object-oriented programming component of KR is based on the prototype-instance
paradigm, which is more flexible than the class-instance paradigm. Prototypes are simply
objects from which other objects (called instances) may inherit values or methods. This
relationship is completely dynamic, and an object can be made an instance of a different
prototype as needed. Object methods are implemented as procedural attachments which
are stored in an object’s slots. Methods are inherited through the usual mechanism.

The knowledge representation component of KR offers multiple inheritance and user-defined
relations. This component provides completely dynamic specification of a network’s charac-
teristics: inheritance, for example, is determined through user-specified relations, which the
user may modify at run-time as needed. The performance of this component is very good
and compares favorably with that of basic Lisp data structures. Inheritance, in particular,
is efficient enough to provide the basic building block across a wide variety of application
programs.

The constraint maintenance component of KR provides integrated, efficient constraint main-
tenance and is implemented through formulas, i.e, expressions which compute the value of
a slot based on the values in other slots. Constraint maintenance uses lazy evaluation and
value caching to yield excellent performance in a completely transparent way. Constraint
maintenance is totally integrated with the rest of the system and can be used even without
any knowledge of its internal details. The same access functions, in particular, work on
both regular values and on values which are constrained by formulas.

In spite of its power, KR is small and simple. This makes it easy to maintain and extend as
needed, and also makes it ideally suited for experimentation on efficient knowledge repre-
sentation. The system is entirely written in portable Common Lisp and can run efficiently
on any machine which supports the language. These features make KR an attractive foun-
dation for a number of applications which use a combination of frame-based knowledge
representation, object-oriented programming, and constraint maintenance.

148

5 Opal: The Garnet Graphical Object System

by Andrew Mickish, Brad A. Myers, David Kosbie, Richard McDaniel, Edward Pervin,
Matthew Goldberg

14 May 2020

5.1 Abstract

This chapter is a refence for the graphical object system used by the Garnet project, which
is called Opal. “Opal” stands for the Object Programming Aggregate Layer. Opal makes it
very simple to create and manipulate graphical objects. In particular, Opal automatically
handles object redrawing when properties of objects are changed.

5.2 Introduction

This document is the reference chapter for the Opal graphical object system. Opal, which
stands for the Object Programming Aggregate Layer, is being developed as part of the
Garnet project (garnet). The goal of Opal is to make it easy to create and edit graphical
objects. To this end, Opal provides default values for all of the properties of objects, so
simple objects can be drawn by setting only a few parameters. If an object is changed, Opal
automatically handles refreshing the screen and redrawing that object and any other objects
that may overlap it. The algorithm used to handle the automatic update is documented in
Vander Zanden 89. Objects in Opal can be connected together using constraints, which are
relations among objects that are declared once and automatically maintained by the system.
An example of a constraint is that a line must stay attached to a rectangle. Constraints are
discussed in Section 3.1 [Garnet Tutorial], page 41, and 〈undefined〉 [KR chapter], page 〈un-
defined〉.
Opal is built on top of the gem module, which is the Graphics and Events Module that
refers to machine-specific functions. gem provides an interface to both X Windows and the
Macintosh QuickDraw system, so applications implemented with Opal objects and functions
will run on either platform without modification.

Opal is known to work in virtually any Common Lisp environment on many different ma-
chines (See Section 8.31.4 [Overview], page 473). Opal will also work with any window
manager on top of X11, such as uwm, twm, awm, etc. Additionally, Opal provides support for
color and gray-scale displays.

Within the Garnet toolkit, Opal forms an intermediary layer. It uses facilities provided
by the KR object and constraint system Giuse 89, and provides graphical objects that
comprise the higher level gadgets. To use Opal, the programmer should be familiar with
the ideas of objects and constraints presented in the Section 2.1 [On-line Tour Through
Garnet], page 23, and Section 3.1 [Garnet Tutorial], page 41. Opal does not handle any
input from the keyboard or mouse. That is handled by the separate Interactors module.
On top of Opal is also the Aggregadgets module which makes it significantly easier to create
groups of objects. A collection of pre-defined interaction techniques, such as menus, scroll
bars, buttons, and sliders, is provided in the Garnet Gadget set which, of course, use Opal,
Interactors, and Aggregadgets.

Chapter 5: Opal: The Garnet Graphical Object System 149

The highest level of Garnet, built using the toolkit, contains the graphical construction tools
that allow significant parts of application graphics to be created without programming. The
most sophisticated tool is Lapidary. When Lapidary is used, the programmer should rarely
need to write code that calls Opal or any other part of the toolkit.

5.3 Overview of Opal

5.3.1 Basic Concepts

The important concepts in Opal are windows, objects, and aggregates.

X11 and Macintosh QuickDraw both allow you to create windows on the screen. In X
they are called "drawables", and in QuickDraw they are called "views". An Opal window
is a schema that contains pointers to these machine-specific structures. Like in X11 and
QuickDraw, Opal windows can be nested inside other windows (to form “sub-windows”).
Windows clip all graphics so they do not extend outside the window’s borders. Also, each
window forms a new coordinate system with (0, 0) in the upper left corner. The coordinate
system is one-to-one with the pixels on the screen (each pixel is one unit of the coordinate
system). Garnet windows are discussed fully in section [windows], page 206.

The basics of object-oriented programming are beyond the scope of this chapter. The
objects in Opal use the KR object system Giuse 89, and therefore operate as a prototype-
instance model. This means that each object can serve as a prototype (like a class) for
any further instances; there is (almost) no distinction between classes and instances. Each
graphic primitive in Opal is implemented as an object. When the programmer wants to
cause something to be displayed in Opal, it is necessary to create instances of these graphical
objects. Each instance remembers its properties so it can be redrawn automatically if the
window needs to be refreshed or if objects change.

An aggregate is a special kind of Opal object that holds a collection of other objects.
Aggregates can hold any kind of graphic object including other aggregates, but an object
can only be in one aggregate at a time. Therefore, aggregates form a pure hierarchy. The
objects that are in an aggregate are called components of that aggregate, and the aggregate
is called the parent of each of the components. Each window has associated with it a top-
level aggregate. All objects that are displayed in the window must be reachable by going
through the components of this aggregate (recursively for any number of levels, in case any
of the components are aggregates themselves).

The prototype inheritance hierarchy for all graphical objects in Opal is shown in Figure
[ObjectSchemata], page 150.

Chapter 5: Opal: The Garnet Graphical Object System 150

OPAL:VIEW-OBJECT
:left 0
:top 0
:width 0
:height 0
:visible #k<F16>

OPAL::WINDOW
:left 0
:top 0
:width 355
:height 277

INTER:INTERACTOR-WINDOW

OPAL:GRAPHICAL-OBJECT
:width 20
:height 20
:draw-function :copy
:line-style opal:default-line-style
:filling-style NIL
:select-outline-only NIL
:hit-threshold 0

OPAL:TEXT
:width #k<F51>
:height #k<F52>
:string ""
:font opal:default-font
:fill-background-p NIL
:justification :left

OPAL:BITMAP
:width #k<F32>
:height #k<F31>
:filling-style opal:default-filling-style

OPAL:PIXMAP

OPAL:HOURGLASS-CURSOR

OPAL:ARROW-CURSOR

OPAL:MULTIPOINT
:point-list (18 10 ...)
:left #k<F30>
:top #k<F29>
:width #k<F28>
:height #k<F27>

OPAL:POLYLINE

OPAL:ARROWHEAD
:from-x 0
:from-y 0
:head-x 0
:head-y 0
:length 10
:diameter 10
:open-p T

OPAL:ARC
:angle1 0
:angle2 (/ PI 4)

OPAL:CIRCLE

OPAL:OVAL

OPAL:RECTANGLE
OPAL:ROUNDTANGLE
:radius :small

OPAL:LINE
:x1 0 :x2 0
:y1 0 :y2 0
:left #k<F25>
:top #k<F24>
:width #k<F23>
:height #k<F24>
:line-p T

OPAL:AGGREGATE
:left #k<F21>
:top #k<F20>
:width #k<F19>
:height #k<F18>

OPAL:MULTIFONT-TEXT
:initial-text ""
:word-wrap-p NIL
:text-width 300
:fill-background-p T
:draw-function :copy
:show-marks NIL

OPAL:AGGRELIST

OPAL:AGGREGADGET OPAL:AGGREGRAPH

Figure 5.1: The objects in Opal and their slots. Each object also inherits slots from its
prototype (the object to its left). The default values for the slots are shown. Those with
values like #k<F21> have formulas in them (See Section 3.1 [Garnet Tutorial], page 41, and
〈undefined〉 [KR chapter], page 〈undefined〉).

5.3.2 The Opal Package

Once Garnet is loaded, all the graphical objects reside in the opal package. We recom-
mend that programmers explicitly reference names from the opal package, for example:
opal:rectangle, but you can also get complete access to all exported symbols by doing a
(use-package :opal). All of the symbols referenced in this document are exported from
opal, unless otherwise stated.

5.3.3 Simple Displays

An important goal of Opal is to make it significantly easier to create pictures, hiding most of
the complexity of the X11 and QuickDraw graphics models. Therefore, there are appropriate
defaults for all properties of objects (such as the color, line-thickness, etc.). These only need
to be set if the user desires to. All of the complexity of the X11 and QuickDraw graphics
packages is available to the Opal user, but it is hidden so that you do not need to deal with
it unless it is necessary to your task.

Chapter 5: Opal: The Garnet Graphical Object System 151

To get the string "Hello world" displayed on the screen (and refreshed automatically if the
window is covered and uncovered), you only need the following simple program:

(use-package :kr)

;; Create a small window at the upper left corner of the screen

(create-instance ’win inter:interactor-window

(:left 10)(:top 10)

(:width 200)(:height 50))

;; create an aggregate for the window

(s-value win :aggregate (create-instance ’agg opal:aggregate))

;; create the string

(create-instance ’hello opal:text

(:left 10)(:top 20)

(:string "Hello World"))

(opal:add-component agg hello) ; add the string to the aggregate

(opal:update win) ; cause the window and string to be displayed

Opal also strives to make it easy to change the picture. To change the x position of the
rectangle only requires setting the value of the :left slot; Opal handles the refresh:

(s-value hello :left 50) ; change the position

(opal:update win) ; cause the change to be visible

Note that the programmer never calls “draw” or “erase” methods on objects. This is a
significant difference from other graphical object systems. Opal causes the objects to be
drawn and erased at the appropriate times automatically.

〈undefined〉 [Specific Graphical Objects], page 〈undefined〉, and 〈undefined〉 [fig:ex3],
page 〈undefined〉, present all the kinds of objects available in Opal.

5.3.4 Object Visibility

Objects are visible if and only if their :visible slot is non-nil and they are a component
of a visible aggregate that (recursively) is attached to a window. (Aggregates are discussed
in the chapter [aggregates], page 199.) Therefore, to make a single object invisible, its
:visible slot can be set to nil. To make it visible again, it is only necessary to set the
:visible slot to t. Alternatively, the object can be removed from its aggregate to make it
invisible.

Of course an object with a non-nil :visible slot in a visible aggregate hierarchy might be
completely obscured behind another object so it cannot be seen.

Every object has a default formula in its :visible slot that depends on the visibility of
the its parent (the parent is the aggregate that it is in). Therefore, to make an entire
aggregate and all its components invisible, it is only necessary to set the :visible slot of
the aggregate. All the components will become invisible (in this case, it is important that
the components have the default formula in their :visible slot).

If you provide a specific value or formula for the :visible slot to override the default
formula, it is important that this value be nil if the object’s parent aggregate is not visible.
Otherwise, routines such as point-in-gob may report that a point is inside the object,
even though the object is invisible.

Chapter 5: Opal: The Garnet Graphical Object System 152

For example, if you want the :visible slot of an object to depend on its own :selected

slot, you should additionally constrain it to depend on the visibility of its parent:
(s-value obj :visible (o-formula (if (gvl :parent :visible)

(gvl :selected))))

5.3.5 View Objects

At the top of the class hierarchy is the class opal:view-object.
(create-instance ’opal:view-object nil

(:left 0)

(:top 0)

(:width 0)

(:height 0)

(:visible (o-formula ...))

...)

Each view object has a bounding box as defined by the left, top corner and a width and
height. The :left, :top, :width, and :height slots describe the bounding box for the
object. Coordinates are given as non-negative fixnums, so any formulas must apply floor

or round to all values that could generate floating point or ratio values. In particular, be
careful using "/" for division, because that generates ratios or floats which are not legal
values.

With the exception of windows, coordinates of objects are relative to the window in which
the object appears. (If the window in which an object appears has borders, then the coor-
dinates of the object are relative to the inner edges of the borders.) Windows coordinates
are given in the coordinate system of the parent of the window, or in the case of top level
windows, given in screen coordinates.

5.3.6 Read-Only Slots

There are many slots in graphical objects, windows, and interactors that are set internally
by Garnet and should never be set by users. For example, the :parent, :window, and
:components slots of graphical objects are set automatically whenever the objects are added
to an aggregate using opal:add-component, and should not be set chapterly.

All public slots that are intended to be read-only are labeled as such in their object’s defi-
nitions. Internal slots of an object (used for data or calculations) that are not documented
should be considered read-only. Setting these slots "temporarily" or during initialization
can lead to insidious errors at run-time.

5.3.7 Different Common Lisps

Running Opal under different implementations of Common Lisp should be almost the same.
The differences in the locations of files, such the Opal binary files, and the cursors, bitmaps
and fonts, are all handled in the top level garnet-loader file, which defines variables for
the locations of the files.

An important difference among Lisp interpreters is the main-event-loop. In CMU Com-
mon Lisp, there is a process running in the background that allows interactors to always
run with automatic refresh of Garnet windows.1 In Allegro, Lucid, and LispWorks, Gar-

1 Automatic refresh while an interactor is running is different from updating a window after you chapterly make
a change with s-value. Unless changes are made by the interactors, you will still have to call opal:update
to see the graphics change.

Chapter 5: Opal: The Garnet Graphical Object System 153

net creates its own main-event-loop process in the background that does the same thing.
Some Lisp interpreters have problems running this process in the background, and you may
have to call inter:main-event-loop by hand in order to run the interactors. Consult the
Interactors chapter for directions on how to control the main-event-loop process.

5.4 Slots of All Graphical Objects

This section discusses properties shared by all graphical objects.

(create-instance ’opal:Graphical-Object opal:view-object

(:left 0) (:top 0)

(:width 20) (:height 20)

(:line-style opal:default-line-style)

(:filling-style nil)

(:draw-function :copy)

(:select-outline-only nil)

(:hit-threshold 0)

...)

5.4.1 Left, top, width and height

Graphical objects are objects with graphical properties that can be displayed in Garnet
windows. They inherit the :left, :top, :width and :height slots from view-objects, of
course.

5.4.2 Line style and filling style

The :line-style and :filling-style slots hold instances of the opal:line-style proto-
type and the opal:filling-style prototype, respectively. These objects parameterize the
drawing of graphical objects. Graphical objects with a :line-style of :filling-style
of :line-style and :filling-style control various parameters of the outline and filling
when the object is drawn. Appropriate values for the :line-style and :filling-style

slots are described below in the chapter 〈undefined〉 [Graphic Qualities], page 〈undefined〉.

5.4.3 Drawing function

The value of the :draw-function slot determines how the object being drawn will affect the
graphics already in the window. For example, even though a line may be "black", it could
cause objects that it covers to be "whited-out" if it is drawn with a :clear draw-function.
A list of all allowed values for the :draw-function slot is included in Figure 〈undefined〉
[fig:ex1b], page 〈undefined〉.
Every time an object is displayed in a window, its drawn bits interact with the bits of
the pixels already in the window. The way the object’s bits (the source bits) interact
with the window’s current bits (the destination bits) depends on the draw function. The
:draw-function is the bitwise function to use in calculating the resulting bits. Opal insures
that black pixels pretend to be “1” and white pixels pretend to be “0” for the purposes of the
drawing functions (independent of the values of how the actual display works). Therefore,
when using the colors black and white, you can rely on :or to always add to the picture
and make it more black, and :and to take things away from the picture and make it more
white.

Chapter 5: Opal: The Garnet Graphical Object System 154

Results of draw-functions on colors other than black and white tend to be random. This is
because X11 and Mac QuickDraw initialize the colormap with colors stored in an arbitrary
order, and a color’s index is unlikely to be the same between Garnet sessions. So performing
a logical operation on two particular colors will yield a different resulting color in different
Garnet sessions.

One of the most useful draw functions is :xor, which occurs frequently in feedback objects.
If a black rectangle is XOR’ed over another object, the region under the rectangle will
appear in inverse video. This technique is used in the gg:text-button, and many other
standard Garnet gadgets.

A fundamental limitation of the PostScript language prevents it from rendering draw func-
tions properly. If opal:make-ps-file (see chapter [printing], page 215) is used to generate a
PostScript file from a Garnet window, the draw functions used in the window will be ignored
in the printed image. Usually the graphics in the window can be reimplemented without
using draw-functions to get the same effect, so that the picture generated by opal:make-ps-
file matches the window exactly.

Chapter 5: Opal: The Garnet Graphical Object System 155

draw-function function

:clear 0

:set 1

:copy src

:no-op dst

:copy-inverted (not src)

:invert (not dst)

:or src or dst

:and src and dst

:xor src xor dst

:equiv (not src) xor dst

:nand (not src) or (not dst)

:nor (not src) and (not dst)

:and-inverted (not src) and dst

:and-reverse src and (not dst)

:or-inverted (not src) or dst

:or-reverse src or (not dst)

Figure 5.2: Allowed values for the :draw-function slot and their logical.

5.4.4 select-outline-only, hit-threshold, and pretend-to-be-leaf

The :select-outline-only, :hit-threshold, :pretend-to-be-leaf, and :visible slots
are used by functions which search for objects given a rectangular region or an (x, y) co-
ordinate (see sections [rect-regions], page 203, and [querying-children], page 202). If the
:select-outline-only slot is non-only report hits only on or near the outline of the ob-
ject. Otherwise, the object will be sensitive over the entire region (inside and on the outline).
The :select-outline-only slot defaults to nil.

Chapter 5: Opal: The Garnet Graphical Object System 156

The :hit-threshold slot controls the sensitivity of the internal Opal point-in-gob meth-
ods that decide whether an event (like a mouse click) occurred "inside" an object. If the
:hit-threshold is 3, for example, then an event 3 pixels away from the object will still be
interpreted as being "inside" the object. When :select-outline-only is T, then any event
directly on the outline of the object, or within 3 pixels of the outline, will be interpreted as
a hit on the object. The default value of :hit-threshold is 0.

Note: it is often necessary to set the :hit-threshold slot of all aggregates above a target
object; if an event occurs "outside" of an aggregate, then the point-in-gob methods will
not check the components of that aggregate. The function opal:set-aggregate-hit-

threshold (see section [agg-class], page 200) can simplify this procedure.

When an aggregate’s :pretend-to-be-leaf slot contains the value leaf-objects-in-

rectangle will treat that aggregate as a leaf object (even though the aggregate has compo-
nents). This might be useful in searching for a button aggregate in an aggrelist of buttons.

5.5 Methods on All view-objects

There are a number of methods defined on all subclasses of opal:view-object. This section
describes these methods and other accessors defined for all graphical objects.

5.5.1 Standard Functions

The various slots in objects, like :left, :top, :width, :height, :visible, etc. can be
set and accessed using the standard s-value and gv functions and macros. Some addi-
tional functions are provided for convenience in accessing and setting the size and position
slots. Some slots of objects should not be set (although they can be accessed). This in-
cludes the :left, :top, :width, and :height of lines and polylines (since they are com-
puted from the end points), and the components of aggregates (use the add-component and
remove-component functions).

[Method on view-object]opal:point-in-gob graphical-object x y
This routine determines whether the point (x, y) is inside the graphical object ("gob"
stands for graphical object). This uses an object-specific method, and is dependent
on the setting of the :select-outline-only and :hit-threshold slots in the object
as described above.

The :point-in-gobmethods for opal:polyline and opal:arrowhead actually check
whether the point is inside the polygon, rather than just inside the polygon’s bound-
ing box. Additionally, the :hit-full-interior-p slot of a polygon controls which
algorithm is used to determine if a point is inside it (see section 〈undefined〉 [poly-
line], page 〈undefined〉). If an object’s :visible slot is nil, then point-in-gob will
always return nil for that object.

[Method on opal:destroy]graphical-object &optional erase
This causes the object to be removed from an aggregate (if it is in one), and the
storage for the object is deallocated. You can destroy any kind of object, including
windows. If you destroy a window, all objects inside of it are automatically destroyed.
Similarly, if you destroy an aggregate, all objects in it are destroyed (recursively).
When you destroy an object, it is automatically removed from any aggregates it
might be in and erased from the screen. If destroying the object causes you to go into

Chapter 5: Opal: The Garnet Graphical Object System 157

the debugger (usually due to illegal values in some slots), you might try passing in
the erase parameter as nil to cause Opal to not erase the object from the window.
The default for erase is t.

Often, it is not necessary to destroy individual objects because they are destroyed
automatically when the window they are in is destroyed.

[Method on opal:rotate]graphical-object angle &optional center-x center-y
The rotate method rotates graphical-object around (center-x, center-y)] by angle
radians. It does this by changing the values of the controlling points (using s-value)
for the object (e.g., the values for :x1, :y1, :x2, and :y2 for lines). Therefore, it is a
bad idea to call rotate when there are formulas in these slots. If center-x or center-y
are not specified, then the geometric center of the object (as calculated by using the
center of its bounding box) is used. Certain objects can’t be rotated, namely Ovals,
Arcs, Roundtangles, and Text. A rectangle that is rotated becomes a polygon and
remains one even if it is rotated back into its original position.

5.5.2 Extended Accessor Functions

The following macros, functions and setf methods are defined to make it easier to access
the slots of graphical objects.

When set, the first set of functions below only change the position of the graphical object;
the width and height remain the same. The following are both accessors and valid place
arguments for setf. These use s-value and g-value so they should not be used inside of
formulas, use the gv-xxx forms below instead inside of formulas.

[Function]opal:bottom graphical-object
[Function]opal:right graphical-object
[Function]opal:center-x graphical-object
[Function]opal:center-y graphical-object

To use one of these in a setf, the form is

(setf (opal:bottom obj) new-value)

In contrast to the above accessors, the four below when set change the size of the
object. For example, changing the top-side of an object changes the top and height
of the object; the bottom does not change.

[Macro]opal:top-side graphical-object value
[Macro]opal:left-side graphical-object value
[Macro]opal:bottom-side graphical-object value
[Macro]opal:right-side graphical-object value

Opal also provides the following accessor functions which set up dependencies and
should only be used inside of formulas. For more information on using formulas, see
the example section and the KR document. These should not be used outside of
formulas.

[Function]opal:gv-bottom graphical-object
[Function]opal:gv-right graphical-object
[Function]opal:gv-center-x graphical-object

Chapter 5: Opal: The Garnet Graphical Object System 158

[Function]opal:gv-center-y graphical-object
The following functions should be used in the :left and :top slots of objects, respectively.
The first returns the value for :left such that (gv-center-x :self) equals (gv-center-x
object).

[Function]opal:gv-center-x-is-center-of object
[Function]opal:gv-center-y-is-center-of object

In more concrete terms, if you had two objects OBJ1 and OBJ2, and you wanted to
constrain the :left of OBJ1 so that the centers of OBJ1 and OBJ2 were the same,
you would say:

(s-value obj1 :left (o-formula (opal:gv-center-x-is-center-of obj2)))

The next group of functions are for accessing multiple slots simultaneously. These are not
setf’able.

[Function]opal:center graphical-object (declare (values center-x center-y))
[Function]opal:set-center graphical-object center-x center-y
[Function]opal:bounding-box graphical-object

(declare (values left top width height))

[Function]opal:set-bounding-box graphical-object left top width height
[Function]opal:set-position graphical-object left top
[Function]opal:set-size graphical-object width height

5.6 Graphic Qualities

Objects that are instances of class opal:graphic-quality are used to specify a number of
related drawing qualities at one time. The :line-style and :filling-style slots present
in all graphical objects hold instances of opal:line-style and opal:filling-style ob-
jects. The opal:line-style object controls many parameters about how a graphical ob-
ject’s outline is displayed. Likewise, the opal:filling-style object controls how the filling
of objects are displayed. Figure 14.25 shows the graphic qualities provided by Opal.

Chapter 5: Opal: The Garnet Graphical Object System 159

Figure 5.3: The graphic qualities that can be applied to objects.

The properties controlled by the opal:line-style, opal:filling-style, and opal:font

objects are similar to PostScript’s graphics state (described in section 4.3 in the PostScript
Language Reference chapter) or the XLIB graphics context (described in the X Window
System Protocol Manual). The Opal design is simpler since there are appropriate defaults
for all values and you only have to set the ones you are interested in. The :line-style slot
in graphical objects holds an object that contains all relevant information to parameterize
the drawing of lines and outlines. Similarly, the :filling-style controls the insides of
objects. The :font slot appears only in text and related objects, and controls the font used
in drawing the string.� �
Although the properties of these graphic qualities can be changed after they are created,
for example to make a font change to be italic, Garnet will not notice the change because
the font object itself is still the same (i.e., the value of the :font slot has not changed).
Therefore, line-styles, filling-styles and fonts should be considered read-only after they are
created. You can make as many as you want and put them in objects, but if you want to
change the property of an object, insert a new line-style, filling-style, or font object rather
than changing the slots of the style or font itself. If a set of objects should share a changeable
graphics quality, then put a formula into each object that calculates which graphic quality
to use, so they will all change references together, rather than sharing a pointer to a single
graphic quality object that is changed.
 	

Chapter 5: Opal: The Garnet Graphical Object System 160

5.6.1 Color

5.6.1.1 Using Default Colors

Like other graphic qualities, Opal comes with a set of predefined colors. The following colors
are exported from Opal. They are instances of opal:color with the appropriate values for
their :red, :green, and :blue slots as shown:

Name Red Green Blue
opal:red (:red 1.0) (:green 0.0) (:blue 0.0)

opal:green (:red 0.0) (:green 1.0) (:blue 0.0)

opal:blue (:red 0.0) (:green 0.0) (:blue 1.0)

opal:yellow (:red 1.0) (:green 1.0) (:blue 0.0)

opal:purple (:red 1.0) (:green 0.0) (:blue 1.0)

opal:cyan (:red 0.0) (:green 1.0) (:blue 1.0)

opal:orange (:red 0.75) (:green 0.25) (:blue 0.0)

opal:white (:red 1.0) (:green 1.0) (:blue 1.0)

opal:black (:red 0.0) (:green 0.0) (:blue 0.0)

The following objects are also instances of opal:color, with RGB values chosen to corre-
spond to standard Motif colors:

opal:motif-gray

opal:motif-blue

opal:motif-green

opal:motif-orange

opal:motif-light-gray

opal:motif-light-blue

opal:motif-light-green

opal:motif-light-orange

5.6.1.2 Prototype and Definition

To create your own custom colors create an instance of the graphical quality opal:color.

[Inherits from graphic-quality]color :color-p :red :green :blue :color-name� �
(create-instance ’opal:color opal:graphic-quality

(:constant ’(:color-p))

;; Set during initialization according to the display - t if color,

;; nil otherwise

(:color-p ...)

(:red 1.0)

(:green 1.0)

(:blue 1.0)

(:color-name nil))
 	
[Slot of color]:red
[Slot of color]:green

Chapter 5: Opal: The Garnet Graphical Object System 161

[Slot of color]:blue
Users can create any color they want by creating an object of type opal:color, and
setting the :red, :green and :blue slots to be any real number between 0.0 and 1.0.

[Slot of graphic-quality]:color-name
An opal:color can also be created using the :color-name slot instead of the
:red, :green, and :blue slots. The :color-name slot takes a string such as
"pink" or atom such as ’pink. These names are looked up by the X11 server, and
the appropriate color will be returned. Usually the list of allowed color names is
stored in the file /usr/misc/lib/rgb.txt or /usr/misc/.X11/lib/rgb.txt or
/usr/lib/X11/rgb.txt. However, if the Xserver does not find the color, an error
will be raised. There is apparently no way to ask X11 whether it understands
a color name. Thus, code that uses the :color-name slot may not be portable
across machines. Note that the :red, :green, and :blue slots of the color are set
automatically in color objects defined with names.

For example:

(create-instance ’fun-color opal:color (:color-name "papaya whip"))

[Slot of graphic-quality]:color-p
The :color-p slot of opal:color is automatically set to t or nil depending on
whether or not your screen is color or black-and-white (it is also t if the screen is
gray-scale). This should not be set by hand. The Motif widget set contains formulas
that change their display mode based on the value of :color-p.

5.6.2 line-style Class

5.6.2.1 Using Default Line Styles

Before you read the sordid details below about what all these slots mean, be aware that
most applications will just use the default line styles provided. The following line-styles
(except opal:no-line) are all instances of opal:line-style, with particular values for
their :line-thickness, :line-style, or :dash-pattern slots. Except as noted, they are
identical to opal:default-line-style. All of them are black.

Name Description
opal:no-line nil

opal:thin-line same as opal:default-line-style
opal:line-0 “ “ “
opal:line-1 :line-thickness = 1
opal:line-2 :line-thickness = 2
opal:line-4 :line-thickness = 4
opal:line-8 :line-thickness = 8
opal:dotted-line :line-style = :dash, and :dash-pattern = ’(1 1)

opal:dashed-line :line-style = :dash, and :dash-pattern = ’(4 4)

The following line-styles are all identical to opal:default-line-style, except that their
:foreground-color slot is set with the appropriate instance of opal:color. For example,
the :foreground-color slot of opal:red-line is set to opal:red.

Chapter 5: Opal: The Garnet Graphical Object System 162

opal:red-line

opal:green-line

opal:blue-line

opal:yellow-line

opal:purple-line

opal:cyan-line

opal:orange-line

opal:white-line� �
For each of the predefined line-styles above, you may not customize any of the normal pa-
rameters described below. These line-styles have been created with their :constant slot
set to t for efficiency, which prohibits the overriding of the default values. You may use
these line-styles as values of any :line-style slot, but you may not create customized
instances of them. Instead, to create a thick red line-style, for example, you should cre-
ate your own instance of opal:line-style with appropriate values for :line-thickness,
:foreground-color, etc. See the examples at the end of this section.
 	
5.6.2.2 Prototype and Definition opal:line-style

[Inherits from graphic-quality]line-style :line-thickness :cap-style :join-style
:line-style :foreground-color :background-color :dash-pattern :stipple� �

(create-instance ’opal:line-style opal:graphic-quality

(:maybe-constant

’(:line-thickness :cap-style :join-style :line-style

:dash-pattern :foreground-color :background-color :stipple))

(:line-thickness 0)

(:cap-style :butt)

(:join-style :miter)

(:line-style :solid)

(:foreground-color opal:black)

(:background-color opal:white)

(:dash-pattern nil)

(:stipple nil))

(create-instance ’opal:default-line-style opal:line-style

(:constant t))
 	
[Slot of line-style]:line-thickness

The :line-thickness slot holds the integer line thickness in pixels. There may be
a subtle difference between lines with thickness zero and lines with thickness one.
Zero thickness lines are free to use a device dependent line drawing algorithm, and
therefore may be less aesthetically pleasing. They are also probably drawn much more
efficiently. Lines with thickness one are drawn using the same algorithm with which
all the thick lines are drawn. For this reason, a thickness zero line parallel to a thick
line may not be as aesthetically pleasing as a line with thickness one.

For objects of the types opal:rectangle, opal:roundtangle, opal:circle and
opal:oval, increasing the :line-thickness of the :line-style will not increase

Chapter 5: Opal: The Garnet Graphical Object System 163

the :width or :height of the object; the object will stay the same size, but the solid
black boundary of the object will extend inwards to occupy more of the object. On
the other hand, increasing the :line-thickness of the :line-style of objects of
the types opal:line, opal:polyline and opal:arrowhead will increase the objects’
:width and :height; for these objects the thickness will extend outward on both sides
of the line or arc.

[Slot of line-style]:cap-style
The :cap-style slot describes how the endpoints of line segments are drawn:

:butt Square at the endpoint (perpendicular to the slope of the
line) with no projection beyond.

:not-last Equivalent to :butt, except that for :line-thickness 0
or 1 the final endpoint is not drawn.

:round A circular arc with the diameter equal to the
:line-thickness centered on the endpoint.

:projecting Square at the end, but the path continues beyond
the endpoint for a distance equal to half of the
:line-thickness.

[Slot of line-style]:join-style
The :join-style slot describes how corners (where multiple lines come together) are
drawn for thick lines as part of poly-line, polygon, or rectangle kinds of objects. This
does not affect individual lines (instances of opal:line) that are part of an aggregate,
even if they happen to have the same endpoints.

:miter The outer edges of the two lines extend to meet at an angle.

:round A circular arc with a diameter equal to the :line-thickness is drawn
centered on the join point.

:bevel

:butt endpoint styles, with the triangular notch filled.

[Slot of line-style]:foreground-color
The :foreground-color slot contains an object of type opal:color which speci-
fies the color in which the line will appear on a color screen. The default value is
opal:black.

[Slot of line-style]:background-color
The :background-color slot contains an object of type opal:color which specifies
the color of the "off" dashes of double-dash lines will appear on a color screen (see
below). The default value is opal:white. It also specifies the color of the bounding
box of a text object whose :fill-background-p slot is set to t.

[Slot of line-style]:line-style
The contents of the :line-style slot declare whether the line is solid or dashed.
Valid values are :solid, :dash or :double-dash. With :dash only the ’on’ dashes
are drawn, and nothing is drawn in the off dashes. With :double-dash, both on
and off dashes are drawn; the on dashes are drawn with the foreground color (usually
black) and the off dashes are drawn with the background color (usually white).

Chapter 5: Opal: The Garnet Graphical Object System 164

[Slot of line-style]:dash-pattern
The :dash-pattern slot holds an (optionally empty) list of numbers corresponding
to the pattern used when drawing dashes. Each pair of elements in the list refers
to an on and an off dash. The numbers are pixel lengths for each dash. Thus a
:dash-pattern of (1 1 1 1 3 1) is a typical dot-dot-dash line. A list with an odd
number of elements is equivalent to the list being appended to itself. Thus, the dash
pattern (3 2 1) is equivalent to (3 2 1 3 2 1).

[Slot of line-style]:stipple
The :stipple slot holds either nil or a opal:bitmap object with which the line is
to be stippled. The :foreground-color of the line-style will be used for the "dark"
pixels in the stipple pattern, and the :background-color will be used for the "light"
pixels.

Some examples:

;; black line of thickness 2 pixels

opal:line-2

;; black line of thickness 30 pixels

(create-instance ’thickline opal:line-style (:line-thickness 30))

;; gray line of thickness 5 pixels

(create-instance ’grayline opal:line-style

(:line-thickness 5)

(:stipple (create-instance nil opal:bitmap

(:image (opal:halftone-image 50))))) ; 50% gray

;; dot-dot-dash line, thickness 1

(create-instance ’dotdotdashline opal:line-style

(:line-style :dash)

(:dash-pattern ’(1 1 1 1 3 1)))

5.6.3 Filling-Styles
(create-instance ’opal:filling-style opal:graphic-quality

(:foreground-color opal:black)

(:background-color opal:white)

;; Transparent or opaque. See [Section 5.6.3.3], page 167.

(:fill-style :solid)

;; For self-intersecting polygons. See [Section 5.6.3.3], page 167.

(:fill-rule :even-odd)

;; The pattern. See [Section 5.6.3.1], page 166.

(:stipple nil))

(create-instance ’opal:default-filling-style opal:filling-style)

Before you read all the sordid details below about what all these slots mean, be aware that
most applications will just use the default filling styles provided. There are two basic types
of filling-styles: those that rely on stipple patterns to control their shades of gray, and those
that are solid colors.

Stippled Filling-Styles

Stippled filling-styles rely on their patterns to control their color shades. The :stipple

slot controls the mixing of the :foreground-color and :background-color colors, which

Chapter 5: Opal: The Garnet Graphical Object System 165

default to opal:black and opal:white, respectively. Thus, the default stippled filling-
styles are shades of gray, but other colors may be used as well. Here is a list of pre-defined
stippled filling-styles:

opal:no-fill

nil

opal:black-fill

same as opal:default-filling-style

opal:gray-fill

same as (opal:halftone 50)

opal:light-gray-fill

same as (opal:halftone 25)

opal:dark-gray-fill

same as (opal:halftone 75)

opal:diamond-fill

a special pattern, defined with

opal:make-filling-style

See section 〈undefined〉 [fancy-stipple], page 〈undefined〉.

Solid Filling-Styles

The second set of filling-styles are solid colors, and do not rely on stipples. For these filling-
styles, the :foreground-color slot of the object is set with the corresponding instance
of opal:color. For example, the :foreground-color slot of opal:red-fill is set with
opal:red. Otherwise, these filling-styles are all identical to opal:default-filling-style.

opal:white-fill

opal:red-fill

opal:green-fill

opal:blue-fill

opal:yellow-fill

opal:purple-fill

opal:cyan-fill

opal:orange-fill

opal:motif-gray-fill

opal:motif-blue-fill

opal:motif-green-fill

opal:motif-orange-fill

opal:motif-light-gray-fill

opal:motif-light-blue-fill

opal:motif-light-green-fill

opal:motif-light-orange-fill

Chapter 5: Opal: The Garnet Graphical Object System 166

5.6.3.1 Creating Your Own Stippled Filling-Styles

The :stipple slot of a filling-style object is used to specify patterns for mixing the
foreground and background colors. The :stipple slot is either nil or an opal:bitmap

object, whose image can be generated from the /usr/misc/.X11/bin/bitmap Unix program
(see section [bitmap-sec], page 182). Alternatively, there is a Garnet function supplied for
generating halftone bitmaps to get various gray shades.

[Function]opal:halftone percentage
The halftone function returns an opal:filling-style object. The percentage
argument is used to specify the shade of the halftone (0 is white and 100 is black). Its
halftone is as close as possible to the varpercentage halftone value as can be generated.
Since a range of percentage values map onto each halftone shade, two additional
functions are provided to get halftones that are guaranteed to be one shade darker or
one shade lighter than a specified value.

[Function]opal:halftone-darker percentage
[Function]opal:halftone-lighter percentage

The halftone-darker and halftone-lighter functions return a stippled
opal:filling-style object that is guaranteed to be exactly one shade different
than the halftone object with the specified percentage. With these functions you are
guaranteed to get a different darker (or lighter) filling-style object. Currently,
there are 17 different halftone shades.

Examples of creating rectangles that are: black, 25% gray, and 33% gray are:
(create-instance ’BLACKRECT opal:rectangle

(:left 10)(:top 20)(:width 50)(:height 70)

(:filling-style opal:black-fill))

(create-instance ’LIGHTGRAYRECT opal:rectangle

(:left 10)(:top 20)(:width 50)(:height 70)

(:filling-style opal:light-gray-fill))

(create-instance ’ANOTHERGRAYRECT opal:rectangle

(:left 10)(:top 20)(:width 50)(:height 70)

(:filling-style (opal:halftone 33)))

5.6.3.2 Fancy Stipple Patterns

Another way to create your own customized filling styles is to use the function
opal:make-filling-style:

[Function]opal:make-filling-style description &key from-file-p
(foreground-color opal:black) (background-color opal:white)

The description can be a list of lists which represent the bit-mask of the filling style,
or may be the name of a file that contains a bitmap. The from-file-p parameter should
be T if a filename is being supplied as the description.

As an example, the filling-style opal:diamond-fill is defined by:
(setq opal:diamond-fill

(opal:make-filling-style

’((1 1 1 1 1 1 1 1 1)

(1 1 1 1 0 1 1 1 1)

(1 1 1 0 0 0 1 1 1)

(1 1 0 0 0 0 0 1 1)

(1 0 0 0 0 0 0 0 1)

Chapter 5: Opal: The Garnet Graphical Object System 167

(1 1 0 0 0 0 0 1 1)

(1 1 1 0 0 0 1 1 1)

(1 1 1 1 0 1 1 1 1)

(1 1 1 1 1 1 1 1 1))))

5.6.3.3 Other Slots Affecting Stipple Patterns

The :fill-style slot specifies the colors used for drawing the "off" pixels in the stippled
pattern of filling-styles. The "on" pixels are always drawn with the :foreground-color of
the filling-style.

Line :fill-style

Color used for "off" pixels

:solid Color in :foreground-color

:stippled

Transparent

:opaque-stippled

Color in :background-color

The :fill-rule is either :even-odd or :winding. These are used to control the filling
for self-intersecting polygons. For a better description of these see any reasonable graphics
textbook, or the X11 Protocol Manual.

5.6.4 Fast Redraw Objects

When an interface contains one or more objects that must be redrawn frequently, the
designer may choose to define these objects as fast redraw objects. Such objects could be
feedback rectangles that indicate the current selection, or text strings which are updated
after any character is typed. Fast redraw objects are redrawn with an algorithm that is
much faster than the standard update procedure for refreshing Garnet windows.

However, because of certain requirements that the algorithm makes on fast redraw objects,
most objects in an interface are not candidates for this procedure. Primarily, fast redraw
objects cannot be covered by other objects, and they must be either drawn with xor, or
else are guaranteed to be over only a solid background. Additionally, aggregates cannot
be fast-redraw objects; only instances of opal:graphical-object (those with their own
:draw methods) can be fast-redraw objects.

To define an object as a fast redraw object, the :fast-redraw-p slot of the object must
be set to one of three allowed values – :redraw, :rectangle, or t. These values determine
how the object should be erased from the window (so that it can be redrawn at its new
position or with its new graphic qualities). The following paragraphs describe the functions
and requirements of each of these values.

:redraw The object will be erased by drawing it a second time with the line style and
filling style defined in the slots :fast-redraw-line-style and :fast-redraw-

filling-style. These styles should be defined to have the same color as the
background behind the object. Additionally, these styles should have the same
structure as the line and filling styles of the object. For example, if the object
has a line thickness of 8, then the fast redraw line style must have a thickness
of 8 also. This value may be used for objects on color screens where there is a
uniform color behind the object.

Chapter 5: Opal: The Garnet Graphical Object System 168

:rectangle

The object will be erased by drawing a rectangle over it with the filling style de-
fined in the slot :fast-redraw-filling-style. This filling style should have
the same color as the background behind the object. Like :redraw, this value
assumes that there is a uniform color behind the object. However, :rectangle
is particularly useful for complicated objects like bitmaps and text, since draw-
ing a rectangle takes less time than drawing these intricate objects.

t In this case, the object must additionally have its :draw-function slot set
to :xor. This will cause the object to be XOR’ed on top of its background.
To erase the object, the object is just drawn again, which will cause the two
images to cancel out. This value is most useful when the background is white
and the objects are black (e.g., on a monochrome screen), and can be used with
a feedback object that shows selection by inverse video.

5.7 Specific Graphical Objects

This chapter describes a number of specific subclasses of the opal:graphical-object pro-
totype that implement all of the graphic primitives that can be displayed, such as rectangles,
lines, text strings, etc.

For all graphical objects, coordinates are specified as fixnum quantities from the top, left
corner of the window. All coordinates and distances are specified in pixels.

Most of these objects can be filled with a filling style, have a border with a line-style or
both. The default for closed objects is that :filling-style is nil (not filled) and the
:line-style is opal:default-line-style.

Note that only the slots that are not inherited from view objects and graphic objects are
shown below. In addition, of course, all of the objects shown below have the following slots
(described in the previous sections):

(:left 0)

(:top 0)

(:width 0)

(:height 0)

(:visible (o-formula ...))

(:line-style opal:default-line-style)

(:filling-style nil)

(:draw-function :copy)

(:select-outline-only nil)

(:hit-threshold 0)

Most of the prototypes in this section have a list of slots in their :maybe-constant slot,
which generally correspond to the customizable slots of the object. This is part of the
constant slots feature of Garnet which allows advanced users to optimize their Garnet
objects by reusing storage space. Consult the KR chapter for documentation about how to
take advantage of constant slots.

HINT: If you want a black-filled object, set the line-style to be nil or else the object will
take twice as long to draw (since it draws both the border and the inside).

〈undefined〉 [fig:ex3], page 〈undefined〉, shows examples of the basic object types in Opal.

Chapter 5: Opal: The Garnet Graphical Object System 169

Hello World

Garnet supports
multi-line

text
strings!

Figure 5.4: Examples of the types of objects supported by Opal: lines, rectangles, rounded
rectangles, text, multipoints, polylines, arrowheads, ovals, circles, arcs, and bitmaps, with
a variety of line and filling styles.

Chapter 5: Opal: The Garnet Graphical Object System 170

5.7.1 Line

(create-instance ’opal:line opal:graphical-object

(:maybe-constant ’(:x1 :y1 :x2 :y2 :line-style :visible))

(:x1 0)

(:y1 0)

(:x2 0)

(:y2 0))

The opal:line class describes an object that displays a line from (: x1, : y1) to (: x2, : y2).
The :left, :top, :width, and :height reflect the correct bounding box for the line, but
cannot be used to change the line (i.e., do not set the :left, :top, :width, or :height

slots). Lines ignore their :filling-style slot.

5.7.2 Rectangles

(create-instance ’opal:rectangle opal:graphical-object

(:maybe-constant ’(:left :top :width :height :line-style :filling-style

:draw-function :visible)))

The opal:rectangle class describes an object that displays a rectangle with top, left corner
at (: left, : top), width of :width, and height of :height.

5.7.2.1 Rounded-corner Rectangles

(create-instance ’opal:roundtangle opal:rectangle

(:maybe-constant ’(:left :top :width :height :radius :line-style

:filling-style :draw-function :visible))

(:radius 5))

Instances of the opal:roundtangle class are rectangles with rounded corners. Objects of
this class are similar to rectangles, but contain an additional slot, :radius, which specifies
the curvature of the corners. The values for this slot can be either :small, :medium, :large,
or a numeric value interpreted as the number of pixels to be used. The keyword values do
not correspond directly to pixels values, but rather compute a pixel value as a fraction of
the length of the shortest side of the bounding box.

:radius Fraction

:small 1/5

:medium 1/4

:large 1/3

Figure 〈undefined〉 [fig:ex4], page 〈undefined〉, demonstrates the meanings of the slots of
roundtangles. If the value of :radius is 0, the roundtangle looks just like a rectangle. If the
value of :radius is more than half of the minimum of :width or :height, the roundtangle
is drawn as if the value of :radius were half the minimum of :width and :height.

Chapter 5: Opal: The Garnet Graphical Object System 171

:radius

:width

:height

:left

 :top

Figure 5.5: The parameters of a roundtangle.

5.7.3 Polyline and Multipoint

Chapter 5: Opal: The Garnet Graphical Object System 172

(create-instance ’opal:multipoint opal:graphical-object

(:maybe-constant ’(:point-list :line-style :filling-style :draw-function :visible))

(:point-list nil))

(create-instance ’opal:polyline opal:multipoint

(:hit-full-interior-p nil))

The opal:polyline prototype provides for multi-segmented lines. Polygons can be specified
by creating a polyline with the same first and last points. The point list is a flat list of
values (x-1 y-1 x-2 y-2 ... x-n y-n). If a polyline object has a filling-style, and if the
last point is not the same as the first point, then an invisible line is drawn between them,
and the resulting polygon is filled.

The :point-in-gob method for the opal:polyline actually checks whether the point is
inside the polygon, rather than just inside the polygon’s bounding box. If the :hit-full-
interior-p slot of a polyline is nil (the default), then the :point-in-gob method will
use the "even-odd" rule to determine if a point is inside it. If the value of :hit-full-
interior-p is T, the method will use the "winding" rule. The slot :hit-threshold has
its usual functionality.

The :left, :top, :width, and :height slots reflect the correct bounding box for the
polyline, but cannot be used to change the polyline (i.e., do not set the :left, :top,
:width, or :height slots).

For example:

Chapter 5: Opal: The Garnet Graphical Object System 173

(create-instance nil opal:polyline

(:point-list ’(10 50 50 10 90 10 130 50))

(:filling-style opal:light-gray-fill)

(:line-style opal:line-4))

A multipoint is like a polyline, but only appears on the screen as a collection of disconnected
points. The line-style and filling-style are ignored.

5.7.4 Arrowheads
(create-instance ’opal:arrowhead opal:polyline

Chapter 5: Opal: The Garnet Graphical Object System 174

(:maybe-constant ’(:line-style :filling-style :length :diameter :open-p

:head-x :head-y :from-x :from-y :visible))

(:head-x 0) (:head-y 0)

(:from-x 0) (:from-y 0)

(:connect-x (o-formula ...)) ; Read-only slot

(:connect-y (o-formula ...)) ; Read-only slot

(:length 10)

(:diameter 10)

(:open-p T)

...)

The opal:arrowhead class provides arrowheads. Figure [arrowfig], page 175, shows the
meaning of the slots for arrowheads. The arrowhead is oriented with the point at (:head-x,
:head-y) and will point away from (:from-x, :from-y). (Note: no line is drawn from
(:from-x, :from-y) to (:head-x, :head-y); the :from- point is just used for reference.)
The :length slot determines the distance (in pixels) from the point of the arrow to the
base of the triangle. The :diameter is the distance across the base. The :open-p slot
determines if a line is drawn across the base.

The arrowhead can have both a filling and an outline (by using the standard
:filling-style and :line-style slots). Arrowhead objects also have 2 slots that
describe the point at the center of the base to which one should attach other lines. This
point is (:connect-x, :connect-y) and is set automatically by Opal; do not set these
slots. These slots are useful if the arrow is closed (see Figure [arrowfig], page 175, below).

If you want an arrowhead connected to a line, you might want to use the arrow-line object
(with one arrowhead) or double-arrow-line (with arrow-heads optionally at either or both
ends) supplied in the Garnet Gadget Set GarnetGadgetsChapter.

Chapter 5: Opal: The Garnet Graphical Object System 175

1st 2nd 3rd 4th 5th
:open-p: t nil t nil t
:filling-style: nil nil opal:light-

gray-fill

:line-style: opal:line-0 nil

Figure 5.6: The slots that define an arrowhead. At the bottom are various arrowheads with
different styles. Note that a shaft for the arrow must be drawn by the user.

Chapter 5: Opal: The Garnet Graphical Object System 176

5.7.5 Arcs

(create-instance ’opal:arc opal:graphical-object

(:maybe-constant ’(:left :top :width :height :line-style :filling-style

:draw-function :angle1 :angle2 :visible))

(:angle1 0)

(:angle2 0))

The opal:arc class provides objects that are arcs, which are pieces of ovals. The arc
segment is parameterized by the values of the following slots: :left, :top, :width, :height,
:angle1, and :angle2.

The arc is a section of an oval centered about the point (center− xarc, center− yarc)
calculated from the arc’s :left, :top, :width and :height, with width :width and height
:height. The arc runs from :angle1 counterclockwise for a distance of :angle2 radians.
That is, :angle1 is measured from 0 at the center right of the oval, and :angle2 is measured
from :angle1 (:angle2 is relative to :angle1).

Arcs are filled as pie pieces to the center of the oval.

For example:

Chapter 5: Opal: The Garnet Graphical Object System 177

;; the rectangle is just for reference

(create-instance ’myrect opal:rectangle

(:left 10)(:top 10)(:width 100)(:height 50))

(create-instance ’myarc opal:arc

(:left 10)(:top 10)

(:width 100)(:height 50)

(:angle1 (/ PI 4))

(:angle2 (/ PI 2))

(:line-style opal:line-2)

(:filling-style opal:light-gray-fill))

Chapter 5: Opal: The Garnet Graphical Object System 178

5.7.6 Ovals

(create-instance ’opal:Oval opal:arc)

Instances of the :oval class are closed arcs parameterized by the slots :left[,] :top[,]
:width[, and] :height.

5.7.7 Circles

(create-instance ’opal:Circle opal:arc)

The circle is positioned at the top, leftmost part of the bounding box described with the
:left. :top, :width, and :height slots. The circle drawn has diameter equal to the
minimum of the width and height, though the effective bounding box (used by point-in-

gob, for example) will still be defined by the actual values in :width and :height. Both
:width and :height need to be specified.

5.7.8 Fonts and Text

5.7.8.1 Fonts

There are two different ways to get fonts from Garnet. One way is to explicitly create your
own font object, and supply the object with a description of the desired font, either with
family, face, and size descriptions, or with a font pathname. The other way is to use the
function get-standard-font which will create a new font object for you if necessary, or
return a previously created font object that you can use again.

There are two different types of font objects – one which handles the standard Garnet fonts
(described by family, face, and size parameters), and one which handles fonts specified by a
filename. The get-standard-font function only returns font objects that can be described
with the three standard parameters. Either kind of font object may be used anywhere a
font is called for.

Built in Fonts
(create-instance ’opal:font opal:graphic-quality

(:maybe-constant ’(:family :face :size))

(:family :fixed)

(:face :roman)

(:size :medium)

...)

(create-instance ’opal:default-font opal:font

(:constant t))

To use the standard Garnet fonts, create an instance of opal:font with your desired values
for the :family, :face, and :size slots. Opal will automatically find the corresponding
font for your display. The allowed values for each slot are as follows:

Values for :family can be:

:fixed a fixed width font, such as Courier. All characters are the same width.

:serif a variable-width font, with “serifs” on the characters, such as Times.

Chapter 5: Opal: The Garnet Graphical Object System 179

:sans-serif

a variable-width font, with no serifs on the characters, such as Helvetica.

Values for :face can be a single keword or a list of the following:

Faces available for both X windows and the Mac:

:roman

:italic

:bold

:bold-italic

Faces available for the Mac only:

:plain

:condense

:extend

:outline

:shadow

:underline

Values for :size can be:

:small a small size, such as 10 points.

:medium a normal size, such as 12 points.

:large a large size, such as 18 points.

:very-large a larger size, such as 24 points.

The exported opal:default-font object contains the font described by :fixed, :roman,
and :medium. This object should be used when a font is required and you want to use the
default values. However, since this object’s slots have been made constant for efficiency,
do not create instances of the opal:default-font object. Instead, create instances of the
opal:font objects with customized values for the parameters, or use get-standard-font

(explained below).

Reusing Fonts

Instead of creating a new font object every time one is needed, you may use the same font
object in multiple applications. The function get-standard-font remembers what fonts
have been created, and will return a previously created font object if a new font is needed
that has a matching description. Otherwise, get-standard-font will allocate a new font
object and return it, remembering it for later.

[Function]opal:get-standard-font family face size
The parameters are all the keywords that are allowed for standard fonts. For exam-
ple: (opal:get-standard-font :fixed :italic :medium). In addition, any of the
parameters can be nil, which means to use the defaults (:fixed :roman :medium).
It is more efficient to use this procedure than to repeatedly allocate new font objects.

Chapter 5: Opal: The Garnet Graphical Object System 180

Since all the font objects returned by get-standard-font have been declared con-
stant for efficiency, you may not change the font descriptions after the objects have
been created.

Note: get-standard-font only remembers those fonts that were allocated by using
get-standard-font. If a requested font matches an independently-generated font,
get-standard-font will not know about it and will allocate a new font.

Fonts from Files
(create-instance ’opal:font-from-file opal:graphic-quality

(:font-path nil)

(:font-name "")

...)

This allows you to specify a file name to load a font from.

X11 keeps a set of font directories, called the current "Font Path". You can see what
directories are on the font path by typing xset q to the Unix shell, and you can add and
remove directories from the font path by using the xset fp+ and xset fp- commands.

If the :font-path slot of a :font-from-file is a string which is a directory, Opal pushes
that directory onto the X font path and then looks up the font. If the font name is somewhere
on the path already, you can let the :font-path slot be nil. You can usually access fonts
in the standard system font area (often /usr/misc/.X11/lib/fonts/) without specifying
a path name.

For example, for the font vgi-25.snf in the default directory, use:
(create-instance nil opal:font-from-file

(:font-name "vgi-25"))

If the font was not in the default font path, then use something like:
(create-instance nil opal:font-from-file

(:font-path "/usr/misc/.X11/lib/fonts/75dpi/")

(:font-name "vgi-25"))

The font name "vgi-25" is looked up in a special file in the font directory called fonts.dir.
This file contains a long list of fonts with the file name of the font on the left and the name for
the server to use on the right. For example, the entry corresponding to opal:default-font
may look like this:

courier12.pcf -adobe-courier-medium-r-normal--17-120-100-100-m-100-iso8859-1

On some displays, this font lookup may not proceed smoothly, and you may have to supply
the long "-adobe-..." name as the value of :font-name instead of the more convenient
"courier12". Garnet internally builds these names for the standard fonts, so font name
lookup should never be a problem for them.

Opal:Cursor-Font
(create-instance ’opal:cursor-font opal:font-from-file

(:constant t)

(:font-name "cursor"))

The opal:cursor-font object accesses the font used by your window manager to display
cursors. This object is an instance of opal:font-from-file, and may not be fully portable
on different machines. Regular text strings may be printed in this font, but it is specifically
intended for use when changing the cursor of Garnet windows (see section [the-cursor-slot],
page 210).

Chapter 5: Opal: The Garnet Graphical Object System 181

Functions on Fonts

[Function]opal:string-width font-obj string &key (start 0) end
[Function]opal:string-height font-obj string &key (actual-heightp nil)

The function string-width takes a font object (which can be a font or a font-from-
file) and a Lisp string, and returns the width in pixels of that string written in that
font. The start and end parameters allow you to specify the beginning and ending
indices of the portion of string that you want to measure.

The function string-height takes a font (or font-from-file) and a Lisp string, and
returns the height in pixels of that string written in that font. There is an optional
keyword parameter actual-heightp which defaults to nil, and has exactly the same
effect on the return value of string-height that the :actual-heightp slot of an
opal:text object has on the value of the :height slot of that opal:text object (see
section [actualheightp], page 182).

5.7.8.2 Text

(create-instance ’opal:text opal:graphical-object

(:maybe-constant ’(:left :top :string :font :actual-heightp :line-style :visible))

(:string "")

(:font opal:default-font)

(:actual-heightp nil)

(:justification :left)

(:fill-background-p nil)

(:line-style opal:default-line-style)

(:cursor-index nil))

Instances of the opal:text class appear as a horizontal string of glyphs in a certain font.
The :string slot holds the string to be displayed, and can contain multiple lines. The :font
slot specifies a font object as described in the previous section (an instance of opal:font
or opal:font-from-file).

The :line-style slot can control the color of the object, and can hold any instance
of opal:line-style, such as opal:red-line. The :foreground-color slot of the
line-style object determines the color of the text. When the :fill-background-p

slot is T, then the background of each glyph of the text is drawn with the color in the
:background-color slot of the line-style. If the :fill-background-p slot is nil, then
the background is unaffected.

The :justification slot can take one of the three values :left, :center, or :right, and
tells whether the multiple-line string is left-, center-, or right-justified. The default value is
:left.

A vertical bar cursor before the :cursor-indexth character. If :cursor-index is 0, the
cursor is at the left of the string, and if it is >= the length of the string, then it is at the right
of the string. If :cursor-index is nil, then the cursor is turned off. The :cursor-index

slot is set by the inter:text-interactor during text editing.

opal:Get-Cursor-Index string-obj x y[function], page 90

Chapter 5: Opal: The Garnet Graphical Object System 182

This function returns the appropriate cursor-index for the (x,y) location in the string. It
assumes that the string is displayed on the screen. This is useful for getting the position in
the string when the user presses over it with the mouse.

The slot :actual-heightp determines whether the height of the string is the actual height
of the characters used, or the maximum height of the font. This will make a difference in
variable size fonts if you have boxes around the characters or if you are using a cursor (see
section [text], page 181). The default (nil) means that the height of the font is used so all
strings that are drawn with the same font will have the same height.

The :width and :height slots reflect the correct width and height for the string, but cannot
be used to change the size (i.e., do not set the :width or :height slots).

5.7.8.3 Scrolling Text Objects

When an opal:text or opal:multifont-text object is used inside a scrolling-window,
there is an option that allows the window to scroll automatically whenever the cursor is
moved out of the top or bottom of the visible region. To use this feature, two things need
to be done:

The :scrolling-window slot of the text object must contain the scrolling window
object.

The text object must also have its :auto-scroll-p slot set to T.

NOTE: Auto scroll is NOT the same as word wrap. If the cursor is moved out of the right
edge of the window, auto-scroll will not do anything.

For an example of how the auto-scroll feature works, look at the code for Demo-Multifont.
Try the demo with the :auto-scroll-p slot of the object demo-multifont::text1 set to
both T and nil.

Auto scroll does not keep track of changes in family, font, size, or when a segment is cut
or pasted. The :auto-scroll method has to be invoked explicitly in such cases, using the
following method:

[Method on gg:auto-scroll]text-obj
For examples of calling gg:auto-scroll explicitly, look at the menu functions in
Demo-Multifont.

5.7.9 Bitmaps
(create-instance ’opal:bitmap opal:graphical-object

(:maybe-constant ’(:left :top :image :filling-style :visible))

(:image nil)

(:filling-style opal:default-filling-style)

...)

On the Mac, and in the usual case with X11, the :image slot contains a machine-dependent
structure generated by the function opal:read-image (see below). Under X11, there are
a variety of other CLX image objects that can be stored in this slot (consult your CLX
Manual for details on images).

Bitmaps can be any size. Opal provides a function to read in a bitmap image from a file:

opal:Read-Image file-name[function], page 90

Chapter 5: Opal: The Garnet Graphical Object System 183

The read-image function reads a bitmap image from file-name which is stored in the default
X11 ".bm" file format. Files of this format may be generated by using the Unix program
/usr/misc/.X11/bin/bitmap.

The :filling-style slot can contain any instance of opal:filling-style. If the
:fill-style of the bitmap’s :filling-style is :solid or :opaque-stippled, then the
bitmap will appear with that filling-style’s foreground-color and background-color. If,
however, the :fill-style of the filling-style is :stippled, then the bitmap will appear
with the filling-style’s :foreground-color, but its background will be transparent. For
example, the following code creates a bitmap which will be drawn with a red and white
stipple (because white is the default :background-color of opal:filling-style):

(create-instance ’red-arrow opal:arrow-cursor

(:filling-style (create-instance nil opal:filling-style

(:foreground-color opal:red)

(:fill-style :stippled))))

There are several functions supplied for generating halftone images, which can then be
supplied to the :image slot of a bitmap object. These functions are used to create the
filling styles returned by the halftone function (section [halftone], page 166).

opal:Halftone-Image percentage[function], page 90

The halftone-image function returns a image for use in the :image slot of a bitmap
object. The percentage argument is used to specify the shade of the halftone (0 is white
and 100 black). This image is as close as possible to the percentage halftone value as can be
generated. Since a range of percentage values map onto each halftone image, two additional
functions are provided to get images that are guaranteed to be one shade different or one
shade lighter than a specified value.

opal:Halftone-Image-Darker percentage[function], page 90

opal:Halftone-Image-Lighter percentage[function], page 90

The halftone-image-darker and halftone-image-lighter functions return a halftone
that is guaranteed to be exactly one shade darker than the halftone with the specified
percentage. With these functions you are guaranteed to get a different darker (or lighter)
image. Currently, there are 17 different halftone shades.

The :width[, and] :height slots reflect the correct width and height for the bitmap, but
cannot be used to change the size (i.e., do not set the :width or :height slots)).

5.7.10 Pixmaps
(create-instance ’opal:pixmap opal:bitmap

(:image nil)

(:line-style opal:default-line-style)

(:pixarray (o-formula (if (gvl :image)

(gem:image-to-array (gv-local :self :window)

(gvl :image))))))

...)

This object is similar to the opal:bitmap object, except that it handles images which use
more than one bit per pixel.

opal:bitmap, in conjunction with the function opal:read-xpm-file (see below).

Chapter 5: Opal: The Garnet Graphical Object System 184

The :pixarray slot contains an array of colormap indices. This is useful if you want to
manipulate a pixmap directly, as in the demo "demo-pixmap".

The :width[, and] :height slots reflect the correct width and height for the pixmap, but
cannot be used to change the size (i.e., do not set the :width or :height [slots]).

5.7.10.1 Creating a pixmap

The following routine can be used to create an image for a pixmap.
opal:Read-XPM-File pathname [No value for ‘‘function’’]

The argument pathname should be the name of a file containing a C pixmap image.
Read-xpm-file returns an X-specific or Mac-specific object, which then should be put
in the :image slot of an opal:pixmap. The file pathname containing the C pixmap image
should be in the xpm format. Please refer to the X Window System documentation for
more details about that format.

The function read-xpm-file will read pixmaps in the XPM1 or XPM2 format. Files
in these formats are produced by the program ppmtoxpm and the OpenLook IconEditor

utility. The ppm collection of utilities are useful for converting one format into another. If
you do not have them, you can store Unix utilities.

In Unix, to convert the contents of a color window into an xpm format file, you can use
programs such as xwd, xwdtopnm, ppmtoxpm, etc. For example, inside a Unix shell, type:

xwd > foo.xwd

When the cursor changes to a plus, click on the window you want to dump. Then type:
xwdtopnm foo.xwd > foo.ppm

ppmtoxpm foo.ppm > foo.xpm

This will create a file named "foo.xpm". Finally, in Garnet, type:
(create-instance ’FOO opal:pixmap

(:image (opal:read-xpm-file "foo.xpm")))

Here are two more routines that can be used to create images for pixmaps.
opal:Create-Pixmap-Image width height &optional color [Function], page 711

This creates a solid color pixmap image. If you wanted to create a pixmap whose image
was, say, a 20x30 blue rectangle, you would say:

(create-instance ’BLUE-PIXMAP opal:pixmap

(:image (opal:create-pixmap-image 20 30 opal:blue)))

If no color is given, the color defaults to white.
opal:Window-To-Pixmap-Image window &key left top width height [Function], page 711

This creates an image containing the contents of a Garnet window, within a rectangular
region specified by the values left, top, width, and height. Left and top default to 0. Width
and height default to the values of the :width and :height slots of the window, respectively.

5.7.10.2 Storing a pixmap

opal:Write-XPM-File pixmap pathname &key (xpm-format :xpm1) [Function], page 711

This function writes the :image of a pixmap object into a C pixmap file whose name
is pathname. Write-xpm-file will write pixmap files in either XPM1 or XPM2 format,
depending on the value of the xpm-format key, which may be either :xpm1 or :xpm2. By
default, the function generates files in XPM1 format, which can be read by the xpmtoppm

utility.

Chapter 5: Opal: The Garnet Graphical Object System 185

5.8 Multifont
(create-instance ’opal:multifont-text opal:aggregate

(:left 0)

(:top 0)

(:initial-text ...)

(:word-wrap-p nil)

(:text-width 300)

(:current-font ...)

(:current-fcolor ...)

(:current-bcolor ...)

(:fill-background-p t)

(:draw-function :copy)

(:show-marks nil))

The opal:multifont-text object is designed to allow users to create more complicated
editing applications. The object is similar to the opal:text object with many added
abilities. As the name implies, the opal:multifont-text object can accept text input in
multiple fonts. Also, the object has a word wrap mode to permit word-processor-like editing
as well as the ability to highlight text for selection.

Positioning the object is performed with :left and :top as with most Garnet objects. The
slots :width and :height are read-only and can be used to see the size of the object, but
should not be changed by the user. The :initial-text slot is used to initialize the contents
of the multifont-text. The format of the :initial-text slot is complicated enough that
the next section is devoted to discussing it. If the user is not particular about the font
of the initial contents, a simple string is sufficient for the :initial-text slot. The slots
:word-wrap-p and :text-width control the word wrap mode. If :word-wrap-p is T, the
text will wrap at the pixel width given in the :text-width slot. If :word-wrap-p is nil,
word wrap mode will not be activated and no wrapping will occur. In this case, your string
should contain #\newlines wherever required. Both :word-wrap-p and :text-width can
be modified at run time.

The :current-font slot can be used to control what font newly added characters will
appear as. Also, the :current-font slot can be polled to determine the last font
of the character the cursor most recently passed over. The slots :current-fcolor

and :current-bcolor act similarly for the foreground and background colors of the
text. The slot :fill-background-p controls the background of the characters. If
:fill-background-p is T, the background of the character will be drawn in the
:current-bcolor. If :fill-background-p is nil, the background of the glyphs will not
be drawn at all (allowing whatever is behind the multifont text object to show through).
The slot :show-marks turns on and off the visibility of text marks. If :show-marks is T,
text-marks will be visible, appearing as little carats pointing to the character to which
they are stuck. When :show-marks is nil, the marks will be invisible.

Along with the multi-font text object are a pair of special interactors that make them
editable (See [Interactors for Multifont Text], page 193). The font object and the two inter-
actors are combined into the multifont-gadget gadget for convenience (See [A Multifont
Text Gadget], page 199).

There are two demos that show off multifont capabilities. demo-text shows how to use the
multifont-text object with the multifont-text-interactor. demo-multifont shows
how to use multiple text fields in a single window with the focus-multifont-textinter

Chapter 5: Opal: The Garnet Graphical Object System 186

and selection-interactor, and demonstrates the indentation and paren-matching fea-
tures of lisp mode.

5.8.1 Format of the :initial-text Slot

The format used in the :initial-text slot of multifont-text is also used by many of the
procedures and functions that can be called using the multifont object.

In its simplest form, the :initial-text format can be a single string. In this form, the
default font and colors are used.

(create-instance ’opal:multifont-text opal:aggregate

...
(:initial-text "here is my example string.")

...

All other formats require a list structure. The outermost list is the list of lines: (list

line1 line2 ...). A line can either be a string in which case the default font and colors
are used, or a line can be a list of fragments: (list frag1 frag2 ...). Each line acts as
though it ends with a newline character. If the multifont-text has word wrap activated,
each line will also be broken at places where the length of the text exceeds the :text-width,
thus the user need not compute how to break up the text to be placed in the window. A
fragment is the unit that allows the user to enter font data into the :initial-text format.
A fragment can be one of the following:

• a string, in which case the defaults are used.

• a consing of a string with a Garnet font: (cons "string" garnet-font).

• a list of a string, font, foreground color, and background color: (list "string" font

f-color b-color). If font or color is nil, the default will be used.

• a view-object (See [Using view-objects as Text], page 192).

• a mark, in the form (list :mark sticky-left name info) (See [Using Marks],
page 192).

Note that only the fragment level contains font or color information. For instance, a single
line in bold font may look like this:

‘((,(cons "Here is my example string"

(opal:get-standard-font :fixed :bold :medium))))

Here is a set of sample values for the :initial-text slot. Each of these examples are
pictured in 〈undefined〉 [fig:ex6], page 〈undefined〉. Details on using fonts, colors, marks,
and graphical objects are given in section [Functions on Multifont Text], page 187.

;; Define some fonts for brevity, and a circle to use in a string.

(setf italic (opal:get-standard-font :fixed :italic :medium))

(setf bold (opal:get-standard-font :fixed :bold :medium))

(create-instance ’my-circle opal:circle)

;; A pair of lines. Both lines are strings.

’("An example string" "with multiple lines")

;; Same pair of lines in italics.

‘((("an example string" . ,italic))

(("with multiple lines" . ,italic)))

;; A single line with multiple fragments. Note fragments can be strings

Chapter 5: Opal: The Garnet Graphical Object System 187

;; when default font is desired.

‘(("Here " ("is" . ,italic) " my " ("example" . ,bold) " string."))

;; A single line containing a graphical object

‘(("Here is a circle:" ,my-circle))

;; A single line with colored fragments

‘(("Here is "

("yellow" ,bold ,opal:yellow)

" and "

("red" ,bold ,opal:red)

" text"))

;; A single line with marks. Note: make marks visible by setting

;; :show-marks to t.

‘(("The " (:mark nil) "(parentheses)" (:mark t) " are marked")))

Figure 5.7: Examples of the multifont-text object

5.8.2 Functions on Multifont Text

The opal:multifont-text differs from most objects in that it has a great number of func-
tions that operate on it. The functions range from mundane cursor movement to compli-
cated operations upon selected text. Very few operations can be performed by manipulating
the slots of a multifont object.

5.8.2.1 Functions that Manipulate the Cursor

[Function]opal:set-cursor-visible text-obj vis
This makes the cursor of a multifont-text visible or invisible, depending on whether
vis is t or nil. Having a visible cursor is not required for entering text, but is
recommended for situations requiring user feedback. This function does not return
any useful value.

Chapter 5: Opal: The Garnet Graphical Object System 188

[Function]opal:set-cursor-to-x-y-position text-obj x y
[Function]opal:set-cursor-to-line-char-position text-obj line-num

char-num
These move the cursor to a specific location in the multifont-text. The function
set-cursor-to-x-y-position sets the cursor to the position nearest the (x, y) pixel
location. The function set-cursor-to-line-char-position tries to place the cursor
at the position indicated (zero-based). If the line or character position is not legal,
it will try to find a reasonable approximation of the location given. Neither function
returns any useful value.

[Function]opal:go-to-next-char text-obj
[Function]opal:go-to-prev-char text-obj
[Function]opal:go-to-next-word text-obj
[Function]opal:go-to-prev-word text-obj
[Function]opal:go-to-next-line text-obj
[Function]opal:go-to-prev-line text-obj

These functions move the cursor relative to where it is currently located. The func-
tions go-to-next-char and go-to-prev-char move the cursor one character at a
time. The functions go-to-next-word and go-to-prev-word move the cursor one
word at a time. In this case, a word is defined by non-whitespace characters separated
by whitespace. A whitespace character is either a space or a newline. These func-
tions will skip over all non-whitespace until they reach a whitespace character. They
will then skip over the whitespace until they find the next non-white character. The
functions go-to-next-line and go-to-prev-line moves down and up one line at a
time. The horizontal position of the cursor will be maintained as close as possible to
its position on the original line. The functions go-to-next-char, go-to-prev-char,
go-to-next-word, and go-to-prev-word all return the characters that were passed
over including newlines as a simple string. nil will be returned if the cursor does not
move as a consequence of being at the beginning or end of the text. The functions
go-to-next-line and go-to-prev-line do not return useful values.

[Function]opal:go-to-beginning-of-line text-obj
[Function]opal:go-to-end-of-line text-obj
[Function]opal:go-to-beginning-of-text text-obj
[Function]opal:go-to-end-of-text text-obj

These functions move the cursor to a position at the beginning or end of something.
The functions go-to-beginning-of-line and go-to-end-of-line move the cursor
to the beginning or end of its current line. The functions go-to-beginning-of-

text and go-to-end-of-text move the cursor to the beginning or end of the entire
document. None of these functions return a useful value.

5.8.2.2 Functions for Text Selection

[Function]opal:toggle-selection text-obj mode
This will turn off and on the selection mode. When selection mode is on, moving
the cursor will drag the selection highlight to include characters that it passes over.
Moving the cursor back over selected text will unselect and unhighlight the text.

Chapter 5: Opal: The Garnet Graphical Object System 189

Setting mode to t turns on selection mode, and setting it to nil turns off selection
mode. Turning off selection mode will unhighlight all highlighted text.

[Function]opal:set-selection-to-x-y-position text-obj x y
[Function]opal:set-selection-to-line-char-position text-obj line-num

char-num
These functions are similar to the functions set-cursor-to-x-y-position and
set-cursor-to-line-char-position. The selection highlight has two ends. One
end is bound by the cursor; here, the other end is called the selection end. To move
the cursor end of the highlight, use the cursor functions. To move the selection end,
use these two functions. The function set-selection-to-x-y-position sets the
selection end based on pixel position. The function set-selection-to-line-char-

position is based on line and character position. Neither function returns a useful
value.

[Function]opal:copy-selected-text text-obj
[Function]opal:delete-selection text-obj &optional lisp-mode-p

These functions are used to manipulate the selected text. The copy-selected-text
function just returns the selected text without affecting the multifont object. The
function delete-selection removes all selected text from the multifont object and
returns it. Both functions return the text in the text format described above. The
function delete-selection will also automatically turn off selection mode. Since
special bookkeeping is done to keep track of parentheses and function names in lisp-
mode, you must supply a value of T for lisp-mode-p when the interactors currently
working on the text-obj are in lisp-mode.

[Function]opal:change-font-of-selection text-obj font &key family size
italic bold

The font of selected text can be updated using this function. There are two options.
The new font can be given explicitly using the font parameter, or it can be updated
by setting font to nil and using the key parameters.

Valid values for family are:

:fixed - makes font fixed width

:serif - makes font variable-width with "serifs" on the characters

:sans-serif - makes font variable-width with no serifs on the characters

Values for size are:

:small - makes font smallest size

:medium - makes font medium size

:large - makes font large size

:very-large - makes font the largest size

:bigger - makes font one size larger than it is

:smaller - makes font one size smaller than it is

Values for italic and bold are:

t - makes font italic or bold

Chapter 5: Opal: The Garnet Graphical Object System 190

nil - undoes italic or bold

:toggle - toggles italic or bold throughout the selected region.

:toggle-first - looks at the first character of the selection, and changes the
entire region by toggling based on the bold or italic of that character

The function change-font-of-selection is also used to change the value of the slot
:current-font even if there is no text selected.

[Function]opal:Change-Color-Of-Selection text-obj foreground-color
background-color

This function will change the color of the selected text. If only one of foreground-
color and background-color needs to be changed, the other should be sent as nil. This
function also changes the values of the slots :current-fcolor and :current-bcolor.

5.8.2.3 Functions that Access the Text or Cursor

[Function]opal:get-string text-obj
[Function]opal:get-text text-obj

These functions return the entire contents of the multifont-text object. The func-
tion get-string returns the contents as a single string with #\newlines separating
lines. The function get-text returns the contents in the :initial-text slot format.

[Function]opal:get-cursor-line-char-position text-obj
[Function]opal:get-selection-line-char-position text-obj

These return the position of the cursor or the selection end of a highlight. The values
are returned using multiple return values: (values line char).

[Function]opal:fetch-next-char text-obj
[Function]opal:fetch-prev-char text-obj

These return the character before or after the cursor. The function fetch-next-char

returns the character after the cursor, and fetch-prev-char returns the character
before the cursor. Neither function affects the text of the object. The functions will
return nil if the cursor is at the beginning or end of the text where there is no
character before or after the cursor.

5.8.3 Adding and Editing Text

[Function]opal:add-char text-obj char &optional font foreground-color
background-color lisp-mode-p

[Function]opal:insert-string text-obj string &optional font foreground-color
background-color

[Function]opal:insert-text text-obj text
These functions are used to add text to a multifont object. The function add-char

adds a single character, the function insert-string adds a whole string possibly
including newline, and insert-text adds text that is in :initial-text slot format.

The optional font and color parameters indicate the font and color of the new text.
If any of these parameters are nil, the newly added text will use the value of the
:current-font, :current-fcolor, and/or :current-bcolor slots, which can be set

Chapter 5: Opal: The Garnet Graphical Object System 191

chapterly or allowed to take on the font and colors of the character over which the
cursor last passed.

The optional lisp-mode-p argument indicates whether the interactors currently work-
ing on the multifont object are in lisp-mode. Extra operations are performed on the
string to keep track of parentheses and function names when in lisp-mode, and this
parameter is required to keep the bookkeeping straight.

[Function]opal:delete-char text-obj
[Function]opal:delete-prev-char text-obj
[Function]opal:delete-word text-obj
[Function]opal:delete-prev-word text-obj

These functions are used to delete text from a multifont object. The functions
delete-char and delete-prev-char delete a single character after or before the
cursor. The functions delete-word and delete-prev-word delete a single word. A
word is defined the same way as in the functions go-to-next-word and go-to-prev-

word. The word will be deleted by deleting whitespace characters up to the first
non-whitespace character and then deleting all non-whitespace up to the next white-
space character. The value returned by these functions is the characters deleted. nil
is returned if no characters are deleted.

[Function]opal:delete-substring text-obj start-line-num start-char-num
end-line-num end-char-num

[Function]opal:kill-rest-of-line text-obj
These functions are used to delete larger portions of text. The function
delete-substring removes all characters within the given range. If the
start position is after the end position, nothing will happen. The function
kill-rest-of-line deletes all characters from the cursor to the end of the current
line. When word wrap is on, the end of a wrapped line is where the wrap occurs.
Both functions return the deleted text as a string.

[Function]opal:set-text text-obj text
This function is used to reset everything in the multifont object. All previous
text is deleted and the new text is put in its place. The text parameter uses the
:initial-text slot format. The new cursor position will be at the beginning of the
text. This function does not return a useful value.

5.8.3.1 Operations on :initial-text Format Lists

[Function]opal:text-to-pure-list text
[Function]opal:pure-list-to-text list

These functions converts text in the :initial-text slot format into a format that
is similar but uses a list representation for fonts, colors, marks, and view-objects.
Converting the fonts from Garnet objects to lists makes operations such as reading
or writing text objects to files easier. To convert from :initial-text format to list
use text-to-pure-list and to convert back use pure-list-to-text.

[Function]opal:text-to-string text
This function converts text in the :initial-text format into a regular character
string, losing all font, color, and mark information.

Chapter 5: Opal: The Garnet Graphical Object System 192

[Function]opal:concatenate-text text1 text2
This function is like the lisp function concatenate for arrays. The function will
return the concatenation of text2 onto the end of text1. The function will not affect
text1 or text2.

5.8.3.2 Using view-objects as Text

[Function]opal:add-object gob object
[Function]opal:get-objects gob
[Function]opal:notice-resize-object object

These functions are useful when you want to include a shape or other view-object in
the multifont text. The function add-object will insert a view-object at the cursor.
The object will act just like a character; the cursor can move over it, and it can be
selected, deleted, etc. The function get-objects will return a list of all the objects
currently in the text. When the size of an object which is in the text changes, the
function notice-resize-objects should be used to notify multifont of the change.

5.8.3.3 Using Marks

Another feature of the multifont object is the ability to use text-marks. The function
insert-mark will insert a mark at the cursor. Marks are invisible to the cursor as you
are typing, and are primarily used as place-holders in the text. The lisp-mode feature uses
marks to keep track of parentheses when it is paren-matching. To make all of the marks in
a multifont object visible (so you can see them), set the :show-marks slot to t.

[Function]opal:insert-mark gob sticky-left &key name info
The sticky-left-p parameter should be t if the mark should stick to the character on
its left, and nil if it should stick to the one on its right. When a mark "sticks" to a
character, the cursor cannot be inserted between the character and the mark. This
makes the position of the mark equivalent to the position of the character, so it is
easy to determine whether the cursor is on the left or right side of the mark.

One implication of "stickiness" is that a mark moves through the string along with
the character that it is stuck to (i.e., if you are typing with the cursor in front of
the mark, the mark will be pushed forward along with the character in front of it).
Another implication is that when a character is deleted, the mark(s) stuck to it will
be deleted as well.

The name parameter is a useful way to differentiate between marks, and info can be
used to let the mark carry any additional information that might be useful.

[Function]opal:search-for-mark gob &key name info
[Function]opal:search-backwards-for-mark gob &key name info
[Function]opal:between-marks-p gob &key name info

The functions search-for-mark and search-backwards-for-mark will return the
mark which is nearest to the cursor. Leaving out the keywords will search for any
mark, or include a name or info to search for a specific type of mark. The function
between-marks-p can help to use marks as a type of region. It will search right and
left, and will return t if the mark found to the left is sticky-left and the one on the
right is sticky-right.

Chapter 5: Opal: The Garnet Graphical Object System 193

5.8.4 Interactors for Multifont Text

It may seem strange to find a section about interactors in the Opal chapter, since the
interactors mentioned here are integral to using the opal:multifont-text object, it was
decided to include their description here, near the description of the multifont-text. If
you are not familiar with the basic principles of interactors, you will be best served if you
read the interactors chapter first, particularly the parts about the inter:text-interactor
and the slots of all interactors.

There are three interactors for multifont-text objects. The multifont-text-interactor

is similar to the standard text-interactor, and is used in much the same way. Two other
interactors, the focus-multifont-textinter and selection-interactor are designed to
work together in more complicated situations, like when there are two or more multifont
objects being edited in the same window.

The convenient multifont-gadget (See [A Multifont Text Gadget], page 199) combines the
focus-multifont-textinter and selection-interactor with a multifont-text object,
so you might be able to use it rather than explicitly creating the interactors below. However,
the gadget is only useable when you have exactly one multifont-text object in a window.
If you want more than one text object, then you should create the interactors explicitly
because there should still be only one pair of interactors in each window, and the interactors
should be set up so the :start-where will return one of the multifont objects. So, it could
be an :element-of ... type specification or a :list-of ... or whatever that will return
multifonts, just so long that it doesn’t return other types of objects.

5.8.4.1 Multifont Text Interactor

(create-instance ’inter:multifont-text-interactor inter:text-interactor

(:window nil)

(:edit-func #’inter::multifont-text-edit-string)

;; For the following three slots, See [Lisp Mode], page 197

(:lisp-mode-p nil)

(:match-parens-p nil)

(:match-obj ...)

;; See Section 6.20.1 [text-interactor], page 275

(:button-outside-stop? t)

(:drag-through-selection? t)

;; (lambda (inter text-obj))

(:stop-action #’inter::multifont-text-int-stop-action)

(:after-cursor-moves-func nil))

This interactor was designed to appeal to people familiar with the inter:text-interactor.
The interactor is started when you click the mouse on a text object, and it stops when
you type the stop-event, like RET. The editing commands (listed below) are similar to
inter:text-interactors’s commands, with many additional ones.

The new slot :drag-through-selection? controls whether dragging through the string
with the mouse will cause the indicated region to become selected. You can apply all the
standard multifont commands to a region that is selected this way. Note: since we use

Chapter 5: Opal: The Garnet Graphical Object System 194

"pending-delete" like the Macintosh, if you type anything when something is selected, the
selected text is deleted.

The keys names below are the familiar Unix/Emacs compose and function keys.

C-f, C-b, C-d, C-h
Move or delete character: forward, backwards, delete forwards, delete back-
wards

LEFT, RIGHT
backwards, forwards

M-f, M-b, M-d, M-h
same but by words

C-p, C-n previous line, next line

UP, DOWN previous line, next line

C-, or HOME
beginning of document

C-. or END
end of document

C-a beginning of line

C-e end of line

C-k kill line

C-u delete entire string

C-w, CUT delete selection

M-w, COPY copy selection to interactor cut buffer

C-c copy entire string to X11 cut buffer

C-y, PASTE
yank interactor cut buffer or X11 cut buffer into string

C-Y, C-PASTE
yank X11 buffer

M-y, C-PASTE
yank interactor cut buffer

The following key combinations extend the selection while moving:

C-LEFT, C-RIGHT
prev, next char selecting

C-LEFT, C-RIGHT
prev, next word selecting

C-UP, C-DOWN
up-line, down-line selecting

C-HOME, C-END
beginning, end of string selecting

C-* select all

Chapter 5: Opal: The Garnet Graphical Object System 195

C-M-key Lisp Stuff If You Have Lisp Mode on (See Below)

C-M-b, C-M-LEFT
prev lisp expression

C-M-f, C-M-RIGHT
next lisp expression

C-M-h, C-M-BS, C-M-DELETE
delete prev s-expr

C-M-d delete next s-expr

C-SHIFT-key Is for Font Stuff

C-SHIFT-B

toggle bold

C-SHIFT-I

toggle italic

C-SHIFT-F

fixed font (courier)

C-SHIFT-T

times font (serif)

C-SHIFT-H

helvetica font (sans-serif)

C-SHIFT-<

smaller font

C-SHIFT->

bigger font

C-1, C-2, C-3, C-4
small, medium, large, and very-large fonts

Of course, you can change the mapping of all these functions, using the standard
inter:bind-key mechanism See Section 6.20.1 [text-interactor], page 275.

5.8.4.2 Focus Multifont Text Interactor

(create-instance ’inter:focus-multifont-textinter inter:interactor

(:window nil)

(:obj-to-change nil)

(:stop-event nil)

(:lisp-mode-p nil)

(:match-parens-p nil)

(:match-obj ...)

;; (lambda (inter obj final-event final-string x y))

(:final-function nil)

;; (lambda (inter text-obj))

(:after-cursor-moves-func nil))

For applications where one wants the user to be able to type text into a multifont text
object without first having to click on the object, the focus-multifont-textinter was

Chapter 5: Opal: The Garnet Graphical Object System 196

created. This interactor provides a feel more like a text editor. The demo demo-text

shows how to use the focus-multifont-textinter to create and edit multifont-text

objects. The demo-multifont text editor shows how to use this interactor along with the
selection-interactor described in the next section.

Unlike other interactors, this interactor never goes into the running state. The interactor
can only start. This means that aborting this interactor, or setting the :continuous slot to
non-nil is meaningless. The only way to stop the interactor is either to deactivate it (set
the :active-p slot to nil) or to destroy it. If two or more of these interactors are in the
same window, all of the interactors will fetch the keyboard events and send them to their
corresponding multifont text objects. Extreme caution is urged when having two or more
focus interactors in the same window to avoid having keystrokes go to multiple objects.
Ways to avoid having keystrokes go to multiple destinations are to have non-overlapping
:start-where positions for all the interactors or to make certain that all idle interactors
have their :obj-to-change slot set to nil.

Usually this interactor will continue running until it is destroyed, but you may want to exe-
cute a final function whenever a particular key is pressed. Whenever the user issues the event
specified in the :stop-event slot (like RET), the function in :final-function is executed.
The parameters to the final-function are the same as for the standard text-interactor:

(lambda (an-interactor obj-being-edited final-event final-string x y))

When a focus-multifont-textinter is in a window, all keyboard input will be fed directly
into the multifont text object that is in its :obj-to-change slot. If the :obj-to-change

slot is nil, then no multifont text object has the focus.

The inter:focus-multifont-textinter has the same key bindings as the
inter:multifont-text-interactor.

The inter:focus-multifont-textinter also has several functions that can be used on
it. These functions are used mainly to manipulate the multifont text that the interactor is
focused upon.

[Function]inter:set-focus interactor multifont-text
This function changes the focus of a focus-multifont-textinter from one text
object to another. The cursor of the newly activately text object will become visible
indicating that it is ready to accept text. The cursor of the previous text object will
become invisible and any selected text will become unselected. If the multifont-text
parameter is nil, then the currently selected text object will become unselected and
no object will have the focus. This function does not return any useful value.

[Function]inter:copy-selection interactor
[Function]inter:cut-selection interactor
[Function]inter:paste-selection interactor

These functions perform cut, copy, and paste operations upon the text object that
currently has the focus. The cut-selection and copy-selection operations copy
the selected text into the cut-buffer. cut-selection will delete the selected text, but
copy-selection will leave it unaffected. paste-selection inserts the cut buffer at
the position of the cursor.

Chapter 5: Opal: The Garnet Graphical Object System 197

5.8.4.3 Selection Interactor

(create-instance ’inter:selection-interactor inter:interactor

(:focus-interactor ...)

(:match-parens-p nil)

(:match-obj ...))

The selection-interactor is a complementary interactor to the focus-multifont-

textinter. The selection-interactor controls mouse input so that the user may click
and drag the mouse in order to select text and choose a new multifont object to edit. The
:focus-interactor slot must be filled with a valid inter:focus-multifont-textinter

interactor. It is the interactor in that slot that will be used to reset the focus if a
new multifont object is clicked upon. The :start-where slot must include all possible
multifont objects that the selection-interactor operates upon. If a new multifont
object is clicked upon the selection-interactor will reset the focus to the new object
and place the cursor at the point where the mouse was clicked. If the mouse is clicked in
the multifont object that contains the cursor, the cursor will be moved to position of the
click. Dragging the mouse across a multifont object will select the text that was passed
over by the mouse. Clicking the mouse while holding the shift key (or clicking the mouse
with the right button instead of the left) causes the selection highlight to extend to the
newly clicked position.

The selection-interactor uses a key translation table to decode different types of
clicking operations. The current table translates :leftdown to :start-selection and
:shift-leftdown and :rightdown to :start-selection-continue. These combinations
can be changed and other combinations added by using the inter:bind-key function.

5.8.4.4 Lisp Mode

Multifont supports a special text-entry mode which is useful for typing Lisp functions or
programs. This mode can be used by setting the :lisp-mode-p slot of the multifont-text-
interactor or focus-multifont-textinter to T. When in lisp mode, lines of text will
tab to the appropriate spot, and semicolon comments will appear in italics. It is important
that the fonts of the text are not changed during lisp-mode, since certain fonts hold special
meaning for tabs and parenthesis-matching.

[Function]inter:indent string how-many how-far
This function can be used to define a special indent amount for your own function. The
argument string is the name of the function, how-many is the number of arguments
(starting with the first) that should be indented the special amount, and how-far is an
integer signifying how many spaces from the start of the function name these special
arguments should be placed. If how-far is -1, then the indent will line up with the
first argument on the line above it. The argument following the last special argument
will be placed one space in from the start of the function name, and all following
arguments will line up with the first argument on the line above it. Here are some
examples of the default indentations:

(indent "defun" 2 4)

(indent "create-instance" 2 4)

(indent "let" 1 4)

Chapter 5: Opal: The Garnet Graphical Object System 198

(indent "do" 2 -1)

(indent "cond" 0)

(indent "define-method" 3 4)

There are several keys which are bound specially during lisp mode:

C-M-f, C-M-RIGHT
skip forward lisp expression

C-M-b, C-M-LEFT
skip backward lisp expression

C-M-d delete lisp expression

C-M-h, C-M-BS
delete previous lisp expression

Also helpful in lisp mode is setting the :match-parens-p of the interactors to T.
When the cursor is next to a close parenthesis, the corresponding open parenthesis
will be highlighted in boldface. Also, if the interactors’ :match-obj is set to another
multifont object, that object’s text will be set to the text of the line that the matching
open parenthesis is on.

[Function]inter:turn-off-match interactor
This function can be used to externally turn off a matched parenthesis, since it will
only be automatically turned off when the cursor is moved away from the close paren-
thesis.

[Function]inter:add-lisp-char text-obj char &optional new-font
new-foreground-color new-background-color

[Function]inter:delete-lisp-region text-obj
Because lisp mode does some extra things during addition and deleting of text, these
special functions should be used when in lisp mode in the place of opal:add-char and
opal:delete-selection. If changes are made externally without using these func-
tions, future tabs and parenthesis-matching may not work properly. Note: you can
also use the lisp-mode-p parameter of opal:add-char and opal:delete-selection

to indicate that the operation is taking place while lisp-mode is active.

[Function]inter:lispify string
This function takes a plain string and will return text which will work in lisp mode.
The returned text is in :initial-text format, and can be used with functions such
as set-text. The text will already be indented and italicized properly.

5.8.5 Auto-Scrolling Multifont Text Objects

A companion to the word-wrap feature is the vertical auto scroll feature. The auto scroll
option can be utilized when a multifont-text object is used inside a scrolling-window along
with a focus-multifont-textinter, multifont-text-interactor, or selection-interactor.

The interface for auto-scrolling opal:multifont-text is the same as for opal:text, See
[Scrolling Text Objects], page 182,

Chapter 5: Opal: The Garnet Graphical Object System 199

5.8.6 After Cursor Moves

To support lisp-mode, there is a slot of the three multifont interactors
(multifont-textinter, focus-multifont-textinter, selection-interactor)
called :after-cursor-moves-func. If non-nil, it should be a function called as (lambda
(inter text-obj)) and will be called whenever the cursor moves, or the text to the left
of the cursor changes.

If the function in this slot is overridden with a user-supplied function, the new function
should do a (call-prototype-method ...) to ensure that the default lisp-mode indenta-
tion function is executed, also.

5.8.7 A Multifont Text Gadget

Putting a gadget description into the Opal section is fairly strange. Just as the interac-
tors section above, it was decided that the multifont-gadget should be described in the
multifont-text section.

(create-instance ’gg:multifont-gadget opal:aggregadget

(:left 0)

(:top 0)

(:initial-text (list ""))

(:fill-background-p nil)

(:word-wrap-p nil)

(:text-width 300)

(:stop-event nil)

(:selection-function nil))

The multifont-gadget is a conglomeration of a multifont-text, a focus-multifont-

textinter, and a selection-interactor. These are all put together to take some of the
trouble out of assembling the pieces by hand. The slots of the gadget are the same as
the multifont-text. To use the gadget just create it and go. The keyboard and mouse
handling are built in. The trouble with this gadget is that you cannot have more than one
multifont-gadget per window. If you have more than one, all the gadgets will receive the
same keystrokes; thus, all the gadgets will respond to the keyboard at the same time.

Usually the gadget will continue running until it is destroyed, but you may want to execute
a selection function whenever a particular key is pressed. Whenever the user issues the
event specified in the :stop-event slot (like RET), the function in :selection-function

is executed. The selection function takes the usual parameters (the gadget and its value),
where the value is the pure text representation of the gadget’s current string.

There is a small demo of how to use the multifont text gadget in the gadget file. To run it,
execute (garnet-gadgets:multifont-gadget-go).

5.9 Aggregate objects

Aggregate objects hold a collection of other graphical objects (possibly including other
aggregates). The objects in an aggregate are called its components and the aggregate is
the parent of each component. An aggregate itself has no filling or border, although it does
have a left, top, width and height.

Note: When you create an aggregate and add components to it, creating an instance of
that aggregate afterwards does not create instances of the children. If you use Aggregad-
gets instead, then you do get copies of all the components. Aggregadgets also provide a

Chapter 5: Opal: The Garnet Graphical Object System 200

convenient syntax for defining the components. Therefore, it is often more appropriate to
use Aggregadgets than aggregates. See the Aggregadgets chapter AggregadgetsChapter.

5.9.1 Class Description

(create-instance ’opal:Aggregate opal:view-object

(:components nil)

(:hit-threshold 0)

(:overlapping T))

The :components slot holds a list of the graphical objects that are components of the
aggregate. This slot should not be set directly but rather changed using add-component

and remove-component (section [addremsection], page 200). The covering (which is the
ordering among children) in the aggregate is determined by the order of components in the
:components slot. The list of components is stored from bottommost to topmost. This
slot cannot be set directly.

opal:Set-Aggregate-Hit-Threshold agg[function], page 90

As is the case with graphical objects, the :hit-threshold slot of an aggregate controls the
sensitivity of the point-in-gob methods to hits that are near to that aggregate. The value
of the :hit-threshold slot defaults to 0, but calling set-aggregate-hit-threshold sets
the :hit-threshold of an aggregate to be the maximum of all its components.

The :overlapping slot is used as a hint to the aggregate as to whether its components
overlap. This property allows the aggregate to redraw it’s components more efficiently. You
can set the :overlapping slot to nil when you know that the first level children of this
aggregate will never overlap each other on the screen. Currently, this slot is not used, but
it may be in the future.

Aggregates have a bounding box, which, by default, is calculated from the sizes and positions
of all its children. If you want to have the position or size of the children depend on that
of the parent, it is important to provide an explicit value for the position or size of the
aggregate, and then provide formulas in the components that depend on the aggregate’s
values. Be careful to avoid circularities: either the aggregate should depend on the sizes
and positions of the children (which is the default) or the children should depend on the
parent. These cannot be easily mixed in a single aggregate. It is important that the size
and position of the aggregate correctly reflect the bounding box of all its components, or
else the redisplay and selection routines will not work correctly.

5.9.2 Insertion and Removal of Graphical Objects

[Function]opal:add-component aggregate graphical-object [[:where]
position[locator]]

The method add-component adds graphical-object to aggregate. The position and
locator arguments can be used to adjust the placement/covering of graphical-object
with respect to the rest of the components of aggregate.

There are five legal values for position; these are: :front, :back, :behind, :in-front, and
:at. Putting an object at the :front means that it is not covered by any other objects
in this aggregate, and at the :back, it is covered by all other objects in this aggregate.
Positioning graphical-object at either :front or :back requires no value for locator, as these

Chapter 5: Opal: The Garnet Graphical Object System 201

are unique locations. If position is either :behind or :in-front then the value of locator
should be a graphical object already in the component list of the aggregate, in which case
graphical-object is placed with respect to locator. In the final case, with position being :at,
graphical-object is placed at the locatorth position in the component list, where 0 means at
the head of the list (the back of the screen).

If none are supplied, then the new object is in front of all previous objects. The :where

keyword is optional before the locators, so all of the following are legal calls:
(opal:add-component agg newobj :where :back)

(opal:add-component agg newobj :back)

(opal:add-component agg newobj) ; adds newobj at the :front

(opal:add-component agg newobj :behind otherobj)

(opal:add-component agg newobj :at 4)

Objects cannot belong to more than one aggregate. Attempting to add a component of
one aggregate to a second aggregate will cause Opal to signal an error. If the locator for
:behind or :in-front is not a component of the aggregate Opal will also signal an error.

[Function]opal:add-components aggregate &rest graphical-objects
This function adds multiple components to an aggregate. Calling this function is
equivalent to:

(dolist (gob (list graphical-object[*]))

(add-component aggregate gob))

An example of using add-components is:
(opal:add-components agg obj1 obj2 myrect myarc)

Note that this has the effect of placing the list of graphical objects from back to front
in aggregate since it inserts each new object with the default :where :front.

[Method on opal:remove-component]aggregate graphical-object
The remove-component method removes the graphical-object from aggregate. If ag-
gregate is connected to a window, then graphical-object will be erased when the
window next has an update message ([Methods and Functions on Window Objects],
page 213) sent to it.

[Function]opal:remove-components aggregate &rest graphical-object
Removes all the listed components from aggregate.

[Function]opal:move-component aggregate graphical-object [[:where]
position[locator]]

move-component is used to change the drawing order of objects in an aggregate, and
therefore change their covering (since the order of objects in an aggregate determines
their drawing order). For example, this function can be used to move an object to the
front or back. The object should already be in the aggregate, and it is moved to be at
the position specified. It is like a remove-component followed by an add-component

except that it is more efficient. The parameters are the same as add-component.

5.9.3 Application of functions to components

There are two methods defined on aggregates to apply functions to some subset of the ag-
gregate’s components. The methods work on either the direct components of the aggregate
or all objects that are either direct or indirect components of the aggregate.

Chapter 5: Opal: The Garnet Graphical Object System 202

[Function]opal:do-components aggregate function &key type self
The do-components method applies function to all components of aggregate in back-
to-front order. The function should take one argument which will be the component.
If a type is specified, the function is only applied to components that are of that type.
If the call specifies :self to be t (the default is nil), and the aggregate is of the
specified type, then the function is applied to aggregate after being applied to all of
the components.

The function must be non-destructive, since it will be applied to the components list
of aggregate, not to a copy of the components list. For instance, function cannot
call remove-component on the components. If you want to use a function that is
destructive, you must make a copy of the components list and call dolist yourself.

[Function]opal:do-all-components aggregate function &key type self
The do-all-components method works similarly to do-components, except that in
the case that a component is an aggregate, do-all-components is first called recur-
sively on the component aggregate and then applied to the component aggregate itself.
self determines whether to call the function on the top level aggregate (default=nil)
after all components.

5.9.4 Finding Objects Under a Given Point

[Function]opal:point-to-component aggregate x y &key type
[Function]opal:point-to-leaf aggregate x y &key type

Point-to-component queries the aggregate for the first generation children at point
(x,y). The value of type can limit the search to graphical objects of a specific type.
This function returns the topmost object at the specified point (x,y).

Point-to-leaf is similar except that the query continues to the deepest children in
the aggregate hierarchy (the leaves of the tree). Sometimes you will want an aggregate
to be treated as a leaf in this search, like a button aggregate in a collection of button
aggregates. In this case, you should set the aggregate that should be treated like a
leaf. The search will not proceed through the components of such an aggregate, but
will return the aggregate itself.

The type slot can be either t (the default), a type, or a list of types. If type is
specified as an atom, only objects that are of that type will be tested. If type is
specified as a list, only objects whose type belongs to that list will be tested. The
value t for type will match all objects. If the type is specified for a point-to-leaf

call, and the type is a kind of aggregate, then the search will stop when an aggregate
of that type (or types) is found at the specified (x,y) location, rather than going all
the way to the leaves. For example:

(create-instance ’myaggtype opal:aggregate)

(create-instance ’myagg myaggtype)

(create-instance top-agg opal:aggregate)

(opal:add-component top-agg myagg)

(create-instance obj1 ...)
(create-instance obj2 ...)
(opal:add-components myagg obj1 obj2)

;; will return obj1, obj2, or nil

Chapter 5: Opal: The Garnet Graphical Object System 203

(opal:point-to-leaf top-agg x y)

;; will return myagg or nil

(opal:point-to-leaf top-agg x y :type myaggtype)

Point-to-leaf and point-to-component always use the function point-in-gob on
the components.

5.9.5 Finding objects inside rectangular regions

opal:Components-In-Rectangle aggregate top left bottom right &key type intersect[function],

page 90

opal:Leaf-Objects-In-Rectangle aggregate top left bottom right &key type intersect[function],

page 90

opal:Obj-In-Rectangle object top left bottom right &key type intersect[function], page 90

The routine components-in-rectangle queries the aggregate for the first generation chil-
dren that intersect the rectangle bounded by top, left, bottom, and right. If intersect is nil,
then the components which are returned must be completely inside the rectangle, whereas
if intersect is non-nil (the default), then the components need only intersect the rectangle.
The value of type can limit the search to graphical objects of a specific type.

Leaf-objects-in-rectangle is similar except that the query continues to the deepest
children in the aggregate hierarchy (the leaves of the tree). Sometimes you will want an
aggregate to be treated as a leaf in this search, like a button aggregate in an aggregate of
buttons. In this case, you should set the aggregate that should be treated like a leaf. The
search will not proceed through the components of such an aggregate, but will return the
aggregate itself.

Obj-in-rectangle tells whether the bounding box of object intersects the rectangle
bounded by top, left, width and height. If intersect is non-nil (the default) then object
need only intersect the rectangle, whereas if intersect is nil then object must lie completely
inside the rectangle. If type is not t (the default) then object must be of type type.

5.10 Virtual-Aggregates

Virtual-aggregates are used when you are going to create a very large number of objects
(e.g., 300 to 50,000) all of which are fairly similar. For example, they are useful for points in
a scatter plot, squares in a "fat-bits" bitmap editor, line segments in a map, etc. The virtual
aggregate pretends to provide an object for each element, but actually doesn’t. This can
save an enormous amount of memory and time, while still providing an interface consistent
with the rest of Garnet.

The primary restriction is that there cannot be references or constraints from external
objects to or from any of the elements of the virtual-aggregate. Typically, all the constraints
will be internal to each object displayed, and all the properties will be determined by the
values in the :items array.

The interface is similar to aggrelists. The programmer provides an item-prototype, used for
all the elements, and an (optional) items list to form the initial value. To be more efficient,
the items list is actually an array for virtual-aggregates. The item-prototype can be an
arbitrary object or aggregadget structure, and can use whatever formulas are desired to

Chapter 5: Opal: The Garnet Graphical Object System 204

calculate the appropriate display based on the corresponding value of the items list and the
object’s rank in the item’s list.

We have implemented two styles of virtual-aggregates, with a third style in planning. The
first style is for arbitrary overlapping objects, and is described below. The second style is
for non-overlapping 2-D arrays of objects, such as bitmap-editor tiles.

The third style is like the first, for arbitrary overlapping objects. However, unlike the first
style, it would use more sophisticated techniques for computing the overlapping of objects,
rather than using linear search like the first style. For example, it might use quad trees or
whatever.

So far, we have implemented the first and second style only. Examples of using these
virtual-aggregates are in demo-circle for the first style and demo-array for the second.

5.10.1 Virtual-Aggregates Slots

A virtual-aggregate is a graphical object, with its own :draw, :point-to-component,
:add-item, and :remove-item methods. It is defined as:

(create-instance ’opal:virtual-aggregate opal:graphical-object

...

(:item-prototype ...) ;; you must provide this

(:point-in-item ...) ;; you must provide this

(:item-array ...) ;; you may provide this

(:dummy-item ...)

)

For example, in demo-circle the virtual-aggregate is:
(create-instance nil opal:virtual-aggregate

(:item-prototype my-circle)

(:point-in-item #’my-point-in-circle))

Here are the slots you must provide for a virtual-aggregate.

:ITEM-PROTOTYPE
In the :item-prototype slot, you put the Garnet object of your choice (primitive object or
aggregadget). You must, however, have formulas in your :item-prototype object that depend
on its :item-values and/or :rank slot. The :rank is set with the object’s rank in the
:items array. The :item-values is set with the appropriate data from the :item-array.
For instance, in demo-circle, the item-prototype is:

(create-instance ’MY-CIRCLE opal:circle

(:filling-style (o-formula (fourth (gvl :item-values))))

(:radius (o-formula (third (gvl :item-values))))

(:left (o-formula (- (first (gvl :item-values)) (gvl :radius))))

(:top (o-formula (- (second (gvl :item-values)) (gvl :radius))))

(:width (o-formula (* 2 (gvl :radius))))

(:height (o-formula (gvl :width))))

In this case the :item-values slot contains a list of four numbers: the x and y coordinates of
the center of the circle, the radius of the circle, and an Opal color. For your item-prototype,
the format for the item-values data can be anything you like, and you don’t have to set the
:item-values slot yourself: Opal will do that for you.

:POINT-IN-ITEM
This slot contains a function of the form

(lambda (virtual-aggregate item-values x y) ...)

Chapter 5: Opal: The Garnet Graphical Object System 205

which returns t or nil depending on whether the point <x,y> lies within an
:item-prototype object with :item-values item-values. Typically, you will be able to
compute this function efficiently based on your knowledge of the how the objects will look.
For instance, in demo-circle, the :point-in-item slots contains:

(lambda (virtual-aggregate item-values x y)

(<= (+ (expt (- x (first item-values)) 2)

(expt (- y (second item-values)) 2))

(expt (third item-values) 2)))

:ITEM-ARRAY
This is a slot you may, but need not provide. If you don’t provide one, then all of the
items will be added using the add-item function, below. :item-array contains either a
1-dimensional array of item-values, ordered from back to front on your display, or a 2-
dimensional array. So for the demo-circle example, it will look something like:

#((304 212 12 #k<RED-FILL>)

(88 64 11 #k<GREEN-FILL>)

...)

The array may have nils in it. Each nil represents a gap in this items list.

5.10.2 Two-dimensional virtual-aggregates

You can create a virtual-aggregate whose :item-array is a two dimensional array. The
formulas in the :dummy-item of the aggregate must depend on two slots :rank1 and :rank2

instead of the single slot :rank. This is useful for non-overlapping tables, such as bitmap
editors (fat-bits), spreadsheets, etc. See the example in demo-array.

5.10.3 Manipulating the Virtual-Aggregate

These are the routines exported by Opal that you can use to manipulate the item array:
opal:Add-Item a-virtual-aggregate item-values〈undefined〉 [method], page 〈undefined〉

This adds a new item to the :item-array of a-virtual-aggregate. Item-values is a list
containing the values for an :item-values slot of the item-prototype. Add-item returns
the rank into the :item-array where the new item was inserted. The :item-array must
be one-dimensional.

opal:Remove-Item a-virtual-aggregate rank〈undefined〉 [method], page 〈undefined〉

This removes an item from the :item-array of a-virtual-aggregate. Actually, it puts a
nil in the :item-array (it does not compress the array). The :item-array must be
one-dimensional.

opal:Change-Item a-virtual-aggregate new-item rank &optional rank2〈undefined〉 [method],

page 〈undefined〉

This changes the rank ’th entry of the :item-array of the virtual-aggregate to be new-
item. (It also marks that item to be redrawn at the next update). To manipulate a
two-dimensional array, use rank and rank2 as the two indices. Note: you have to use this
function and cannot directly modify the items array after the virtual-aggregate has been
displayed.

opal:Point-To-Rank a-virtual-aggregate x y〈undefined〉 [method], page 〈undefined〉

Returns the rank of the front-most item in the virtual-aggregate that contains point <x,y>.
(This is why you had to supply :point-in-item.) The virtual-aggregate must be one-
dimensional.

opal:Point-To-Component a-virtual-aggregate x y〈undefined〉 [method], page 〈undefined〉

Chapter 5: Opal: The Garnet Graphical Object System 206

This is like point-to-rank, but it returns an actual Opal object. However, the object is
actually a dummy object with the appropriate value placed in its :item-values and :rank

slots. So you cannot call Point-to-component twice and hope to hold on the first value.
(The virtual-aggregate must be one-dimensional.)

opal:Recalulate-Virtual-Aggregate-Bboxes a-virtual-aggregate[function], page 90

The purpose of this routine is to re-initialize all the bounding boxes of the items
of the virtual-aggregate. This would come in handy if, for instance, you created
a virtual-aggregate whose items depended for their position on the position of the
virtual-aggregate itself. After you changed the :left or :top of the virtual-aggregate, you
would call recalculate-virtual-aggregate-bboxes to re-calculate the bounding boxes
of the items.

There is a macro for performing operations iteratively on elements of a 2-dimensional
virtual-aggregate:

opal:Do-In-Clip-Rect (var1 var2 a-virtual-aggregate clip-rect) &body body〈undefined〉
[macro], page 〈undefined〉

The variables var1 and var2 take on all values for which the item with :rank1 = var1
and :rank2 = var2 intersect the clip-rectangle clip-rect. The clip-rect is a list of left, top,
width, and height – the kind of argument that is returned from a two-point-interactor.

As an example, consider the following code borrowed from demo-array:
(defun Whiten-Rectangle (dum clip-rect)

(declare (ignore dum))

(do-in-clip-rect (index-1 index-2 the-array clip-rect)

(change-item the-array 1 index-1 index-2)))

(create-instance ’WHITER inter:two-point-interactor

(:start-event :leftdown)

(:continuous T)

(:start-where ‘(:in ,The-Array))

(:window w)

(:feedback-obj FEED-RECT)

(:final-function #’Whiten-Rectangle))

The-array is a 2-dimensional virtual-aggregate. The routine Whiten-Rectangle performs
opal:change-item on every element of the-array that is inside the clip-rect (the second
argument to the :final-function of a two-point interactor is always a rectangle).

This is a macro for performing operations iteratively on elements of a 2-dimensional virtual-
aggregate. The variables var1 and var2 take on all values for which the item with :rank1 =
var1 and :rank2 = var2 intersect the clip-rectangle clip-rect. The clip-rect is a list of left,
top, width, and height – the kind of argument that is returned from a two-point-interactor.

5.11 Windows

Graphical objects can only display themselves in a window.
(create-instance ’inter:Interactor-Window opal::window

(:maybe-constant ’(:left :top :width :height :visible))

(:left 0)

(:top 0)

(:width 355)

(:height 277)

(:border-width 2)

(:left-border-width ...) (:top-border-width ...) ;; Read-only slots -- Do not set!

Chapter 5: Opal: The Garnet Graphical Object System 207

(:right-border-width ...) (:bottom-border-width ...) ;; See section [border-widths],

page 209.

(:max-width nil) (:max-height nil)

(:min-width nil) (:min-height nil)

(:cursor opal:Arrow-Pair) ;; Shape of the pointer in this window. (See section [window-

cursors], page 209).

(:position-by-hand nil)

(:title "Opal N")

(:omit-title-bar-p nil)

(:icon-title "Opal N")

(:icon-bitmap nil)

(:draw-on-children nil)

(:background-color nil)

(:double-buffered-p nil)

(:save-under nil)

(:aggregate nil)

(:parent nil)

(:visible ...)

(:modal-p nil) ;; Whether to suspend input while visible. See the Inter-

actors chapter.

(:in-progress nil) ;; Read by opal:update-all. See section [quarantine-slot],

page 212.

...)

Caveats:

Garnet windows will not appear on the screen until they are updated, by calling the
functions opal:update or opal:update-all. These functions will also cause all of the
graphics in the window to be brought up-to-date.

Windows are not usually used as prototypes for other windows. If a window is created
with its :visible slot set to T, then it should be expected to appear on the screen
(even if opal:update is not explicitly called on it). When similar windows need to be
generated, it is recommended that a function be written (like at the end of the Tutorial)
that will return the window instances.

The :left, :top, :width, and :height slots of the window control its position and di-
mensions. These slots can be set using s-value to change the window’s size and position
(which will take affect after the next update call). If the user changes the size or position of
a window using the window manager (e.g., using the mouse), this will usually be reflected
in the values for these slots.2 Some special issues involving the position and dimensions
of Garnet windows when adorned with window manager title bars are discussed in section
[border-widths], page 209.

If you create a window with values in its :max-width, :max-height, :min-width, and
:min-height, then the window manager will make sure the user doesn’t change the win-
dow’s size to be outside of those ranges. However, you can still s-value the :width and
:height of win to be any value. The slots :max-width and :max-height can only be
set at creation time. Furthermore, due to peculiarities in X windows, you must set both
:max-width and :max-height to be non-nil at creation time to have any effect. The slots
:min-width and :min-height behave in the analogous manner.

2 There are bugs in some window managers that make this difficult or impossible.

Chapter 5: Opal: The Garnet Graphical Object System 208

The :title slot contains a string specifying the title of the Garnet window. The default
title is "Opal N ", where N starts at 1, and increments each time a new window is created
in that Lisp.

The :omit-title-bar-p slot tells whether or not the Garnet window should have a title
bar. If the slot has value nil (the default), and the window manager permits it, then the
window will have a title bar; otherwise the window will not have a title bar.

The :icon-title slot contains a string specifying the icon title of the window. The default
icon title is the same as the :title. This is the string that gets displayed when a window
is iconified.

You may set the icon of a window to be an arbitrary bitmap by setting its :icon-bitmap
slot. The value should be a filename which specifies the location of a bitmap file.

In the rare case when you want to have graphics drawn on a parent window appear over
the enclosed (child) windows, you can set the :draw-on-children of the parent to be non-
nil. Then any objects that belong to that window will appear on top of the window’s
subwindows (rather than being hidden by the subwindows). Note: Because of the inability
to redraw the graphics in the window and the subwindows simultaneously, objects that
will appear over the subwindows must be fast-redraw objects drawn with :xor (see section
〈undefined〉 [fast-redraw-objects], page 〈undefined〉).
The :background-color slot of an inter:interactor-window can be set to be any
opal:color. The window will then appear with that as its background color. This is more
efficient than putting a rectangle behind all the objects.

When the :double-buffered-p slot is T, then an exact copy of the window will be main-
tained internally by Garnet. Then, when the graphics in the window change, the change
occurs first in the copy, and then the changed region is transferred as a pixmap to the
original window. This has the potential to reduce flicker in the redrawing of the window.
By default, windows do not use this feature because of the extra memory required by the
internal buffer.

When the :save-under slot is T, then Garnet internally stores the contents of the screen
under the window. If the window is made invisible, then Garnet does not have to redraw
any Garnet windows under it, because the image can simply be redrawn from the saved
contents. This option is used in the menubar and option-button gadgets.

The :aggregate slot specifies an aggregate object to hold all the objects to be displayed in
the window. Each window must contain exactly one aggregate in this slot, and all objects
in the window should be put into this aggregate. This slot should be set after the window
is created, not during the create-instance call. This will ensure that the proper demons
are running when the slot is set. Performance hint: specify the top, left, width and height
of this aggregate to be formulas depending on the window, rather than using the default
formulas, which depend on all of the objects in the aggregate.

The :visible slot specifies if the window is currently visible on the screen or not. In X
terminology, this determines if the window is mapped or not. You can set the :visible

slot at any time to change the visibility (which will take effect after an update call).

If you create a window and set the :position-by-hand slot to be T, then when you call
opal:update the first time, the cursor on your screen will change to a prompt asking you
where to position the window, and the initial values of :left and :top will be ignored.

Chapter 5: Opal: The Garnet Graphical Object System 209

If a window is created with a window object in its :parent slot, then the new window will be
a sub-window of the parent window. Each window sets up its own coordinate system, so the
:left and :top of the subwindow will be with respect to the parent window. The parent
window must be updated before the subwindow is created. Using nil for the :parent

makes the window be at the top level. Only top-level windows can be manipulated by the
window manager (i.e, by using the mouse).

5.11.1 Window Positioning

When top-level windows first become visible, their :left and :top slots may change values
slightly to accomodate the title bars added by the window manager. When you create a
regular top-level window with a :top of 100, for example, the inside edge of the window will
appear at 100. The window manager frame of the window (the outside edge) will appear a
little higher, depending on the window manager, but somewhere around 25 pixels higher.
The window manager then notifies Garnet that this frame has been added by changing the
:top of the window to 75. The drawable region of the window remains at 100.

When the :top of the window is changed (via s-value) after it is visible, then it is the
outside edge of the window that is being changed, which is the top of the frame. You can
always determine the height of the window’s title bar in the :top-border-width slot (see
section [border-widths], page 209). There are corresponding slots for :left-, :right-, and
:bottom-border-width. All of these slots are read-only, and are set by Garnet according
to your window manager.

When stacking windows in a cascading arrangement, it is sufficient to be consistent in
setting their positions either before or after updating them. If the two kinds of position-
setting strategies need to be mixed, then the :top-border-width of the windows that have
already been made visible should be taken into account, versus those that have never been
updated.

5.11.2 Border Widths

There are two different meanings of "border widths" in windows. One involves the user-
settable thickness of subwindows, and the other kind involves read-only widths that are
determined by the window manager:

Subwindow Border Width - The :border-width slot affects the width of the border
on a subwindow. Setting the :border-width slot of a subwindow to 0 during its
create-instance call will cause the window to have no border at all, but setting it
to a value larger than the default usually has no effect. Currently, the border width
cannot be changed after the window is created.

Window Manager Frame Widths - After a window has been created, the
:left-border-width, :right-border-width, :top-border-width, and
:bottom-border-width slots tell what thicknesses the left, right, top, and bottom
borders of the windows actually have. These slots are set by the window manager,
and should not be set by Garnet users.

5.11.3 Window Cursors

The default cursor shape for Garnet windows is an arrow pointing to the upper left. How-
ever, it would be nice to change this shape sometimes, particularly when an application is

Chapter 5: Opal: The Garnet Graphical Object System 210

performing a long computation and you would like to display an hourglass cursor. Several
functions and objects make it easy to change the cursors of Garnet windows.

The following sections discuss how to change window cursors, starting with some background
at the lowest level of the cursor interface. The later sections, particularly [with-hourglass-
sec], page 211, describe the high-level functions that allow you to change the cursor with a
single function call.

5.11.3.1 The :cursor Slot

At the lowest level, the cursor of a Garnet window is governed by the value of its
:cursor slot. The default value for an inter:interactor-window’s :cursor slot is
a list of two objects, (#k<OPAL:ARROW-CURSOR> . #k<OPAL:ARROW-CURSOR-MASK>),
which are pre-defined bitmaps whose images are read from the garnet/lib/bitmaps/

directory. The opal:arrow-cursor object is the black part of the pointer, and the
opal:arrow-cursor-mask is the underlying white part.3

The :cursor slot permits three different syntaxes which all describe a cursor/mask pair for
the window. The most basic syntax is used for the default value:

(list bitmap-1 bitmap-2)

The second syntax allows you to use a font as the source for your cursor, with the primary
image and mask specified by indices into the font:

(list my-font index-1 index-2)

Most machines come with a font specifically for the window manager cursors, and this font
can be accessed with the opal:cursor-font object. So you could try the syntax above
with the opal:cursor-font object and two consecutive indices, like this:

(s-value win :cursor (list opal:cursor-font 50 51))

You have to update the window to make the cursor change take effect. It appears that
sequential pairs, like 50 and 51, reliably yield primary cursors and their masks. It is easy
to experiment to find a nice cursor.

Since so many cursors are created from the cursor font, a third syntax is provided that is
analogous to the previous one:

[Slot Syntax on :cursor]index-1 index-2
Any of these three syntaxes can be used to s-value the :cursor slot of a window.
Changing the :cursor slot of a window changes it permanently, until you s-value

the :cursor slot again.

5.11.3.2 Garnet Cursor Objects
(create-instance ’opal:ARROW-CURSOR opal:bitmap

(:image (opal:Get-Garnet-Bitmap "garnet.cursor")))

(create-instance ’opal:ARROW-CURSOR-MASK opal:bitmap

(:image (opal:Get-Garnet-Bitmap "garnet.mask")))

(defparameter opal:Arrow-Pair

3 Whenever you change the cursor of a window, it is a good idea to have a contrasting mask beneath the
primary image. This will keep the cursor visible even when it is over an object of the same color.

Chapter 5: Opal: The Garnet Graphical Object System 211

(cons opal:ARROW-CURSOR opal:ARROW-CURSOR-MASK))

(create-instance ’opal:HOURGLASS-CURSOR opal:bitmap

(:image (opal:Get-Garnet-Bitmap "hourglass.cursor")))

(create-instance ’opal:HOURGLASS-CURSOR-MASK opal:bitmap

(:image (opal:Get-Garnet-Bitmap "hourglass.mask")))

(defparameter opal:HourGlass-Pair

(cons opal:HOURGLASS-CURSOR opal:HOURGLASS-CURSOR-MASK))

The arrow-cursors are used for the default value of the :cursor slot in Garnet windows.
The Gilt interface builder and the save-gadget use the hourglass-cursors when they are
busy with file I/O and performing long calculations. Users are free to use these objects in
their own applications.

The variables opal:Arrow-Pair and opal:HourGlass-Pair are provided so that users can
avoid cons’ing up the same list repeatedly. Setting the :cursor slot of a window to be
opal:HourGlass-Pair and then updating the window will change the cursor in the window.

5.11.3.3 Temporarily Changing the Cursor

Often when the cursor needs to be changed, we will be changing it back to the default very
soon (e.g., when the application has finished its computation). Also, usually we want to
change all of the windows in an application, rather than just one window. For this situation,
the functions opal:change-cursors and opal:restore-cursors were written to change
the cursors of multiple windows without changing the :cursor slots.

[Function]opal:change-cursors cursor-list &optional window-list
The cursor-list argument is a pair or triplet that adheres to the syntax for the :cursor
slot, discussed in the previous section. When window-list is supplied, the cursor of
each window is temporarily set with a cursor constructed out of the cursor-list spec.
When window-list is nil (the default), then all Garnet windows are set with the
temporary cursor. The value of the :cursor slot of each window remains unchanged,
allowing the window’s normal cursor to be restored with opal:restore-cursors.

[Function]opal:restore-cursors &optional window-list
This function undoes the work of opal:change-cursors. Each window is set with
the cursor described by the value of its :cursor slot (which was not changed by
opal:change-cursors).

Even the work of calling opal:change-cursors and opal:restore-cursors can be
abbreviated, by using the following macros instead:

[Macro]opal:with-cursor cursor &body body
[Macro]opal:with-hourglass-cursor &body body

The cursor parameter must be a pair or triplet adhering to the :cursor syntax.
These macros change the cursor of all Garnet windows while executing the body,
and then restore the old cursors. These are the highest level functions for changing
window cursors. To test the opal:with-hourglass-cursor macro, bring up any
Garnet window (demos are fine) and execute the following instruction:

Chapter 5: Opal: The Garnet Graphical Object System 212

(opal:with-hourglass-cursor (sleep 5))

While lisp is sleeping, the cursors of all the Garnet windows will change to hourglass
cursors, and then they will change back to normal.

5.11.4 Update Quarantine Slot

A "quarantine slot" named :in-progress exists in all Garnet windows. If there was a
crash during the last update of the window, then the window will stop being updated
automatically along with the other Garnet windows, until you can fix the problem and
update the window successfully.

Usually when there is an update failure, it is while the main-event-loop process is running
and it is repeatedly calling opal:update-all. Without a quarantine slot, these repeated
updates would keep throwing Garnet into the debugger, even as you tried to figure out what
the problem was with the offending window. With the quarantine slot, opal:update-all
first checks to see if the :in-progress slot of the next window is T. If so, then the last
update to that window must not have terminated successfully, and the window is skipped.
After you fix the problem in the window, a successful call to opal:update will clear the
slot, and it will resume being updated automatically.

Here is an example of a typical interaction involving the quarantine slot.

Execute (garnet-load "demos:demo-multiwin") and (demo-multiwin:do-go).

Artificially create an error situation by executing

(kr:with-types-disabled

(kr:s-value demo-multiwin::OBJ1 :left ’x))

Try to move an object in the demo by clicking on it and dragging with the mouse.
Even if you did not click on OBJ1 (the rectangle), the main-event-loop called
opal:update-all, which caused OBJ1’s window to update. This caused a crash into
the debugger when ’x was found in the :left slot. Get out of the debugger with
:reset or q or whatever your lisp requires.

Now move objects again. As long as your first mouse click is not in the same window
as OBJ1, you will not get the crash again. You can even drag objects into and through
OBJ1’s window, but that window will not be updated.

After you give OBJ1’s :left slot a reasonable value and do a total update on its win-
dow – (opal:update demo-multiwin::WIN1 T) – the window will be treated normally
again. Note: the total update is sometimes required because the bad :left value
can get stored in an internal Opal data structure. A total update clears these data
structures.

We have found that this feature makes it much easier to find the source of a problem
in a window that cannot update successfully. Without this feature, useful tools like the
Inspector would not be able to run while there was one broken window, since interacting
with the Inspector requires repeated calls to opal:update-all.

5.11.5 Windows on other Displays

An important feature of the X window manager is that it allows you to run a process on
one machine and have its window appear on another machine. Opal provides a simple way
to do this, although many commands have to be given to the Unix Shell.

Chapter 5: Opal: The Garnet Graphical Object System 213

Let’s suppose that you want to run Opal on a machine named OpalMachine.cs.edu

and you want the windows to appear on a machine named WindowMachine.cs.edu (of
course you will substitute your own full machine names). Assuming you are sitting at
WindowMachine.cs.edu, perform the following steps before starting Garnet:

Create an extra Xterm (shell) window and use it to telnet to OpalMachine.cs.edu and
then log in.

TODO: Slime makes this approach inconvenient, as you have to change the way that
emacs launches Slime to set the environment variable before you start lisp. An easy
approach is to use uiop, the cross platform utility functions provided by ASDF. If you
had a second display running on local machine you could specify it using the following
command:

(setf (uiop:getenv "DISPLAY") ":1")

Then launch Garnet as usual. Unfortunately this is propably not 100% reliable ac-
cross platforms. Idealy the display that you want to connect to would be part of an
initialization parameter you could pass.

Type the following to OpalMachine.cs.edu to tell Opal where the windows should go:

setenv DISPLAY WindowMachine.cs.edu:0.0

Now go to another Xterm (shell) window on WindowMachine.cs.edu and type the
following to allow OpalMachine.cs.edu to talk to X:

xhost + OpalMachine.cs.edu

Now go back to the telnet window, and start Lisp and load Garnet and any programs.
All windows will now appear on WindowMachine.cs.edu.

The exported variables opal:*screen-width* and opal:*screen-height* contain the
width and height of the screen of the machine you are using. Do not set these variables
yourself.

5.11.6 Methods and Functions on Window Objects

There are a number of functions that work on window objects, in addition to the meth-
ods described in this section. All of the extended accessor functions (bottom, left-side,
set-center, etc.) described in section [Extended-accessors], page 157, also work on win-
dows.

[Method on Window]opal:update window &optional total-p
The update method updates the image in window to reflect changes to the objects
contained inside its aggregate. If total-p is a non-nil value, then the window is
erased, and all the components of the window’s aggregate are redrawn. This is useful
for when the window is exposed or when something is messed up in the window (e.g.,
after a bug). The default for total-p is nil, so the window only redraws the changed
portions. update must be called on a newly-created window before it will be visible.
Updating a window also causes its subwindows to be updated.

If update crashes into the debugger, this is usually because there is an object
with an illegal value attached to the window. In this case, the debugging function
garnet-debug:fix-up-window is very useful; see the Debugging chapter.

Chapter 5: Opal: The Garnet Graphical Object System 214

[Method on Window]opal:destroy window
The destroymethod unmaps and destroys the X window, destroys the window object,
and calls destroy on the window’s aggregate and the window’s subwindows.

[Function]opal:update-all &optional total-p
been created but never updated (so they are not yet visible). When total-p is T, then
opal:update-all will redraw the entire contents of all existing Garnet windows.
Since this procedure is expensive, it should only be used in special situations, like
during debugging.

[Function]opal:clean-up how-to
This function is useful when debugging for deleting the windows created using Opal.
It can delete windows in various ways:

how-to Result])

:orphans-only Destroy all
orphaned garnet windows.
Orphans are described be-
low.

:opal Destroy all garnet
windows by calling
xlib:destroy-window

or ccl:window-close on
orphaned CLX "draw-
ables" and Mac "views",
and opal:destroy on
non-orphaned windows.

:opal-set-agg-to-nil

Same as above, but before
calling opal:destroy, set
the aggregate to nil so
it won’t get destroyed as
well.

:clx Destroy all Garnet
windows by calling
xlib:destroy-window or
ccl:window-close. Does
not call the :destroy

method on the window or
its aggregate.

A window is "orphaned" when the Opal name is no longer attached to the CLX drawable
or Mac view. This can happen, for example, if you create an instance of a window object,

Chapter 5: Opal: The Garnet Graphical Object System 215

update it, then create another instance of a window with the same name, and update it as
well. Then the first window will not be erased and will be orphaned.

The default is orphans-only. Another useful value is :opal. The other options are mainly
useful when attempts to use these fail due to bugs. See also the function Fix-Up-Window

in the Garnet Debugging chapter Garnetdebugchapter.

[Function]opal:convert-coordinates win1 x1 y1 &optional win2 (declare
(values x2 y2))

This function converts the coordinates x1 and y1 which are in window win1’s coor-
dinate system to be in win2’s. Either window can be nil, in which case the screen is
used.

[Function]opal:get-x-cut-buffer window
[Function]opal:set-x-cut-buffer window newstring

These manipulate the window manager’s cut buffer. get-x-cut-buffer returns the
string that is in the X cut buffer, and set-x-cut-buffer sets the string in the X cut
buffer.

[Function]opal:raise-window window
[Function]opal:lower-window window
[Function]opal:iconify-window window
[Function]opal:deiconify-window window

Raise-window moves a window to the front of the screen, so that it is not covered
by any other window. Lower-window moves a window to the back of the screen.
Iconify-window changes the window into an icon, and deiconify-window changes
it back to a window.

5.12 Printing Garnet Windows

The function make-ps-file is used to generate a PostScript file for Garnet windows. This
file can then be sent directly to any PostScript printer. The file is in "Encapsulated Post-
Script" format, so that it can also be included in other documents, such as Scribe, LaTeX
and FrameMaker on Unix, and Pagemaker on Macintoshes.

The PostScript files generated by this function will produce pictures that are prettier, have
much smaller file sizes, and work better in color than those produced by the window utilities
like xwd and xpr. However, a limitation of PostScript is that it is not possible to print with
XOR. It is usually possible to change the implementation of Garnet objects or hand-edit
the generated PostScript file to simulate the XOR draw function.

By default, the contents of the window and all subwindows are reproduced exactly as on
the screen, with the image scaled and centered on the output page. Other options (see the
clip-p parameter) allow this function to be used to output the entire contents of a window
(not just what is on the screen), so it can be used to do the printing for application data
that might be in a scrolling-window, for example. This is used in the demo demo-arith.

Chapter 5: Opal: The Garnet Graphical Object System 216

[Function]opal:make-ps-file window-or-window-list filename &key position-x
position-y left-margin right-margin top-margin bottom-margin left top
scale-x scale-y landscape-p borders-p clip-p subwindows-p color-p
background-color paper-size title creator for comment

The only two required parameters to make-ps-file are the Garnet window to be
printed and the name of the file in which to store the PostScript output. The window-
or-window-list parameter may be either a single window or a list of windows. When
multiple windows are printed, the space between the windows is filled with the color
specified by background-color.

The optional arguments affect the position and appearance of the picture:

position-x

Either :left, :center, or :right. Determines the position of the picture
on the page horizontally. Ignored if a value is supplied for left. Default
is :center.

position-y

Either :top, :center, or :bottom. Determines the position of the picture
on the page vertically. Ignored if a value is supplied for top. Default is
:center.

left-margin, right-margin, top-margin, bottom-margin

These parameters specify the minimum distance (in points) from the
corresponding edge of the page to the rendered image. All four values
default to 72, which is one inch in PostScript.

left, top The distance (in points) from the left and top margins (offsets from left-
margin and top-margin) to the rendered image. The defaults are nil, in
which case the values of position-x and position-y are used instead.

scale-x, scale-y

Horizontal and vertical scaling for the image. The default is nil, which
will ensure that the image fits within the specified margins (the scaling
will be the same for vertical and horizontal).

landscape-p

If nil (the default) then the top of the picture will be parallel to the
short side of the page (portrait). If T, then the picture will be rotated 90
degrees, with the top of the picture parallel to the long side of the page.

subwindows-p

Whether to include the subwindows of the specified window in the image.
Default is T.

borders-p

Whether to draw the outline of the window (and subwindows, if any).
The allowed values are t, nil, :generic, and :motif. The default value
of :motif gives your image a simulated Motif window manager frame,
like the picutres in the Gilt Reference chapter. The value of :generic
puts a plain black frame around your printed image, with the title of the
window centered in the title bar. The value t gives the image a thin black
border, and nil yields no border at all.

Chapter 5: Opal: The Garnet Graphical Object System 217

clip-p How to clip the objects in the window. Allowed values are:

• t This is the default, which means that the printed picture will look
like the screen image. If the graphics inside the window extend out-
side the borders of the window, then they will be clipped in the
printed image.

• nil This value causes the window in the printed image to be the same
size as the top-level aggregate, whether it is larger or smaller than
the actual window. That is, if the window is too small to show all of
the objects in its aggregate, then the printed window will be enlarged
to show all of the objects. Conversely, if the top-level aggregate is
smaller than the dimensions of the window on the screen, then the
printed window will be "shrink wrapped" around the objects.

• (left top width height) A list of screen-relative coordinates that
describe absolute pixel positions for the printed window. This makes
it possible to clip to a region when you are printingmultiple windows.
Clip regions can be used to make multiple-page PostScript files – you
have to chapterly divide the image into its component regions, and
generate one PostScript file for each region. In the future, we may
attempt to automate the process of multiple-page printing.

color-p Whether to generate a file that will print out the real colors of the win-
dow’s objects (T), or pretend that all the colors are black (automatically
produce half-tones for colors, so usually T will work even for color pic-
tures printed on black and white printers.) Note: Pixmaps print in full
color when they are being displayed on a color screen and the color-p
parameter is T. However, older printers may not know the PostScript
command colorimage which is required to render a color pixmap. This
command is only defined on Level 2 printers. If your printer cannot print
your pixmap (it crashes with a "colorimage undefined" error), then try
using a color-p argument of nil.

background-color

When window-or-window-list is a list of windows, the space between the
windows will be filled with this color. The value of this parameter may
be any Opal color. The default is opal:white.

paper-size

This parameter is provided mainly for users in the United Kingdom.
Allowed values are :letter, :a4, or a list of (width height). The default
value of :letter generates a PostScript image for 612x792 point size
paper. The :a4 value generates an image for 594x842 point size paper,
which is commonly used in the UK.

title, creator, for

These parameters should take strings to be printed in the header com-
ments of the PostScript file. These comments are sometimes used to print
user information on the header sheets of printer output. The default title
is based on the window’s title. The default creator is Garnet, and the
default for is "".

Chapter 5: Opal: The Garnet Graphical Object System 218

allows you to put a single line of text at the top of your PostScript file.
In the generated file, the characters "%%" are concatenated to the front
of your comment, telling PostScript to ignore the text in the line. If you
wish to use multiple lines in the comment, you will have to add the "%%"
to the second line of the string and every line thereafter.

5.13 Saving and Restoring

Opal includes the ability to save and restore Garnet core images. The function
opal:make-image, described below, can be used to automate the process of closing the
connection to the display server and generating a core file. Low-level details are provided
below also, in case you need more control over the saving process.

5.13.1 Saving Lisp Images

[Function]opal:make-image filename &key quit (verbose t) (gc t) &rest
other-args

The function opal:make-image is used to save an image of your current lisp
session. Without make-image, you would have to call opal:disconnect-garnet,
use your implementation-dependent function to save your lisp image, and then call
opal:reconnect-garnet if you wanted to continue the session. Opal:make-image

does all of this for you, and also does a total garbage collection before the save if the
gc parameter is T. If the quit parameter is T, then your lisp image will automatically
exit after saving itself. The verbose parameter controls whether the function should
announce when it is in the stages of garbage collection, disconnection, saving, and
reconnection.

The other-args parameter is supplied to accomodate the miscellaneous parameters
of each lisp vendor’s image-saving function. For example, with Allegro’s dumplisp

command, you can supply the keywords :libfile and :flush-source-info?. Since
opal:make-image calls dumplisp for Allegro, you can supply the extra parameters
to opal:make-image and they will be passed on to dumplisp. Therefore, it is not
necessary to call your lisp’s image-saving function chapterly; you can always pass the
additional desired parameters to opal:make-image.

When you restart the saved image, it will print a banner indicating the time at which
the image was saved, and will automatically call opal:reconnect-garnet. Some
lisps (like Allegro) allow you to restart the saved image just by executing the binary
file, while others (like CMUCL) require that the binary file is passed as an argument
when the standard lisp image is executed. Consult your lisp’s reference chapter for
instructions on restarting your saved image.

5.13.2 Saving Lisp Images Manually in X11

It recommended that you use opal:make-image whenever possible to save images of lisp. In
particular, restarted images of MCL containing Garnet that were created by other means
will probably not work right, due to the skipping of initialization steps that would have
been performed automatically if the image had been saved with opal:make-image.

When you do not want to use the function opal:make-image to generate an executable
lisp image, and instead want to perform the saving procedure chapterly, you can use

Chapter 5: Opal: The Garnet Graphical Object System 219

the functions opal:disconnect-garnet and opal:reconnect-garnet, along with your
implementation-dependent function for saving lisp images.

opal:Disconnect-Garnet[function], page 90

opal:Reconnect-Garnet &optional display-name [function], page 90

Before saving a core image of Garnet, you must first close all connections to the X server by
calling opal:disconnect-garnet. All windows which are currently visible will disappear
(but will reappear when opal:reconnect-garnet is executed).

While the connection to the X server is closed, you may save a core image of Garnet by
calling the appropriate Lisp command. In Lucid Lisp the command is (disksave), in
Allegro Lisp it is (excl:dumplisp), and in CMU Common Lisp it is (ext:save-lisp).
Consult your Common Lisp chapter to find the disk save command for your version of
Common Lisp, as well as how to start up a saved Lisp core.

It is usually convenient to specify opal:reconnect-garnet as the restart-function during
your save of lisp. For example, the following instruction will cause opal:reconnect-garnet
to be invoked in Allegro lisp whenever the saved lisp is restarted:

(excl:dumplisp :name "garnet-image" :restart-function #’opal:reconnect-garnet)

Otherwise, you will need to call opal:reconnect-garnet chapterly when the lisp image
is restarted in order to restore the connection to the server and make all Garnet windows
visible again.

If the display-name parameter to opal:reconnect-garnet is specified, it should be the
name of a machine (e.g., "ecp.garnet.cs.cmu.edu"). If not specified, display-name defaults
to the current machine.

5.14 Utility Functions

5.14.1 Executing Unix Commands

[Function]opal:shell-exec command
The function opal:shell-exec is used to spawn a Unix shell and execute Unix com-
mands. The command parameter should be a string of the Unix command to be
executed. The spawned shell does not read the .cshrc file, in order to save time.
The function returns a string of the output from the shell.

In Lucid, CMUCL, and LispWorks, the shell spawned by opal:shell-exec is
/bin/sh. In Allegro and CLISP, the shell is the user’s default. Executing this
function in other lisps, including MCL, causes an error (please let the Garnet group
know how to enhance this function to run in your lisp).

5.14.2 Testing Operating System Directories

This function is used to determine whether a string describes an existing directory or not.

[Function]opal:directory-p string
The string should name a potential directory, like "/usr/garnet/". If your lisp is
running on a Unix system, this function spawns a shell and executes a Unix com-
mand to test the directory. There is no other standard way to test directories on
different lisps and operating systems. On the Mac, a lisp-specific directory command
is executed.

Chapter 5: Opal: The Garnet Graphical Object System 220

5.15 Aggregadgets and Interactors

The Aggregadgets module makes it much easier to create instances of an aggregate and
all its components. With an aggregadget, you only have to define the aggregate and its
components once, and then when you create an instance, it creates all of the components
automatically. Aggregadgets also allow lists of items to be created by simply giving a single
prototype for all the list elements, and a controlling value that the list iterates through.
Aggregadgets are described in their own chapter AggregadgetsChapter.

Interactors are used to handle all input from the user. Interactor objects control input and
perform actions on Opal graphical objects. There are high-level interactor objects to handle
all the common forms of mouse and keyboard input. Interactors are described in their own
chapter InterChapter.

Together Opal and Interactors should hide all details of X and QuickDraw from the pro-
grammer. There should never be a need to reference any symbols in xlib or ccl.

5.16 Creating New Graphical Objects

An interesting feature of object-oriented programming in Garnet is that users are expected
to create new objects only by combining existing objects, not by writing new methods.
Therefore, you should only need to use Aggregadgets to create new kinds of graphical
objects. It should never be necessary to create a new :draw method, for example.

If for some reason, a new kind of primitive object is desired (for example, a spline or
some other primitive not currently supplied by X11), then contact the Garnet group for
information about how this can be done. Due to the complexities of X11, Mac QuickDraw,
and automatic update and redrawing of objects in Opal, it is not particularly easy to create
new primitives.

〈undefined〉 [References], page 〈undefined〉,

221

6 Interactors: Encapsulating Mouse and
Keyboard Behaviors

by Brad A. Myers, James A. Landay, Andrew Mickish

14 May 2020

6.1 Abstract

This document describes a set of objects which encapsulate mouse and keyboard behaviors.
The motivation is to separate the complexities of input device handling from the other parts
of the user interface. We have tried to identify some common mouse and keyboard behaviors
and implement them in a separate place. There are only a small number of interactor types,
but they are parameterized in a way that will support a wide range of different interaction
techniques. These interactors form the basis for all interaction in the Garnet system.

6.2 Introduction

This document is the reference chapter for the Interactors system, which is part of the
Garnet User Interface Development System Myers, 1989a. The Interactors module is re-
sponsible for handling all of the input from the user. Currently, this includes handling the
mouse and keyboard.

The design of the Interactors is based on the observation that there are only a few kinds of
behaviors that are typically used in graphical user interfaces. Examples of these behaviors
are selecting one of a set (as in a menu), moving or growing with the mouse, accepting
keyboard typing, etc. Currently, in Garnet, there are only nine types of interactive behavior,
but these are all that is necessary for the interfaces that Garnet supports. These behaviors
are provided in interactor objects. When the programmer wants to make a graphical object
(created using Opal; the Garnet graphics package) respond to input, an interactor object
is created and attached to the graphical object. In general, the graphics and behavior
objects are created and maintained separately, in order to make the code easier to create
and maintain.

This technique of having objects respond to inputs is quite novel, and different from the
normal method in other graphical object systems. In others, each type of object is responsi-
ble for accepting a stream of mouse and keyboard events and managing the behavior. Here,
the interactors handle the events internally, and cause the graphical objects to behave in
the desired way.

The Interactors, like the rest of Garnet, are implemented in Common Lisp for X11 and
Macintosh QuickDraw. Interactors are set up to work with the Opal graphics package and
the KR object and constraint systems, which are all part of Garnet.

The motivation and an overview of the Interactors system is described in more detail in
conference papers Myers, 1989b, Myers, 1990.

Often, interactors will be included in the definition of Aggregadgets. See Section 7.4.1
[Aggregadgets], page 312, for a description of how this works.

6.3 Advantages of Interactors

The design for interactors makes creating graphical interfaces easier. Other advantages of
the interactors are that:

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 222

• They are entirely “look” independent; any graphics can be attached to a particular
“feel.”

• They allow the details of the behavior of objects to be separated from the application
and from the graphics, which has long been a goal of user interface software design.

• They support multiple input devices operating in parallel.

• They simulate multiple processing. Different applications can be running in different
windows, and the operations attached to objects in all the windows will execute when-
ever the mouse is pressed over them. The applications all exist in the same Common
Lisp process, but the interactors insure that the events go to the correct application
and that the correct procedures are called. If the application is written correctly (e.g.,
without global variables), multiple instantiations of the same application can exist in
the same process.

• All of the complexities of X11 graphics and event handling are hidden by Opal and
the Interactors package. This makes Garnet much easier to use than X11 directly, and
allows applications written in Garnet to be run on anly platform that supports X11
without modification.

6.4 Overview of Interactor Operation

The interactors sub-system resides in the inter package. We recommend that programmers
explicitly reference names from the inter package, for example: inter:menu-interactor,
but you can also get complete access to all exported symbols by doing a (use-package

:inter). All of the symbols referenced in this document are exported.

In a typical mouse-based operation, the end user will press down on a mouse button to
start the operation, move the mouse around with the button depressed, and then release
to confirm the operation. For example, in a menu, the user will press down over one menu
item to start the operation, move the mouse to the desired item, and then release.

Consequently, the interactors have two modes: waiting and running. An interactor is
waiting for its start event (like a mouse button down) and after that, it is waiting for its
stop event, after which it stops running and goes back to waiting.

In fact, interactors are somewhat more complicated because they can be aborted at any
time and because there are often active regions of the screen outside of which the interactor
does not operate. The full description of the operation is presented in section Section 6.6.8
[Operation], page 226.

All the interactors operate by setting specific slots in the graphic objects.1 For example, the
menu interactor sets a slot called :selected to show which menu item is selected, and the
moving and growing interactor sets a slot called :box. Typically, the objects will contain
constraints that tie appropriate graphical properties to these special slots. For example,
a movable rectangle would typically contain the following constraints so it will follow the
mouse:

(create-instance ’moving-rectangle opal:rectangle

(:box ’(80 20 100 150))

(:left (o-formula (first (gvl :box))))

1 “Slots” are the “instance variables” of the objects.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 223

(:top (o-formula (second (gvl :box))))

(:width (o-formula (third (gvl :box))))

(:height (o-formula (fourth (gvl :box)))))

The initial size and position for the rectangle are in the :box slot. When an interactor
changes the box slot, the :left, :top, :width, and :height slots would change automat-
ically based on constraints.

If the constraints (formulas) were not there, the interactor would still change the :box slot,
but nothing would change on the screen, since the rectangle’s display is controlled by :left,

:top, :width, and :height, not by :box. The motivation for setting this extra slot, is to
allow application-specific filtering on the values. For example, if you do not want the object
to move vertically, you can simply eliminate the formula in the :top slot.

6.5 Simple Interactor Creation

To use interactors, you need to create interactor-windows for the interactors to work in
(windows are fully documented in [Opal: The Garnet Graphical Object System], page 148.
To create an interactor-window, you use the standard KR create-instance function.
For example:

(create-instance ’mywindow inter:interactor-window

(:left 100)(:top 10)

(:width 400)(:height 500)

(:title "My Window"))

(opal:update mywindow)

To create interactor objects, you also use the create-instance function. Each interactor
has a large number of optional parameters, which are described in detail in the rest of
this chapter. It must be emphasized, however, that normally it is not necessary to supply
very many of these. For example, the following code creates an interactor that causes the
moving-rectangle (defined above) to move around inside mywindow:

(create-instance ’mymover inter:move-grow-interactor

(:start-where (list :in moving-rectangle))

(:window mywindow))

This interactor will use the default start and stop events, which are the left mouse button
down and up respectively. All the other aspects of the behavior also will use their default
values (as described below).

Several implementations of lisp allow interactors to run automatically (see section [The
Main Event Loop], page 225). If you are not running in CMU, LispWorks, Allegro, Lucid,
or MCL Commonlisp, then you need to execute the following function to make the interactor
run:

(inter:main-event-loop)

This function does not exit, so you have to type ^C (or whatever your operating system
break character is) to the Lisp window when you are finished (or press the F1 key (or
whatever your Garnet break key is, section [main-event-loop], page 225)).

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 224

As another example, here is a complete, minimal “goodbye world” program, that creates a
window with a button that causes the window to go away (created from scratch, without
using any predefined gadgets).

;;; using the kr package, but no others, is the "garnet style"

(use-package "kr")

;;; first create the graphics; see the opal chapter for explanations

(create-instance ’mywindow inter:interactor-window

(:left 100)(:top 10)

(:width 125)(:height 25)

(:title "my window"))

(s-value mywindow :aggregate (create-instance ’myagg opal:aggregate))

(create-instance ’mytext opal:text

(:string "goodbye world")

(:left 2)(:top 5))

(opal:add-component myagg mytext)

(opal:update mywindow)

;;; now add the interactor

(create-instance nil inter:button-interactor

(:window mywindow)

(:start-where (list :in mytext))

(:continuous nil) ; happen immediately on the downpress

(:final-function #’(lambda (inter final-obj-over)

(opal:destroy mywindow)

;; the next line is needed unless you are running cmu lisp

;; or you are running the main-event-loop process in the

;; background in allegro, lucid, or lispworks

#-(or cmu allegro lucid lispworks) (inter:exit-main-event-loop)))

;;; if not cmu lisp, or if not running the background main-event-loop pro-

cess in

;;; allegro, lispworks, or lucid lisp, then the following is needed to run the interactor:

#-(or cmu allegro lucid lispworks) (inter:main-event-loop)

6.6 Overview of the Section

This section is organized as follows. Section [The Main Event Loop], page 225, discusses the
main-event-loop, which allows you to run interactors while automatically updating the
appearance of the windows. Section [Operation], page 226, describes how interactors work
in detail. Section [Mouse and Keyboard Accelerators], page 240, describes the definition
and operation of global accelerators. Section [Slots of all Interactors], page 241, lists all the
slots that are common to all interactors. section [Specific Interactors], page 245, describes
all the interactors that are provided. Section [Transcripts], page 293, describes how to
make transcripts of events. Finally, section [Advanced Features], page 294, describes some
advanced features.

Normally, you will not need most of the information in this chapter. To make an object
respond to the mouse, look in section [Specific Interactors], page 245, to find the interactor

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 225

you need, then check its introduction to see how to set up the constraints in your graphical
objects so that they will respond to the interactor, and to see what parameters of the
interactor you need to set. you can usually ignore the advanced customization sections.

6.6.1 the Main Event Loop

CMU Common Lisp McDonald, 1987 supports sending events to the appropriate windows
internally. Therefore, under cmu Common Lisp, the interactors begin to run immediately
when they are created, and run continuously until they are terminated. While they are
running, you can still type commands to the lisp listener (the read-eval-print loop).

To get the same effect on other lisps, Garnet uses the multiple process mechanism of Lucid,
Allegro, Lispworks, and MCL Common Lisps. You usually do not need to worry about
the information in this section if you are using CMU, Allegro, Lucid, or MCL Common
Lisp, but you will probably need to go through an initialization phase for multiprocessing
in Lispworks (See [Lispworks], page 12.)

Note: main-event-loop also handles Opal window refreshing, so graphical objects will not
be redrawn automatically in other lisps unless this function is executing.

6.6.2 main-event-loop

Under other Common Lisps (like AKCL and CLISP), you need to explicitly start and stop
the main loop that listens for X11 events. it is always ok to call the main-event-loop

function, because it does nothing if it is not needed. Therefore, after all the objects and
interactors have been created, and after the opal:update call has been made, you must call
the inter:main-event-loop procedure. This loops waiting and handling X11 events until
explicitly stopped by typing ^c (or whatever is your operating system break character) to
the lisp listener window, or until you hit the garnet break key while the mouse is in a garnet
window. This is defined by the global variable inter:*garnet-break-key*, and is bound
to F1 by default. you can simply setf inter:*garnet-break-key* to some other character
if you want to use f1 for something else.

The other way for a program to exit main-event-loop is for it to call the procedure
inter:exit-main-event-loop. Typically, inter:main-event-loop will be called at the
end of your set up routine, and inter:exit-main-event-loop will be called from your quit
routine, as in the example of section [eventloopexample], page 224.

[Function]inter:main-event-loop &optional inter-window
[Function]inter:exit-main-event-loop

The optional window to main-event-loop is used to tell which display to use. If not
supplied, it uses the default opal display. You only need to supply a parameter if you
have a single lisp process talking to multiple displays.

6.6.3 main-event-loop Process

By default, garnet spawns a background process in Allegro, Lucid, and Lispworks, which will
run the interactor’s main-event-loop while simultaneously allowing you to use the ordinary
lisp listener. This means that you can use the lisp listener without having to hit the garnet
break key (usually f1).

Some programs seem to have trouble with this process. If your system doesn’t work, try
killing the main-event-loop process and executing (inter:main-event-loop) explicitly. in

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 226

MCL, the background process is controlled by MCL itself, and cannot be killed. However,
you might be able to break out of an infinite loop (or otherwise get MCL’s attention) by
executing the abort command (control-comma) or the reset command (control-period).

6.6.4 Launching and Killing the main-event-loop-process

[Function]opal:launch-main-event-loop-process
[Function]opal:kill-main-event-loop-process

These are the top-level functions used for starting and stopping the main-event-loop
process. You may need to call launch-main-event-loop-process if the process is
killed explicitly or if the process crashes due to a bug.

While the main-event-loop background process is running, calling
(inter:main-event-loop), hitting the garnet break key, and calling
launch-main-event-loop-process all have no effect.

You can kill the background main-event-loop process by executing kill-main-event-
loop-process, but normally you should not have to, even if you encounter an error
and are thrown in the debugger. If you call it when the main-event-loop process is
not running, there is no effect.

launch-main-event-loop-process and kill-main-event-loop-process belong to
the opal package because opal:reconnect-garnet and opal:disconnect-garnet

need to call them.

6.6.5 launch-process-p

In the garnet-loader, there is a switch called user::launch-process-p which tells
whether or not garnet should automatically call launch-main-event-loop-process at
load time. You can edit the garnet-loader to change the default value of this variable, or
you can setf the variable before loading garnet-loader.

6.6.6 main-event-loop-process-running-p

[Function]opal:main-event-loop-process-running-p
This function tells you whether the parallel main-event-loop process is running, and
is not in the debugger.

6.6.7 Operation

6.6.8 Creating and Destroying

For interactors to be used, they must operate on objects that appear in Garnet windows.
The inter:interactor-window prototype is described in the Opal Chapter. To create an
interactor window, use:

[Function]create-instance name inter:interactor-window (slot value)(slot
value)...

This creates an interactor window named name (which will usually be a quoted sym-
bol like ’mywindow or nil). If name is nil, then a system-supplied name is used.
This returns the new window. The :left, :top, :width, and :height (and other

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 227

parameters) are given just as for all objects. Note that the window is not visible
(“mapped”) until an opal:update call is made on it:

(opal:update an-interactor-window)

To create an interactor, use:

(create-instance name Inter:InteractorType (slot value) (slot value)...)

This creates an interactor named name (which can be nil if a system-supplied name is
desired) that is an instance of InteractorType (which will be one of the specific types
described in section [Specific Interactors], page 245, such as button-interactor,

menu-interactor, etc. The slots and values are the other parameters to the new
interactor, as described in the rest of this chapter. The create-instance call returns
the interactor.

opal:Destroy an-interactor &optional (erase T) [No value for ‘‘method’’]

opal:Destroy an-interactor-window [No value for ‘‘method’’]

Invoking this method destroys an interactor or window. If erase is T, then the inter-
actor is aborted and deallocated. If erase is nil, it is just destroyed. Use nil when
the window the interactor is in is going to be destroyed anyway. Normally, it is not
necessary to call this on interactors since they are destroyed automatically when the
window they are associated with is destroyed.

Invoking this method on a window destroys the window, all objects in it, and all
interactors associated with it.

6.7 Continuous

Interactors can either be continuous or not. A continuous interactor operates between a
start and stop event. For example, a Move-Grow interactor might start the object following
the mouse when the left button goes down, and continue to move the object until the button
is released. When the button is released, the interactor will stop, and the object will stay in
the final place. Similarly, a menu interactor can be continuous to show the current selection
while the mouse is moving, but only make the final selection and do the associated action
when the button is released.

The programmer might want other interactors to operate only once at the time the start-
event happens. For example, a non-continuous Button-Interactor can be used to execute
some action when the delete key is hit on the keyboard.

The :continuous slot of an interactor controls whether the interactor is continuous or not.
The default is T.

Many interactors will do reasonable things for both values of :continuous. For example, a
continuous button-interactor would allow allow the user to press down on the graphical
button, and then move the mouse around. It would only execute the action if the mouse
button is released over the graphical button. This is the way Macintosh buttons work. A
non-continuous button would simply execute as soon as the mouse-button was hit over the
graphical button, and not wait for the release.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 228

6.8 Feedback

When an interactor is continuous, there is usually some feedback to show the user what is
happening. For example, when an object is being moved with the mouse, the object usually
moves around following the mouse. Sometimes, it is desirable that the actual object not
move, but rather that a special feedback object follows the mouse, and then the real object
moves only when the interaction is complete.

The interactors support this through the use of the :feedback-obj slot. If a graphical
object is supplied as the value of this slot, then the interactor will modify this object while
it is running, and only modify the “real” object when the interaction is complete (section
[where], page 231, discusses how the interactor finds the “real” object). If no value is
supplied in this slot (or if nil is specified), then the interactor will modify the actual object
while it is running. In either case, the operation can still be aborted, since the interactor
saves enough state to return the objects to their initial configuration if the user requests an
abort.

Typically, the feedback object will need the same kinds of constraints as the real object, in
order to follow the mouse. For example, a feedback object for a Move-Grow-Interactor

would need formulas to the :box slot. The sections on the various specific interactors discuss
the slots that the interactors set in the feedback and real objects.

6.9 Events

An interactor will start running when its start event occurs and continue to run until a stop
event occurs. There may also be an abort event that will prematurely cause it to exit and
restore the status as if it had not started.

An “event” is usually a transition of a mouse button or keyboard key. Interactors provide
a lot of flexibility as to the kinds of events that can be used for start, stop and abort.

6.9.1 Keyboard and Mouse Events

Events can be a mouse button down or up transition, or any keyboard key. The names
for the mouse buttons are :leftdown, :middledown, and :rightdown (simulating multiple
mouse buttons on the Mac is discussed in section [mac-keys], page 228). Keyboard keys are
named by their Common Lisp character, such as #\g, #\a, etc. Note that #\g is lower-case
"g" and #\G is upper case "G" (shift-g).

When specifying shift keys on keyboard events, it is important to be careful about the "\".
For example, :control-g is upper case "G" and :control-\g is lower case "g" (note the
extra "\"). You may also use the form :|CONTROL-g|, which is equivalent to :control-\g

(when using vertical bars, you must put the CONTROL in upper-case). It is not legal to
use the shift modifier with keyboard keys.

Events can also be specified in a more generic manner using :any-leftdown,
:any-middledown, :any-rightdown, :any-leftup, :any-middleup, :any-rightup,
:any-mousedown, :any-mouseup, and :any-keyboard. For these, the event will be
accepted no matter what modifier keys are down.

6.9.2 "Middledown" and "Rightdown" on the Mac

To simulate the three-button mouse on the Macintosh, we use keyboard keys in place of
the buttons. By default, the keys are F13, F14, and F15 for the left, middle, and right

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 229

mouse buttons, respectively. The real mouse button is also mapped to :leftdown, so you
can specify mouse events as usual on the Mac (e.g., :rightdown). The Overview section at
the beginning of this chapter provides instructions for customizing the keys that simulate
the mouse buttons, and provides instructions for a small utility that changes the keys to be
used from function keys to arrow keys.

6.9.3 Modifiers (Shift, Control, Meta)

Various modifier keys can be specified for the event. The valid prefixes are shift, control,
and meta. For example, :control-meta-leftdown will only be true when the left mouse
button goes down while both the Control and Meta keys are held down. When using
a conglomerate keyword like :shift-meta-middleup, the order in which the prefixes are
listed matters. The required order for the prefixes is: shift, control, meta. For instance,
:shift-control-leftdown is legal; :control-shift-leftdown is not.

As with MCL itself, the Option key is the "Meta" modifier on the Mac. There is no way
to access the Mac’s Command key through Garnet.

6.9.4 Window Enter and Leave Events

Sometimes it is useful to know when the cursor is inside the window. Garnet has the
ability to generate events when the cursor enters and leaves a window. To enable this, you
must set the :want-enter-leave-events slot of the window to T at window creation time.
Changing the value of this slot after the window has been created will not necessarily work.
If the window has this value as non-NIL, then when the cursor enters the window, a special
event called :window-enter will be generated, and when the cursor exits, :window-leave
will be generated. For example, the following will change the color of the window to red
whenever the cursor is inside the window:

(create-instance ’MY-WIN inter:interactor-window

(:want-enter-leave-events T)

(:aggregate (create-instance NIL opal:aggregate)))

(opal:update MY-WIN)

(create-instance ’SHOW-ENTER-LEAVE inter:button-interactor

(:start-event ’(:window-enter :window-leave))

(:window MY-WIN)

(:continuous NIL)

(:start-where T)

(:final-function #’(lambda(inter obj)

(declare (ignore obj))

(s-value (gv inter :window)

:background-color

; :start-char is described in section [specialslots],

page 301

(if (eq :window-enter (gv inter :start-char))

opal:red

opal:white)))))

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 230

6.9.5 Double-Clicking

Garnet also supports double-clicking of the mouse buttons. When the variable
inter:*Double-Click-Time* has a non-NIL value, then it is the time in milleseconds
of how fast clicks must be to be considered double-clicking. By default, double clicking
is enabled with a time of 250 milleseconds. When the user double-clicks, Garnet first
reports the first press and release, and then a :double-xxx press and then a regular
release. For example, the events that will be reported on a double-click of the left button
are: :leftdown :leftup :double-leftdown :leftup. Note that the normal -up events
are used. You can use the normal :shift, :control, and :meta modifiers in the usual
order, before the double-. For example: :shift-control-double-middledown. If you
specify the start-event of a continuous interactor to use a :double- form, then the correct
stop event will be generated automatically. If you have both single and double click
interactors, then you should be careful that it is OK for the single click one to run before
the double-click one.

If you want to handle triple-clicks, quadruple-clicks, etc., then you have to count the clicks
yourself. Garnet will continue to return :double-xxx as long as the clicks are fast enough.
When the user pauses too long, there will be a regular :xxxdown in between. Therefore,
for triple click, the events will be: :leftdown, :leftup, :double-leftdown, :leftup,

:double-leftdown, :leftup whereas for double-click-pause-click, the events will be:
:leftdown, :leftup, :double-leftdown, :leftup, :leftdown, :leftup.

6.9.6 Function Keys, Arrows Keys, and Others

The various special keys on the keyboard use special keywords. For example, :uparrow,
:delete, :F9, etc. The prefixes are added in the same way as for mouse buttons
(e.g., :control-F3). The arrow keys are almost always named :uparrow, :downarrow,
:leftarrow, and :rightarrow (and so there are no bindings for :R8 (uparrow), :R10

(leftarrow), :R12 (rightarrow), and :R14 (downarrow) on the Sun keyboard). On the
Mac, some users prefer to change their arrow keys to generate mouse events (see section
[mac-keys], page 228). To see what the Lisp character is for an event, turn on event tracing
using (Inter:Trace-Inter :event) and then type the key in some interactor window, as
described in the Garnet Debugging chapter. If you have keys on your keyboard that are
not handled by Garnet, it is easy to add them. See the section on “Keyboard Keys” in the
Overview Chapter, and then please send the bindings to garnet@cs.cmu.edu so we can
add them to future versions of Garnet.

You can control whether Garnet raises an error when an undefined keyboard key is hit. The
default for inter::*ignore-undefined-keys* is T, which means that the keys are simply
ignored. If you set this variable to NIL, then an error will be raised if you hit a key with
no definition.

6.9.7 Multiple Events

The event specification can also be a set of events, with an optional exception list. In this
case, the event descriptor is a list, rather than a single event. If there are exceptions, these
should be at the end of the list after the keyword :except. For example, the following lists
are legal values when an event is called for (as in the :start-event slot):

(:any-leftdown :any-rightdown)

(:any-mousedown #\RETURN) ;; any mouse button down or the RETURN key

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 231

(:any-mousedown :except :leftdown :shift-leftdown)

(:any-keyboard :any-rightdown :except #\b #\a #\r)

6.9.8 Special Values T and nil

Finally, the event specification can be T or nil. T matches any event and NIL matches no
event. Therefore, if nil is used for the :start-event, then the interactor will never start
by itself (which can be useful for interactors that are explicitly started by a programmer).
If T is used for the :start-event, the interactor will start immediately when it is created,
rather than waiting for an event. Similarly, if stop-event is nil, the interactor will never
stop by itself.

6.10 Values for the “Where” slots

6.10.1 Introduction

In addition to specifying what events cause interactors to start and stop, you must also
specify where the mouse should be when the interaction starts using the slot :start-where.
The format for the “where” arguments is usually a list with a keyword at the front, and
an object afterwards. For example, (:in myrect). These lists can be conveniently created
either using list or back-quote:

(:start-where (list :in MYRECT))

(:start-where ‘(:in ,MYRECT))

For the backquote version, be sure to put a comma before the object names.

The “where” specification often serves two purposes: it specifies where the interaction
should start and what object the interaction should work on.

Unlike some other systems, the Interactors in Garnet will work on any of a set of objects.
For example, a single menu interactor will handle all the items of the menu, and a moving
interactor will move any of a set of objects. Typically, the object to be operated on is chosen
by the user when the start event happens. For example, the move interactor may move the
object that the mouse is pressed down over. This one object continues to move until the
mouse is released.

Some of the interactors have an optional parameter called :obj-to-change, where you
can specify a different object to operate on than the one returned by the :start-where

specification.

One thing to be careful about is that some slots of the graphical objects themselves af-
fect how they are picked, in particular, the :hit-threshold, :select-outline-only, and
:pretend-to-be-leaf slots. See section [hitthreshold], page 236.

6.10.2 Running-where

There are actually two “where” arguments to each interactor. One is the place where
the mouse should be for the interaction to start (:start-where). The other is the active
area for the interaction (:running-where). The default value for the running-where slot is
usually the same as the start-where slot. As an example of when you might want them to
be different, with an object that moves with the mouse, you might want to start moving
when the press was over the object itself (so :start-where might be (:in MY-OBJ)) but

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 232

continue moving while the mouse is anywhere over the background (so :running-where

might be (:in MY-BACKGROUND-OBJ)).

6.10.3 Kinds of “where”

There are a few basic kinds of “where” values.

Single object:
These operate on a single object and check if the mouse is inside of it.

Element of an aggregate:
These check if the object is an element of an aggregate. Aggregadgets and
Aggrelists will also work since they are subclasses of aggregate.

Element of a list:
The list is stored as the value of a slot of some object.

The last two kinds have a number of varieties:

Immediate child vs. leaf:
Sometimes it is convenient to ask if the mouse is over a “leaf” object. This is
one of the basic types (rectangle, line, etc.). This is useful because aggregates
often contain extra white-space (the bounding box of an aggregate includes all
of its children, and all the space in between). Asking for the mouse to be over
a leaf insures that the mouse is actually over a visible object.

Return immediate child or leaf:
If you want the user to have to press on a leaf object, you may still want the
interactor to operate on the top level object. Suppose that the movable objects
in your system are aggregates containing a line with an arrowhead and a label.
The user must press on one of the objects directly (so you want leaf), but the
interactor should move the entire aggregate, not just the line. In this case, you
would use one of the forms that checks the leaf but returns the element.

Or none Sometimes, you might want to know when the user presses over no objects, for
example to turn off selection. The “or-none” option returns the object normally
if you press on it, but if you press on no object, then it returns the special value
:none.

Finally, there is a custom method that allows you to specify your own procedure to use.

6.10.4 Type Parameter

After the specification of the object, an optional :type parameter allows the objects to be
further discriminated by type. For example, you can look for only the lines in an aggregate
using ‘(:element-of ,MYAGG :type ,opal:line). Note the comma in front of opal:line.

The type parameter can either be a single type, as shown above, or a list of types. In this
case, the object must be one of the types listed (the “or” of the types). For example

‘(:element-of ,MYAGG :type (,opal:circle ,opal:rectangle))

will match any element of myagg that is either a circle or a rectangle.

Normally, the leaf versions of the functions below only return primitive (leaf) elements.
However, if the :type parameter is given and it matches an interior (aggregate) object, then

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 233

that object is checked and returned instead of a leaf. For example, if an object is defined
as follows:

(create-instance ’MYAGGTYPE opal:aggregate)

(create-instance ’TOP-AGG opal:aggregate)

(create-instance ’A1 MYAGGTYPE)

(create-instance ’A2 MYAGGTYPE)

(opal:add-components TOP-AGG A1 A2)

;; now add some things to A1 and A2

Then, the description (:leaf-element-of ,TOP-AGG :type ,MYAGGTYPE) will return A1 or
A2 rather than the leaf elements of A1 or A2.

Another way to prevent the search from going all the way to the actual leaf objects is to
set the :pretend-to-be-leaf slot of an intermediate object. Note that the :pretend-to-
be-leaf slot is set in the Opal objects, not in the interactor, and it is more fully explained
in the Opal chapter.

6.10.5 Custom

The :custom option for the :start-where field can be used to set up your own search
method. The format is:

(list :custom obj #’function-name arg1 arg2 ...)

There can be any number of arguments supplied, even zero. The function specified is then
called for each event that passes the event test. The calling sequence for the function is:

(lambda (obj an-interactor event arg1 arg2 ...))

The arguments are the values in the -where list, along with the interactor itself, and an
event. The event is a Garnet event structure, defined in section Section 14.22 [Events],
page 687. This function should return nil if the event does not pass (e.g., if it is outside
the object), or else the object that the interactor should start over (which will usually be obj
itself or some child of obj). The implementor of this function should call opal:point-to-
leaf, or whatever other method is desired. The function is also required to check whether
the event occurred in the same window as the object.

For example, if the interactor is in an aggregadget, and we need a custom checking function
which takes the aggregadget and a special parameter accessed from the aggregadget, the
following could be used:

;;; First define the testing function

(defun Check-If-Mouse-In-Obj (obj inter event param)

(if (and (eq (gv obj :window)(inter:event-window event)) ; have to check window

(> (inter:event-x event) (gv obj :left))

.....)

obj ; then return object

NIL)) ; else return NIL

(create-instance NIL opal:aggregadget

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 234

... ; various fields

(:parameter-val 34)

(:parts ‘((....)))

(:interactors

‘((:start-it ,Inter:Button-Interactor

... ; all the usual fields

(:start-where

,(o-formula (list :custom (gvl :operates-on)

#’Check-If-Mouse-In-Obj

(gvl :operates-on :parameter-val))))))))

6.10.6 Full List of Options for Where

All of the options for the where fields are concatenated together to form long keyword names
as follows:

T anywhere. This always succeeds. (The T is not in a list.) T for the
:start-where means the interactor starts whenever the start-event happens,
and T for the :running-where means the interactor runs until the stop event
no matter where the mouse goes.

NIL nowhere. This never passes the test. This is useful for interactors that you want
to start explicitly using Start-Interactor (section [startinteractor], page 300).

(:in <obj>)

message to the object to ask if it contains the mouse position.

(:in-box <obj>)

might be different from :in the object since some objects have special tests for
inside. For example, lines test for the position to be near the line. :In-box

may also be more efficient than :in.

(:full-object-in <obj>)

object being moved is inside the object specified here (if a circle is being moved
with its center connected on the mouse, this will make sure that all of the circle
is inside the <obj> specified here). [Not implemented yet.]

(:in-but-not-on <agg>)

inside the bounding rectangle of <agg>, but not over any of the children of
<agg>.

(:element-of <agg> [:type <objtype>])

element of the aggregate <agg>. If the :type keyword is specified, then it
searches the components of <agg> for an element of the specified type under
the mouse. This uses the Opal message point-to-component on the aggregate.

(:leaf-element-of <agg> [:type <objtype>])

over any leaf object of the aggregate <agg>. If the :type keyword is specified,
then it searches down the hierarchy from <agg> for an element of the specified
type under the mouse. This uses the Opal message point-to-leaf on the
aggregate.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 235

(:element-of-or-none <agg> [:type<objtype>])

the mouse is over <agg>. If there is an object at the mouse, then it is returned
(as with :element-of). If there is no object, then the special value :none is
returned. If the mouse is not over the aggregate, then nil is returned. This
uses the Opal message point-to-component on the aggregate.

(:leaf-element-of-or-none <agg> [:type <objtype>])

returns leaf children like :leaf-element-of. If there is an object at the mouse,
then it is returned. If there is no object, then the special value :none is returned.
If the mouse is not over the aggregate, then nil is returned. This uses the Opal
message point-to-leaf on the aggregate.

(:list-element-of <obj> <slot> [:type<objtype>])

<obj> should be a list. Goes through the list to find the object under the
mouse. Uses gv to get the list, so the contents of the slot can be a formula that
computes the list. If the :type keyword is specified, then it searches the list for
an element of the specified type. This uses the Opal message point-in-gob on
each element of the list.

(:list-leaf-element-of <obj> <slot> [:type<objtype>])

one of the objects is an aggregate, then returns its leaf element. The contents
of the <slot> of <obj> should be a list. Goes through the list to find the object
under the mouse. Uses point-in-gob if the object is not an aggregate, and
uses point-to-leaf if it is an aggregate.

(:list-element-of-or-none <obj> <slot> [:type<objtype>])

except if the event isn’t over an object, then returns the special value :none.
Note that this never returns nil.

(:list-leaf-element-of-or-none <obj> <slot> [:type<objtype>])

except if the event isn’t over an object, then returns the special value :none.
Note that this never returns nil.

(:check-leaf-but-return-element <agg> [:type<objtype>])

This is like :leaf-element-of except when an object is found, the immedi-
ate component of <agg> is returned instead of the leaf element. If the :type

keyword is specified, then it searches the list for an element of the specified
type. This choice is useful, for example, when the top level aggregate contains
aggregates (or aggregadgets) that mostly contain lines, and the programmer
wants the user to have to select on the lines, but still have the interactor affect
the aggregate.

(:list-check-leaf-but-return-element <obj> <slot> [:type<objtype>])

:list-leaf-element-of, except that it returns the element from the list itself
if a leaf element is hit.

(:check-leaf-but-return-element-or-none <agg> [:type<objtype>])

This is like :check-leaf-but-return-element except that if no child is under
the event, but the event is inside the aggregate, then :none is returned.

(:list-check-leaf-but-return-element-or-none <agg> [:type<objtype>])

This is like :list-check-leaf-but-return-element except that if nothing is
found, :none is returned instead of nil.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 236

(:custom <obj> ’function-name arg1 arg2)

Use a programmer-defined method to search for the object. See section
[customwhere], page 233.

6.10.7 Same Object

A special value for the object can be used when the specification is in the :running-where
slot. Using * means “in the object that the interactor started over.” For example, if the
start-where is (:element-of <agg>), a running-where of ’(:in *) would refer to what-
ever object of the <agg> the interactor started over. This * form cannot be used for the
:start-where.

6.10.8 Outside while running

While the interactor is running, the mouse might be moved outside the area specified by the
:running-where slot. The value of the interactor slot :outside determines what happens
in this case. When :outside is nil, which is the default, the interaction is temporarily
turned off until the mouse moves back inside. This typically will make the feedback be
invisible. In this case, if the user gives the stop event while outside, the interactor will
be aborted. For example, for a menu, the :running-where will usually be (:element-of

MENU-AGG) (same as the :start-where). If the user moves outside of the menu while
the mouse button is depressed, the feedback will go off, and the mouse button is released
outside, then no menu operation is executed. This is a convenient way to allow the user to
abort an interaction once it has started.

On the other hand, if you want the interactor to just save the last legal, inside value, specify
:outside as :last. In this case, if the user stops while outside, the last legal value is used.

If you want there to be no area that is outside (so moving everywhere is legal), then simply
set :running-where to T, in which case the :outside slot is ignored.

6.10.9 Thresholds, Outlines, and Leaves

Three slots of Opal objects are useful for controlling the “where” for interactors. These
are :hit-threshold, :select-outline-only, and :pretend-to-be-leaf. If you set the
:select-outline-only slot of an Opal object (note: not in the interactor) to T, then all
the “where” forms (except :in-box) will only notice the object when the mouse is directly
over the outline. The :hit-threshold slot of Opal objects determines how close to the line
or outline you must be (note that you usually have to set the :hit-threshold slot of the
aggregate as well as for the individual objects.) See the Opal chapter for more information
on these slots.

An important thing to note is that if you are using one of the -leaf forms, you need to
set the :hit-threshold slot of all the aggregates all the way down to the leaf from the
aggregate you put in the -where slot. This is needed if the object happens to be at the
edge of the aggregate (otherwise, the press will not be considered inside the aggregate).

The :pretend-to-be-leaf slot is used when you want an interactor to treat an aggregate as
a leaf (without it, only the components of an aggregate are candidates to be leaves). When
you set the :pretend-to-be-leaf slot of an aggregate to T (note: not in the interactor),
then the search for a leaf will terminate when the aggregate is reached, and the aggregate
will be returned as the current object.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 237

6.11 Details of the Operation

Each interactor runs through a standard set of states as it is running. First, it starts off
waiting for the start-event to happen over the start-where. Once this occurs, the interactor is
running until the stop-event or abort-event happens, when it goes back to waiting. While it
is running, the mouse might move outside the active area (determined by :running-where),
and later move back inside. Alternatively, the stop or abort events might happen while the
mouse is still outside. These state changes are implemented as a simple state machine inside
each interactor.

At each state transition, as well as continuously while the interactor is running, special
interactor-specific routines are called to do the actual work of the interactor. These routines
are supplied with each interactor, although the programmer is allowed to replace the routines
to achieve customizations that would otherwise not be possible. The specifics of what the
default routines do, and the parameters if the programmer wants to override them are
discussed in section [Specific Interactors], page 245.

The following table and figure illustrate the working of the state machine and when the
various procedures are called.

If the interactor is not active, then it waits until a program explicitly sets the interactor
to be active (see section [active], page 297).

If active, the interactor waits in the start state for the start-event to happen while the
mouse is over the specified start-where area.

When that event happens, if the interactor is not “continuous” (defined in section
[continuous], page 227), then it executes the Stop-action and returns to waiting for the
start-event. If the interactor is continuous, then it does all of the following steps:

First, the interactor calls the Start-action and goes into the running state.

In the running state, it continually calls the running-action routine while the mouse
is in the running-where area. Typically, the running-action is called for each in-
cremental mouse movement (so the running-action routine is not called when the
mouse is not moving).

If the mouse goes outside the running-where area, then outside-action is called
once.

If the mouse returns from outside running-where to be back inside, then the back-
inside-action is called once.

If the abort-event ever happens, then the abort-action is called and the state
changes back to the start state.

If the stop-event occurs while the mouse is inside running-where, then the stop-
action is called and the state returns to start.

If the stop-event occurs while the mouse is outside, then if the :outside field has
the value :last, the the stop-action is called with the last legal value. If :outside
is nil, then the abort-action is called. In either case, the state returns to start.
Note: if :outside = :last, and there is no abort-event, then there is no way to
abort an interaction once it has started.

If a program changes the active state to nil (not active) and the interactor is running
or outside, the interactor is immediately aborted (so the abort-action is called), and the

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 238

interactor waits for a program to make it active again, at which point it is in the start state.
(If the interactor was in the start state when it became inactive, it simply waits until it
becomes active again.) This transition is not shown in the following figure. Section [active],
page 297, discusses making an interactor in-active.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 239

Running-action

Start Running Outside

start-event
 over
start-where

Start-action

stop-event

Stop-action

abort-event

Abort-action

abort-event

Abort-action

Abort-action

Stop-action

stop-event if outside-control = Abort

stop-event if outside-control = Last

 not over
running-where

 back over
running-where

Outside-action

Back-inside-action

Stop-action
continuous = NIL

Figure 6.1: Each Interactor runs the same state machine to control its operation.
The start-event, stop-event and abort-event can be specified (see section
〈undefined〉 [events], page 〈undefined〉), as can the various -action procedures (section
[customroutines], page 303). Where the mouse should be for the Interactor to start
(start-where), and where it should run (running-where) can also be supplied as
parameters (sections [startwhere], page 231, and [runningwhere], page 231). The
outside-control parameter determines whether the interaction is aborted when the user
moves outside, or whether the last legal value is used (section [runningwhere], page 231).
There are default values for all parameters, so the programmer does not have to specify
them. In addition to the transitions shown, Interactors can be aborted by the application
at any time.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 240

6.12 Mouse and Keyboard Accelerators

The Interactors now have a new mechanism to attach functions to specific keyboard keys as
accelerators. These are processed either before or after interactors, and are either attached
to a particular window, or global to all windows. If they are after the interactors, then the
accelerators are only used if no interactor accepts the event.

(Note: If you are using the menubar or motif-menubar, then you can use the slot
:accelerator-windows of those gadgets to tell them which windows should have the
keyboard accelerators defined in them.)

By default, a number of global accelerators are defined:

:SHIFT-F1 - raise window

:SHIFT-F2 - lower window

:SHIFT-F3 - iconify window

:SHIFT-F4 - zoom window

:SHIFT-F5 - fullzoom window

:SHIFT-F6 - refresh window

:SHIFT-F7 - destroy window

:HELP - INSPECTOR object

:CONTROL-HELP - INSPECTOR next interactor to run

:SHIFT-HELP - print out object under the mouse (also in inspector.lisp)

The last three are processed before Interactors, and are defined in the debugging
file inspector.lisp. To change these, see the Debugging Reference chapter. The
first 7 are processed after the interactors. To change these bindings, set the variable
default-global-accelerators, which is initially defined as:

(defvar *default-global-accelerators* ’(

(:SHIFT-F1 . raise-acc)

(:SHIFT-F2 . lower-acc)

(:SHIFT-F3 . iconify-acc)

(:SHIFT-F4 . zoom-acc)

(:SHIFT-F5 . fullzoom-acc)

(:SHIFT-F6 . refresh-acc)

(:SHIFT-F7 . destroy-acc)))

Applications can also set and maintain their own accelerator keys, using the following
functions:

inter:Add-Global-Accelerator key fn &key replace-existing? first? [function],

page 90

inter:Add-Window-Accelerator win key fn &key replace-existing? first? [function],

page 90

Will call the function fn whenever key is hit. If first? then the accelerator will be tested
before all interactors, otherwise it will be tested if no interactor uses key. Replace-existing,
if non-nil, will remove any other assignments for key. By using the default nil value, you
can temporarily hide an accelerator binding.

The function fn is called as:

(lambda (event))

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 241

where event is the interactor event structure that caused the accelerator to happen.

inter:Remove-Global-Accelerator key &key remove-all? first? [function],

page 90

inter:Remove-Window-Accelerator win key &key remove-all? first? [function],

page 90

Removes the specified accelerator. If remove-all? then removes all the accelerators bound
to the key, otherwise, just removes the first one.

inter:Clear-Global-Accelerators [function], page 90

inter:Clear-Window-Accelerators win [function], page 90

inter:Default-Global-Accelerators ;; sets up the default accelerators [function],

page 90

6.13 Slots of All Interactors

This section lists all the slots common to all interactors. Most of these have been explained
in the previous sections. The slots a programmer is most likely to want to change are listed
first. Some specific interactor types have additional slots, and these are described in their
sections.

The various -action procedures are used by the individual interactors to determine their
behavior. You will rarely need to set these slots. See section [customroutines], page 303, for
how to use the -action slots.

The following field must be supplied:

:start-where

- where the mouse should be for this interactor to start working. Valid values
for where are described in section [where], page 231.

The following fields are optional. If they are not supplied, then the default
value is used, as described below. Note that supplying nil is not the same as
not supplying a value (since not supplying a value means to use the default,
and nil often means to not do something).

:window - the window that the interactor should be connected to. Usually this is supplied
as a single window, but other options are possible for interactors that operate
on multiple windows. See section [multiwindow], page 302.

:start-event

- the event that causes the interactor to start working. The default value is
:leftdown. nilmeans the interactor never starts by itself (see [startinteractor],
page 300). Using T means no event, which means that the interactor is oper-
ating whenever the mouse is over :start-where. The full syntax for event
specification is described in section [eventspec], page 228.

:continuous

- if this is T, then the interactor operates continuously from start-event until
stop-event. If it is nil, then the interactor operates exactly once when start-
event happens. The default value is T. See section [continuous], page 227, for
more explanation.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 242

:stop-event

- This is not used if :continuous is nil. If :continuous is T, :stop-event
is the event that the interaction should stop on. If not supplied, and the start-
event is a mouse down event (such as :leftdown), then the default :stop-event
is the corresponding up event (e.g. :leftup). If start-event is a keyboard key,
the default stop event is #\RETURN. If the :start-event is a list or a special
form like :any-mousedown, then the default :stop-event is calculated based
on the actual start event used. You only need to define stop-event if you want
some other behavior (e.g. starting on :leftdown and stopping on the next
:leftdown so you must click twice). The form for stop-events is the same as
for start-events (see section 〈undefined〉 [events], page 〈undefined〉). T means no
event, so the interactor never stops (unless it is turned off using ChangeActive).

:feedback-obj

- If supplied, then this is the object to be used to show the feedback while the
interaction is running. If nil, then typically the object itself will be modified.
The default value is nil. See the descriptions of the specific interactors for
more information.

:running-where

- Describes where the interaction should operate if it is continuous. The default
is usually to use the same value as start-where. Running-where will sometimes
need to be different from start-where, however. For example, with an object
that moves with the mouse, you might want to start moving when the press was
over the object itself. See section [where], page 231, for a complete discussion
of this field.

:outside - Determines what to do when the mouse goes outside of running-where. Legal
values are :last, which means to use the last value before the mouse went
outside, or nil which means to return to the original value (before the inter-
action started). The default value is nil. See section 〈undefined〉 [outside],
page 〈undefined〉, for more explanation.

:abort-event

- This is an event that causes the interaction to terminate prematurely. If abort-
event is nil, then there is no separate event to cause aborts. The default value
is nil. The form for abort-events is the same as for start-events (see section
〈undefined〉 [events], page 〈undefined〉).

:waiting-priority

- This determines the priority of the interactor while waiting for the start event
to happen. See section [priorities], page 294, for a description of priority levels.

:running-priority

- This determines the priority of the interactor while it is running (waiting for
the stop event to happen). See section [priorities], page 294, for a description
of priority levels.

:final-function

- This function is called after the interactor is complete. The programmer might
supply a function here to cause the application to notice the users actions. The

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 243

particular form for the parameters to this function is specific to the particular
type of the interactor.

:stop-action

- This procedure is called once when the :stop-event happens, or if the interac-
tor is not continuous, then this procedure is called once when the :start-event
happens. The form for the arguments is specific to the particular interactor
sub-class. Specifying nil means do no action. Normally, the stop-action

procedure (as well as the start-action, running-action, etc. below is not
provided by the programmer, but rather inherited. These functions provide the
default behavior, such as turning on and off the feedback object. In particular
the default stop-action calls the final-function. See section [customroutines],
page 303.

:start-action

- The action to take place when start-event happens when the mouse is over
start-where and continuous is T (if continuous is nil, then stop-action is
called when the start-event happens). The form for the arguments is specific
to the particular interactor sub-class. Specifying nil means do no action. See
section [customroutines], page 303.

:running-action

- A procedure to be called as the interaction is running. This is called repeatedly
(typically for each incremental mouse movement) while the mouse is inside
:running-where and between when :start-event and :stop-event happen.
The form for the arguments is specific to the particular interactor sub-class.
Specifying nil means do no action. See section [customroutines], page 303.

:abort-action

- This procedure is called when the interaction is aborted, either by
:abort-event or :stop-event while outside. The form for the arguments is
specific to the particular interactor sub-class. Specifying nil means do no
action. See section [customroutines], page 303.

:outside-action

- This procedure is called once each time the mouse goes from inside
:running-where to being outside. It is not called repeatedly while outside (so
it is different from :running-action). The form for the arguments is specific
to the particular interactor sub-class. Specifying nil means do no action. See
section [customroutines], page 303.

:back-inside-action

- This is called once each time the mouse goes from outside :running-where to
being inside. Note that :running-action is not usually called on this point.
The form for the arguments is specific to the particular interactor sub-class.
Specifying nil means do no action. See section [customroutines], page 303.

:active - Normally, an interactor is active (willing to accept its start event) from the
time it is created until it is destroyed. However, it is sometimes convenient to
make an interactor inactive, so it does not look for any events, for example, to
have different modes in the interface. This can be achieved by setting the active

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 244

field of the interactor. If the interactor is running, setting :active to nil causes
it to abort, and if the interactor is not running, then this just keeps it from
starting. This field can be set and changed at any time either using s-value

or by having a formula in this slot, but it is safest to use the Change-active

procedure, since this guarantees that the interactor will be aborted immediately
if it is running. Otherwise, if it is running when the active field changes to
nil, then it will abort the next time there is an event (e.g., when the mouse
moves). See section [active], page 297, for more information.

:self-deactivate

- Normally, interactors are always active. If this field is T however, the interactor
will become inactive after it runs once (it will set its own :active slot to nil).
The interactor will then not run again until the :active field is explicitly set
to T. If this field is used, it is probably a bad idea to have a formula in the
:active slot.

************************** NIY **********************************

@code{:exception-p}

@cindex{exception}

- a function to determine whether the current value is illegal. This

serves as a temporary way to change what is specified by the @code{-where}

parameters. Illegal

values add one extra state to the state machine of the figure; the

interactor goes into the exception state when the mouse goes over an

illegal item (as determined by this function), and leaves the exception

state when the mouse goes over a legal item or goes outside. @b{Note: Is

it sufficient to just use the actions for outside and back-inside for

exceptions, or do we need the following?}

There are two procedures added for exceptions: @code{:over-illegal-item} and

@code{:leave-illegal-item}, see below.

Parameters to the exception-p procedure

are @code{(an-interactor objUnderMouse)} and it should

return T or @code{nil}. Returning @code{T} means that the value is an exception (is

illegal), and this is treated as if the mouse went outside. Returning @code{nil}

means the value is OK. The default is for there to be no illegal values.

The default function for this parameter (use this by supplying T) checks the

slot @code{:illegal} in the object under the mouse.

@B{This is not implemented yet.}

@code{:over-illegal-item}

@cindex{over-illegal-item}

- Called when go over an illegal item with parameters @code{(an-interactor

illegal-obj)}. Default action is to call the @code{:outside-action} procedure.

@B{This is not implemented yet.}

@code{:leave-illegal-item}

@cindex{leave-illegal-item}

- Called when no longer over an illegal item with parameters @code{(an-interactor

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 245

illegal-obj)}. Default action is to do nothing.

Note that if the mouse moves from one illegal item to another,

the @code{:leave-} and @code{:over-} procedures will be called. Also unlike

back-inside, the @code{:running-action} procedure is called on the new object

the mouse goes over. @B{This is not implemented yet.}

@code{:pop-up}

@cindex{pop-up}

- If non-NIL, then this interactor controls something that should pop-up

(become visible) when the interactor starts, and become invisible when the

interactor completes.

If @code{nil}, then object that the interactor refers to should be

visible. If non-NIL, then the value of pop-up should be a procedure to

cause the object to be displayed and erased. It is called with

@code{(an-interactor visible-or-erase)}, where @code{visible-or-erase} is T to

make it visible, and @code{nil} to erase it.

The default procedure is to set

the object’s @code{:visible} slot to T, and to @code{nil} for

stop-action. If would be an error to have start-where be the object if it

was a pop-up, since it would not be visible to press on. The default value

for this parameter is @code{nil}. @B{This is not implemented yet.}

************************** NIY **********************************

6.14 Specific Interactors

This section describes the specific interactors that have been defined. Below is a list of the
interactors, and then the following sections describe them in more detail. There are also
several interactors defined for the multifont-text object. These are described in the Opal
chapter.

Inter:Menu-Interactor

- to handle menu items, where the mouse can choose among a set of items.
Useful for menus, etc.

inter:button-interactor

- to choose a particular button. The difference from menus is that when the
mouse moves away, the item is deselected, rather than having a different item
selected. Useful for sets of buttons like "radio buttons" and "check boxes",
and also for single, stand-alone buttons. This can also be used just to select an
object by making :continuous be nil.

inter:move-grow-interactor

- move or change the size of an object or one of a set of objects using the mouse.
There may be feedback to show how the object moves or grows, or the object
itself may change with the mouse. If defined over a set of objects, then the
interactor gets the object to change from where the interaction starts. Useful
for scroll bars, horizontal and vertical gauges, and for moving and changing the
size of application objects in a graphics editor. It can change the bounding box
for the objects or the end points for a line.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 246

inter:two-point-interactor

- This is used when there is no original object to modify, but one or two new
points are desired. A rubber-band feedback object (usually a rubber-band line
or rectangle) will typically be drawn based on the points specified.

inter:angle-interactor

- Useful for getting the angle the mouse moves from around some point. This
can be used for circular gauges or for "stirring motions" for rotating.

inter:text-interactor

- Used to input a small edited string of text. The text can be one line or
multi-line.

inter:gesture-interactor

- Used to recognize single-path gestures drawn with the mouse.

inter:animator-interactor

- This interactor causes a function to be executed at regular intervals, allowing
rapid updating of graphics for animation.

The following interactors are planned but not implemented yet.

Inter:Trace-Interactor

- This returns all of the points the mouse goes through between start-event

and stop-event. This is useful for inking in a drawing program. Although
this isn’t implemented yet, it is trivial to use a gesture interactor with a
:classifier of nil.

inter:multi-point-interactor

- This is used when there is no original object to modify, but more than 2
new points are desired. This is separate from the two-point-interactor be-
cause the way the points are stored is usually different, and the stopping con-
ditions are much more complicated for multi-points. Not implemented yet.
However, there is a gadget in the gadget set that will do most of this. See
garnet-gadgets:polyline-creator.

6.15 Menu-Interactor

(create-instance ’inter:Menu-Interactor inter:interactor

;; Slots common to all interactors (see section [Slots of All Interac-

tors], page 241)

(:start-where NIL)

(:window NIL)

(:start-event :leftdown)

(:continuous T)

(:stop-event NIL)

(:running-where NIL)

(:outside NIL)

(:abort-event :control-\g)

(:waiting-priority normal-priority-level)

(:running-priority running-priority-level)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 247

(:active T)

(:self-deactivate NIL)

; Slots specific to the menu-interactor (discussed in this section)

(:final-function NIL) ; (lambda (inter final-obj-over))

(:how-set :set) ; How to select new items (toggle selection, etc.)

(:feedback-obj NIL) ; Optional interim feedback object. The in-

ter will set this object’s :obj-over slot.

(:final-feedback-obj NIL) ; The optional object to indicate the final selection

(:slots-to-set ; Names of slots to set in the objects

’(:interim-selected [; ’(<interim-selected-slot-name-in-obj>]

:selected ; <selected-slot-name-in-obj>]

:selected) ; <selected-slot-name-in-aggregate>]

(:final-feed-inuse NIL) ; Read-only slot. A list of final feedback ob-

jects (section [menufinalfeedbackobj], page 250)

; Advanced feature: Read-only slots.

; See section [specialslots], page 301, for details about these slots.

(:first-obj-over NIL) ; Read-only slot. The object returned from the start-

where.

(:current-window NIL) ; Read-only slot. The window of the last (or cur-

rent) event.

(:start-char NIL) ; Read-only slot. The character or keyword of the start event.

; Advanced feature: Customizable action routines.

; See sections [Slots of All Interactors], page 241, and 〈undefined〉 [menu-

customaction], page 〈undefined〉, for details about functions in these slots.

(:start-action ...) ; (lambda (inter first-obj-under-mouse))

(:running-action ...) ; (lambda (inter prev-obj-over new-obj-over))

(:stop-action ...) ; (lambda (inter final-obj-over))

(:abort-action ...) ; (lambda (inter last-obj-over))

(:outside-action ...) ; (lambda (inter outside-control prev-obj-over))

(:back-inside-action ...) ; (lambda (inter outside-control prev-obj-over new-

obj-over))

...)

(Note: If you just want to use a pre-defined menu, it may be sufficient to use one of the
menu objects in the Garnet Gadget Set.)

The menu interactor is used (not surprisingly) mostly for menus. There is typically some
feedback to show where the mouse is while the interactor is running. This is called the
interim feedback. A separate kind of feedback might be used to show the final object
selected. This is called the final feedback.

Unlike button interactors (see section [buttoninter], page 253), Menu-interactors allow the
user to move from one item to another while the interactor is running. For example, the
user can press over one menu item, move the mouse to another menu item, and release, and
the second item is the one that is selected.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 248

There are a number of examples of the use of menu interactors below. Other examples can
be found in the menu gadget in the Garnet Gadget Set, and in the file demo-menu.lisp.

6.15.1 Default Operation

This section describes how the menu interactor works if the programmer does not remove
or override any of the standard -action procedures. To supply custom action procedures,
see section [Menucustomaction], page 304.

The menu interactor provides many different ways to control how the feedback graphics are
controlled. In all of these, the interactor sets special slots in objects, and the graphics must
have formulas that depend on these slots.

6.15.2 Interim Feedback

To signify the object that the mouse is over as interim feedback (while the interactor is
running), menu-interactors set two different slots. If there is a feedback object supplied in
the :feedback-obj slot of the interactor, then the :obj-over slot of the feedback object
is set to the current menu item object. Also, the :interim-selected slot of the current
menu item is set to T, and the :interim-selected slots of all other items are set to nil.
Note: there is always at most one interim-selected object, independent of the value of the
:how-set slot.

This supports two different ways to handle interim feedback:

A single feedback object.

This object should be supplied in the :feedback-obj slot of the interactor. The :obj-over
slot of this object is set to the menu item that the feedback should appear over, or nil if
there is no object. The following is an example of a typical reverse-video black rectangle as
a feedback object:

(create-instance ’FEEDBACK-RECT opal:rectangle

(:obj-over NIL) ; set by the interactor

(:visible (o-formula (gvl :obj-over))) ; this rectangle is visible

; only if over something

(:left (o-formula (gvl :obj-over :left)))

(:top (o-formula (gvl :obj-over :top)))

(:width (o-formula (gvl :obj-over :width)))

(:height (o-formula (gvl :obj-over :height)))

(:fast-redraw-p T)

(:draw-function :xor)

(:filling-style opal:black-fill)

(:line-style NIL))

The interactor to use it would be something like:

(create-instance ’SELECT-INTER Inter:Menu-Interactor

(:start-where ‘(:element-of ,ITEMSAGG))

(:feedback-obj FEEDBACK-RECT)

(:window MYWINDOW))

The items that can be chosen are elements of an aggregate named ITEMSAGG.

Multiple feedback objects.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 249

In this case, each item of the menu might have its own feedback object, or else some property
of that menu item object might change as the mouse moves over it. Here, you would have
formulas that depended on the :interim-selected slot of the menu item.

If there are separate objects associated with each menu item that will be the interim feed-
back, then their visibility slot can simply be tied to the :interim-selected slot. An
example using an Aggregadget which is the item-prototype for an AggreList (see the Ag-
gregadgets chapter) with an embedded interactor is:

(create-instance ’MYMENU opal:aggrelist

(:items ’("One" "Two" "Three"))

(:item-prototype

‘(opal:aggregadget

(:width ,(o-formula (gvl :str :width)))

(:height ,(o-formula (gvl :str :height)))

(:my-item ,(o-formula (nth (gvl :rank) (gvl :parent :items))))

(:parts

‘((:str ,opal:text

(:string ,(o-formula (gvl :parent :my-item)))

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top))))

(:interim-feed ,opal:rectangle

;; The next slot causes the feedback to go on at the right time

(:visible ,(o-formula (gvl :parent :interim-selected)))

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (gvl :parent :width)))

(:height ,(o-formula (gvl :parent :height)))

(:fast-redraw-p T)

(:draw-function :xor)

(:filling-style ,opal:black-fill)

(:line-style NIL))))))

(:interactors

‘((:inter ,Inter:Menu-Interactor

(:start-where ,(o-formula (list :element-of (gvl :operates-on))))

(:window ,MYWINDOW)))))

6.15.3 Final Feedback

For some menus, the application just wants to know which item was selected, and there
is no graphics to show the final selection. In other cases, there should be final feedback
graphics to show the object the mouse ends up on.

The Menu-Interactor supplies three ways to have graphics (or applications) depend on the
final selection. Both the :selected slot of the individual item and the :selected slot of
the aggregate the items are in are set. The item’s :selected slot is set with t or nil, as
appropriate, and the aggregate’s :selected slot is set with the particular item(s) selected.
The number of items that are allowed to be selected is controlled by the :how-set slot of
the interactor, as described in section [menuhowset], page 251.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 250

Note that the aggregate’s :selected slot often contains a list of object names, but the
:selected slot in the individual items will always contain t or nil. The programmer is
responsible for setting up constraints so that the appropriate final feedback is shown based
on the :selected field.

If there is no aggregate (because :start-where is something like (:in xxx) rather than
something like (:element-of xxx)), then the slot of the object is set with T or NIL. If
the the :start-where is one of the “list” styles (e.g. (:list-element-of obj slot), then
the :selected slot of the object the list is stored in (here, obj) is set as if that was the
aggregate.

The third way to show the final feedback is to use the :final-feedback-obj slot, which is
described in the next section.

6.15.4 Final Feedback Objects

The :feedback-obj slot can be used for the object to show the interim-feedback, and
the :final-feedback-obj slot can be used to hold the object to show the final feedback.
Garnet will set the :obj-over slot of this object to the object that the interactor finishes
on. If the :how-set field of the interactor is one of the :list-* options, then there might
be multiple final feedback objects needed to show all the objects selected. In this case, the
interactor creates instances of object in the :final-feedback-obj slot. Therefore, this
object should not be an aggregate; it must be an aggregadget instead (or it can be a single
Opal object, such as a rectangle, circle, polyline, etc.). Furthermore, the final-feedback
object itself should not be a :part of an aggregadget, since you are not allowed to add new
objects to an aggregadget with parts.

The :final-feedback-obj slot may contain a formula, which might compute the appro-
priate feedback object based on the object selected. The interactor will automatically
duplicate the appropriate feedback object if more than one is needed (e.g., if :how-set is
:list-toggle). One use of this is to have different kinds of feedback for different kinds
of objects, and another would be to have different feedback objects in different windows,
for an interactor that works across multiple windows. To aid in this computation, the
:current-obj-over slot of the interactor is set with the object the mouse was last over,
and the :current-window slot of the interactor is maintained with the window of the cur-
rent event.

If the start-where is one of the ...-or-none forms, then whenever the user presses in the
background, the final feedback objects are all turned off.

For examples of the use of final-feedback-objects, see MENU1 (the month menu) or MENU2
(the day-of-the-week menu) in demo-menu.lisp.

Useful Functions

In order to help with final feedback objects, there are a number of additional, useful func-
tions. To get the final-feedback objects currently being displayed by an interactor, you can
use:

inter:Return-Final-Selection-Objs inter[function], page 90

If you want to reference the current final feedback objects in a formula, however, then you
should access the :final-feed-inuse slot of the menu interactor. This slot contains a list
of the final feedback objects that are in use. Do not set this slot. This might be useful if

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 251

you wanted to use the final feedback objects as the start objects for another interactor (e.g,
one to move the object selected by a final-feedback object):

(create-instance NIL Inter:Move-Grow-Interactor

;; start when press on a final-feedback object of SELECT-INTER

(:start-where (formula ‘(list :list-element-of

‘,SELECT-INTER :final-feed-inuse)))

;; actually move the object which the feedback objects are over.

(:obj-to-change (o-formula (gvl :first-obj-over :obj-over)))

..... ; all the other slots

)

If a program wants to make an object be selected, it can call:

inter:SelectObj inter obj[function], page 90

which will cause the object to become selected. This uses the :how-set slot of the interactor
to decide whether to deselect the other objects (whether single or multiple objects can be
selected). The :selected slots of the object and the aggregate are set, and the final-
feedback objects are handled appropriately. To de-select an object, use:

inter:DeSelectObj inter obj[function], page 90

6.15.5 Items Selected

The menu interactor will automatically handle control over the number of items selected.
A slot of the interactor (:how-set) determines whether a single item can be selected or
multiple items. In addition, this slot also determines how this interactor will affect the
selected items. For example, if multiple items can be selected, the most common option is
for the interactor to “toggle” the selection (so if the item under the mouse was selected, it
becomes de-selected, and if it was not selected, then it becomes selected). Another design
might use two interactors: one to select items when the left button is pressed, and another
to de-select items when the right button is pressed. The :how-set slot provides for all these
options.

In particular, the legal values for the :how-set slot are:

:set - Select the final item. One item is selectable at a time. The aggregate’s
:selected slot is set with this object. The item’s :selected slot is set with
T.

:clear - De-select the final item. At most one item is selectable at a time. The
aggregate’s :selected slot is set to nil. (If some item other than the final
item used to be selected, then that other item becomes de-selected. I.e., using
:clear always causes there to be no selected items.) The item’s :selected

slot is set to nil. (This choice for how-set is mainly useful when the menu item
contains a single item that can be turned on and off by different interactors,
e.g., left button turns it on and right button turns it off. With a set of menu
items, :set is usually more appropriate.)

:toggle - Select if not selected, clear if selected. At most one item is selectable at a time.
This means that if there are a set of objects and you select the object that used
to be selected, then there becomes no objects selected. (This is mainly useful
when there is a single button that can be turned on and off by one interactor,

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 252

each press changes the state. With a set of menu items, :list-toggle or :set
is usually more appropriate. However, this option could be used with a set of
items if you wanted to allow the user to make there be no selection.)

:list-add

- If not in list of selected items, then add it. Multiple items are selectable at a
time. The item is added to the aggregate’s :selected slot using pushnew. The
item’s :selected slot is set with T.

:list-remove

- If in list of selected items, then remove it. Multiple items selectable at a
time. The item is removed from the aggregate’s :selected slot. The item’s
:selected slot is set with nil.

:list-toggle

- If in list of selected items, then remove it, otherwise add it. Multiple items
are selectable at a time. The item is removed or added to the aggregate’s
:selected slot. The item’s selected slot is set with t or nil.

<a number> - Increment the :selected slot of the item by that amount (which
can be negative). The aggregate’s :selected slot is set to this object. The
value of the item’s selected slot should be a number.

<a list of two numbers>: (inc mod) - Increment the :selected slot of the item
by the car of the list, modulus the cadr of the list. The aggregate’s :selected
slot is set to this object. The value of the item’s selected slot should be a
number.

The default value for :how-set for menus is :set, so one item is selected at a time.

6.15.6 Application Notification

To have an application notice the effect of the menu-interactor, you can simply have some
slot of some object in the application contain a formula that depends on the aggregate’s
:selected slot.

Alternatively, the programmer can provide a function to be called when the interactor is
complete by putting the function in the :final-function slot. This function is called with
the following arguments:

(lambda (an-interactor final-obj-over))

6.15.7 Normal Operation

If the value of :continuous is T, then when the start event happens, the interim feedback
is turned on, as described in section [menuinterimfeedback], page 248. If the mouse moves
to a different menu item, the interim feedback is changed to that item. If the mouse
moves outside, the interim feedback is turned off, unless :outside is :last (see section
〈undefined〉 [outside], page 〈undefined〉). If the interactor aborts, the interim feedback is
turned off. When the stop event happens, the interim feedback is turned off, and the final
:selected slots are set as described in section [menufinalfeedback], page 249, based on the
value of the :how-set parameter (section [menuhowset], page 251), then the :obj-over

field of the final-feedback-obj is set to the final selection (possibly after creating a new final

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 253

feedback object, if necessary), as described in section [menufinalfeedbackobj], page 250.
Then the final-function (if any) is called (section [menufinalfunc], page 252).

If the interactor is not continuous, when the start event happens, the :selected slots are set
based on the value of the :how-set parameter, the :obj-over slot of the final-feedback-obj
is set, and then the final-function is called.

6.15.8 Slots-To-Set

The button and menu interactors by default set the :selected and :interim-selected

slots of objects. This sometimes results in a conflict when two interactors are attached to
the same object. Therefore, the :slots-to-set slot has been provided in which you may
specify what slot names should be used. Note: it is very important that once an interactor
is started, the slot names for it should never change.

The :slots-to-set slot takes a list of three values:

(<interim-selected-slot-name-in-obj>

<selected-slot-name-in-obj>

<selected-slot-name-in-aggregate>)

The default value is (:interim-selected :selected :selected). If NIL is supplied for
any slot name, then that slot isn’t set by the interactor.

The slots in the object are set with t or nil, and the slot in the aggregate is set with the
selected object or a list of the selected objects.

6.16 Button-Interactor

(create-instance ’inter:Button-Interactor inter:interactor

;; Slots common to all interactors (see section [Slots of All Interac-

tors], page 241)

(:start-where NIL)

(:window NIL)

(:start-event :leftdown)

(:continuous T)

(:stop-event NIL)

(:running-where ’(:in *))

(:outside NIL)

(:abort-event :control-\g)

(:waiting-priority normal-priority-level)

(:running-priority running-priority-level)

(:active T)

(:self-deactivate NIL)

; Slots common to the menu-interactor and the button-interactor (see sec-

tion 〈undefined〉 [menuinter], page 〈undefined〉)
(:final-function NIL) ; (lambda (inter final-obj-over))

(:how-set :list-toggle) ; How to select new items (toggle selection, etc.)

(:feedback-obj NIL) ; Optional interim feedback object. The in-

ter will set this object’s :obj-over slot.

(:final-feedback-obj NIL) ; The optional object to indicate the final selection

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 254

(:slots-to-set ; Names of slots to set in the objects

’(:interim-selected [; ’(<interim-selected-slot-name-in-obj>]

:selected ; <selected-slot-name-in-obj>]

:selected) ; <selected-slot-name-in-aggregate>]

(:final-feed-inuse NIL) ; Read-only slot. A list of final feedback ob-

jects (section [menufinalfeedbackobj], page 250)

; Slots specific to the button-interactor (discussed in this section)

(:timer-repeat-p NIL) ; when T, then does timer

(:timer-initial-wait 0.75) ; time in seconds

(:timer-repeat-wait 0.05) ; time in seconds

; Advanced feature: Read-only slots.

; See section [specialslots], page 301, for details about these slots.

(:first-obj-over NIL) ; Read-only slot. The object returned from the start-

where.

(:current-window NIL) ; Read-only slot. The window of the last (or cur-

rent) event.

(:start-char NIL) ; Read-only slot. The character or keyword of the start event.

; Advanced feature: Customizable action routines.

; See sections [Slots of All Interactors], page 241, and [buttoncustomaction],

page 304, for details about functions in these slots.

(:start-action ...) ; (lambda (inter obj-under-mouse))

(:stop-action ...) ; (lambda (inter final-obj-over))

(:abort-action ...) ; (lambda (inter last-obj-over))

(:outside-action ...) ; (lambda (inter last-obj-over))

(:back-inside-action ...) ; (lambda (inter new-obj-over))

...)

(Note: If you just want to use a pre-defined set of buttons, it may be sufficient to use the
radio buttons or x-button objects from the Garnet Gadget Set.

The button interactor is used (not surprisingly) mostly for buttons. There is typically
some feedback to show where the mouse is while the interactor is running. This is called
the interim feedback. A separate kind of feedback might be used to show the final object
selected. This is called the final feedback.

Unlike menu interactors (see section 〈undefined〉 [menuinter], page 〈undefined〉), Button-
interactors do not allow the user to move from one item to another while the interactor is
running. For example, if there are a group of buttons, and the user presses over one button,
moving to a different button in the set does not cause the other button to become selected.
Only the first button that the user presses over can be selected. This is similar to the way
radio buttons and check boxes work on the Macintosh.

There are a number of examples of the use of button interactors below. Other examples can
be found in the demos for the radio-button and x-button gadgets in the Garnet Gadget
Set, and in the file demo-grow.lisp.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 255

6.16.1 Default Operation

The button interactor works very similar to the menu interactor (section 〈undefined〉 [men-
uinter], page 〈undefined〉). This section describes how the button interactor works if the
programmer does not remove or override any of the standard -action procedures. To
supply custom action procedures, see section [buttoncustomaction], page 304.

The button interactor provides the same ways to control the feedback as the menu interactor.

6.16.2 Interim Feedback

As with menus, button-interactors set both the :obj-over slot of the object in the
:feedback-obj slot, and the :interim-selected slot of the current button item. The
:obj-over slot is set with the object that is under the mouse or nil if none, and
the :interim-selected slot is set with T or nil. See section [menuinterimfeedback],
page 248, for more information.

6.16.3 Final Feedback

The final feedback for buttons works the same way as for menus: Both the :selected slot
of the individual item and the :selected slot of the aggregate the items are in are set,
and the :obj-over slot of the object in the :final-feedback-obj slot (if any) is set. The
item’s :selected slot is set with t or nil, as appropriate, and the aggregate’s :selected
slot is set with the name(s) of the particular item(s) selected.

For more information, see sections [menufinalfeedback], page 249, and
[menufinalfeedbackobj], page 250.

6.16.4 Items Selected

As with Menus, the button interactor will automatically handle control over the number of
items selected. A slot of the interactor (:how-set) determines whether a single item can
be selected or multiple items. In addition, this slot also determines how this interactor will
affect the selected items.

The legal values for :how-set are exactly the same as for menu (see section [menuhowset],
page 251: :set, :clear, :toggle, :list-add, :list-remove, :list-toggle, a number,
or a list of two numbers).

The default for buttons is :list-toggle, however.

6.16.5 Application Notification

As with menus, to have an application notice the effect of the button-interactor, you can
simply have some slot of some object in the application contain a formula that depends on
the aggregate’s :selected slot.

Alternatively, the programmer can provide a function to be called when the interactor is
complete by putting the function in the :final-function slot. This function is called with
the following arguments:

(lambda (an-interactor final-obj-over))

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 256

6.16.6 Normal Operation

If the value of :continuous is T, then when the start event happens, the interim feedback
is turned on, as described in section [buttoninterimfeedback], page 255. If the mouse moves
away from the item it starts on, the interim feedback goes off. If the mouse moves back,
the interim feedback goes back on. If the interactor aborts, the interim feedback is turned
off. When the stop event happens, the interim feedback is turned off. If the mouse is
over the item that the interactor started on, the final :selected slots are set as described
in section [buttonfinalfeedback], page 255, based on the value of the :how-set parameter
(section [buttonhowset], page 255), then the :obj-over field of the final-feedback-obj is set
to the final selection (possibly after creating a new final feedback object, if necessary), as
described in section [menufinalfeedbackobj], page 250. Then the final-function (if any) is
called (section [buttonfinalfunc], page 255). Otherwise, when the stop event happens, the
interactor aborts.

The :last parameter is ignored by button interactors.

If the interactor is not continuous, when the start event happens, the :selected slots are set
based on the value of the :how-set parameter, the :obj-over slot of the final-feedback-obj
is set, and then the final-function is called.

The :slots-to-set slot can be used to change the name of the slots that are set, as
described in section [slots-to-set], page 253.

6.16.7 Auto-Repeat for Buttons

The button-interactor can auto-repeat the :final-function. Note: This only works for
Allegro, LispWorks, and Lucid lisps (including Sun and HP CL); not for CMU CL, AKCL,
etc.

If :timer-repeat-p is non-NIL, then after the interactor starts, if the mouse button is held
down more than :timer-initial-wait seconds, then every :timer-repeat-wait seconds,
the :final-function is called and the appropriate slot (usually :selected) is set into the
object the interactor is operating over (this might be useful, for example, if the :how-set

was an integer to cause the value of the :selected slot to increment each time).

The various scroll bar and slider gadgets use this feature to cause the arrows to auto repeat.

6.16.8 Examples

6.16.9 Single button

The button in this example is not continuous, and does not have a final feedback; it just
causes a value to be incremented.

(create-instance ’ARROW-INC opal:aggregadget

(:parts

‘((:arrow ,opal:polyline

(:selected 10)

(:point-list (20 40 20 30 10 30 25 15 40 30 30 30 30 40 20 40)))

(:label ,opal:text

(:left 17)(:top 50)

(:string ,(o-formula (prin1-to-string

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 257

(gvl :parent :arrow :selected)))))))

(:interactors

‘((:incrementor ,Inter:Button-Interactor

(:continuous NIL)

(:start-where ,(o-formula (list :in (gvl :operates-on :arrow))))

(:window ,MYWINDOW)

(:how-set 3))))) ; increment by 3

6.16.10 Single button with a changing label

Here we have an object whose label changes every time the mouse is pressed over it. It
cycles through a set of labels. This interactor is not continuous, so the action happens
immediately on the down-press and there is no feedback object.

(create-instance ’CYCLE-STRING opal:aggregadget

(:parts

‘((:label ,opal:text

(:left 10)(:top 80)

(:selected 0)

(:choices ("USA" "Japan" "Mexico" "Canada"))

(:string ,(o-formula (nth (gvl :selected) (gvl :choices)))))))

(:interactors

‘((:incrementor ,Inter:Button-Interactor

(:continuous NIL)

(:start-where

,(o-formula (list :in (gvl :operates-on :label))))

(:window ,MYWINDOW)

;; use a list of 2 numbers and interactor will do MOD

(:how-set

,(o-formula (list 1 (length (gvl :operates-on

:label :choices)))))))))

6.17 Move-Grow-Interactor

(create-instance ’inter:Move-Grow-Interactor inter:interactor

;; Slots common to all interactors (see section [Slots of All Interac-

tors], page 241)

(:start-where NIL)

(:window NIL)

(:start-event :leftdown)

(:continuous T)

(:stop-event NIL)

(:running-where NIL)

(:outside NIL)

(:abort-event :control-\g)

(:waiting-priority normal-priority-level)

(:running-priority running-priority-level)

(:active T)

(:self-deactivate NIL)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 258

; Slots specific to the move-grow-interactor (discussed in this section)

(:final-function NIL) ; (lambda (inter obj-being-changed final-points))

(:line-p NIL) ; If NIL, set :box slot of object. If T, set :points slot

(:grow-p NIL) ; If T, grow the object instead of move it

(:obj-to-change NIL) [; The object to move or grow (usually this is automatically set to be the object]

; returned from the start-where)

(:attach-point :where-hit) ; Where the mouse will attach to the object

(:min-width 0) ; Minimum width for any object being grown

(:mih-height 0) ; Minimum height for any object being grown

(:min-length NIL) ; Minimum length of any line being grown

(:feedback-obj NIL) ; Optional interim feedback object. The in-

ter will set this object’s :obj-over slot

; and either its :box or :points slot.

(:slots-to-set :box) ; Names of slots to set in the objects. Note: :box = :points be-

cause of :line-p slot.

(:input-filter NIL) ; Used for gridding

; Advanced feature: Read-only slots.

; See section [specialslots], page 301, for details about these slots.

(:first-obj-over NIL) ; Read-only slot. The object returned from the start-

where.

(:current-window NIL) ; Read-only slot. The window of the last (or cur-

rent) event.

(:start-char NIL) ; Read-only slot. The character or keyword of the start event.

; Advanced feature: Customizable action routines.

; See sections [Slots of All Interactors], page 241, and [movegrowcustomaction],

page 305, for details about functions in these slots.

(:start-action ...) ; (lambda (inter obj-being-changed first-points))

(:running-action ...) ; (lambda (inter obj-being-changed new-points))

(:stop-action ...) ; (lambda (inter obj-being-changed final-points))

(:abort-action ...) ; (lambda (inter obj-being-changed))

(:outside-action ...) ; (lambda (inter outside-control obj-being-

changed))

(:back-inside-action ...) ; (lambda (inter outside-control obj-being-

changed new-inside-points))

...)

This is used to move or change the size of an object or one of a set of objects with the mouse.
This is quite a flexible interactor and will handle many different behaviors including: moving
the indicator in a slider, changing the size of a bar in a thermometer, changing the size of a
rectangle in a graphics editor, changing the position of a circle, and changing an end-point
of a line.

The interactor can either be permanently tied to a particular graphics object, or it will get
the object from where the mouse is when the interaction starts. There may be a feedback

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 259

object to show where the object will be moved or changed to, or the object itself may change
with the mouse.

There are a number of examples of the use of move-grow-interactors below. Other examples
can be found in sections [movegrowexample1], page 297, [movegrowexample2], page 302, and
[movegrowexample3], page 304, in the graphics-selection gadget in the Garnet Gadget
Set, and in the files demo-grow.lisp, demo-moveline.lisp, demo-scrollbar.lisp and
demo-manyobjs.lisp.

6.17.1 Default Operation

This section describes how the move-grow-interactor works if the programmer does not
remove or override any of the standard -action procedures. To supply custom action
procedures, see section [movegrowcustomaction], page 305.

The feedback object (if any) and the object being edited are modified indirectly, by setting
slots called :box or :points. The programmer must provide constraints between these slots
and the :left, :top, :width, and :height slots or the :x1, :y1, :x2, and :y2 slots (as
appropriate). For example, a rectangle that can be moved and changed size with the mouse
might have the following definition:

(create-instance ’MOVING-RECTANGLE opal:rectangle

(:box (list 0 0 10 10)) ; some initial values (x, y, width, height)

(:left (o-formula (first (gvl :box))))

(:top (o-formula (second (gvl :box))))

(:width (o-formula (third (gvl :box))))

(:height (o-formula (fourth (gvl :box)))))

A movable line could be defined as:

(create-instance ’MOVING-LINE opal:line

(:points (list 0 0 10 10)) ; some initial values (x1 y1 x2 y2)

(:x1 (o-formula (first (gvl :points))))

(:y1 (o-formula (second (gvl :points))))

(:x2 (o-formula (third (gvl :points))))

(:y2 (o-formula (fourth (gvl :points)))))

The slot :line-p tells the interactor whether to change the :box slot or the :points slot.
If :line-p is nil (the default), then the interactor changes the object by setting its :box
slot to a list containing the new values for (left, top, width, height). If T, then the interactor
changes the object by setting its :points slot to a list containing the new values for (x1, y1,
x2, y2). (These are the same slots as used for two-point-interactor, section [twopoint],
page 265).

This allows the object to perform any desired filtering on the values before they are used in
the real :left :top :width :height or :x1 :y1 :x2 :y2 slots. For example, a scroll bar
might be defined as follows:

(create-instance ’MYSCROLLER opal:aggregadget

(:parts

‘((:outline ,opal:rectangle

(:left 100)(:top 10)(:width 20)(:height 200))

(:indicator ,opal:rectangle

(:box (52 12 16 16)) ;; only the second value is used

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 260

(:left ,(o-formula (+ 2 (gvl :parent :outline :left))))

;; Clip-And-Map clips the first parameter to keep it

;; between the other two parameters, see section [clipandmap], page 264

(:top ,(o-formula

(Clip-And-Map (second (gvl :box))

12 ; Top of outline + 2

192 ; Bottom of outline - indicator height - 2

)))

(:width 16)(:height 16)

(:filling-style ,opal:gray-fill)

(:line-style NIL)

(:fast-redraw-p T)

(:draw-function :xor))))

(:interactors

‘((:move-indicator ,Inter:Move-Grow-Interactor

(:start-where

,(o-formula (list :in (gvl :operates-on :indicator))))

(:window ,(o-formula (gvl :operates-on :window)))))))

This interactor will either change the position of the object (if :grow-p is nil) or the size.
For lines, (if :line-p is T), “growing” means changing a single end point to follow the
mouse while the other stays fixed, and moving means changing both end points to follow
the mouse so that the line keeps the same length and slope.

Since an object’s size can change from the left and top, in addition to from the right and
bottom, and since objects are defined to by their left, top, width and height, this interactor
may have to change any of the left, top, width and height fields when changing an object’s
size. For example, to change the size of an object from the left (so that the left moves and
the right side stays fixed), both the :left and :width fields must be set. Therefore, by
default, this interactor sets a :box field containing 4 values. When the interactor is used
for moving an object, the last two values of the :box slot are set with the original width
and height of the object. Similarly, when setting the :points slot, all of the values are set,
even though only two of them will change.

When the interaction is running, either the object itself or a separate feedback object can
follow the mouse. If a feedback object is used, it should be specified in the :feedback-obj
slot of the interactor, and it will need the same kinds of formulas on :box or :points as
the actual object. If the object itself should change, then :feedback-obj should be nil. If
there is a feedback object, the interactor also sets its :obj-over field to the actual object
that is being moved. This can be used, for example, to control the visibility of the feedback
object or its size.

The object being changed is either gotten from the :obj-to-change slot of the interactor,
or if that is nil, then from the object returned from :start-where. If the interactor is to
work over multiple objects, then :obj-to-change should be nil, and :start-where will
be one of the forms that returns one of a set of objects (e.g., :element-of).

6.17.2 attach-point

the :attach-point slot of interactors controls where the mouse will attach to the object.
the legal choices depend on :line-p.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 261

if :line-p is t (so the end-point of the line is changing), and the object is being grown,
then legal choices are:

1: change the first endpoint of the line (x1, y1).

2: change the second endpoint of the line (x2, y2).

:where-hit: change which-ever end point is nearest the

initial press.

if :line-p is t and the object is being moved, then legal choices are:

1: attach mouse to the first endpoint.

2: attach mouse to the second endpoint.

:center: attach mouse to the center of the line.

:where-hit: attach mouse where pressed on the line.

if :line-p is nil (so the bounding box is changing, either moving or growing) the choices
are:

:N - Top

:S - Bottom

:E - Right

:W - Left

:NE - Top, right

:NW - Top, left

:SE - Bottom, right

:SW - Bottom, left

:center - Center

:where-hit - The mouse attaches to the object

wherever the mouse was first pressed inside the object.

The default value is :where-hit since this works for both :line-p T and nil.

If growing and :attach-point is :where-hit, the object grows from the nearest side or
corner (the object is implicitly divided into 9 regions). If the press is in the center, the
object grows from the :NW corner.

The value set into the :box slot by this interactor is always the correct value for the top,
left corner, no matter what the value of attach-point (the interactor does the conversion for
you). Note that the conversion is done based on the :left, :top, :width and :height of
the actual object being changed; not based on the feedback object. Therefore, if there is a
separate feedback object, either the feedback object should be the same size as the object
being changed, or :attach-point should be :NW. Possible future enhancement: allow a list
of points, and pick the closest one to the mouse.

6.17.3 Running where

Normally, the default value for :running-where is the same as :start-where, but for the
move-grow-interactor, the default :running-where is T, to allow the mouse to go anywhere.

6.17.4 Extra Parameters

The extra parameters are:

:line-p - This slot determines whether the object’s bounding box or line end points
are set. If :line-p is nil, then the :box slot is set to a list containing (left

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 262

top width height) and if :line-p is T, then the :points slot is set with a list
containing (x1 y1 x2 y2). The default is nil.

:grow-p - This slot determines whether the object moves or changes size. The default
is nil, which means to move. Non-NIL means to change size.

:obj-to-change

- If an object is supplied as this parameter, then the interactor changes that ob-
ject. Otherwise, the interactor changes the object returned from :start-where.
If the interactor should change one of a set of objects, then :obj-to-change

should be nil and :start-where should be be a form that will return the ob-
ject to change. The reason that there may need to be a separate object passed
as the :obj-to-change is that sometimes the interactor cannot get the object
to be changed from the :where fields. For example, the programmer may want
to have a scroll bar indicator changed whenever the user presses over the back-
ground. The object in the :obj-to-change field may be different from the one
in the :feedback-obj since the object in the :feedback-obj field is used as
the interim feedback.

:attach-point

- This tells where the mouse will attach to the object. Values are 1, 2,

:center or :where-hit if :line-p is T, or :N, :S, :E, :W, :NW, :NE,

:SW, :SE, :center, or :where-hit if :line-p is nil. The default value is
:where-hit. See section [attachpoint], page 260, for a full explanation.

:min-width

- The :min-width and :min-height fields determine the minimum legal width
and height of the object if :line-p is nil and :grow-p is T. Default is 0. If
:min-width or :min-height is nil, then there is no minimum width or height.
In this case, the width and height of the object may become negative values
which causes an error (so this is not recommended). Unlike the two-point-

interactor (section [twopoint], page 265), there are no :flip-if-change-

side or :abort-if-too-small slots for the move-grow-interactor.

:min-height

- See :min-width.

:min-length

- If :line-p is T, this specifies the minimum length for lines. The default is
nil, for no minimum. This slot is ignored if :line-p is nil.

:input-filter

- Used to support gridding. See section [gridding], page 263,

6.17.5 Application Notification

Often, it is not necessary to have the application notified of the result of a move-grow-
interactor, if you only want the object to move around. Otherwise, you can have constraints
in the application to the various slots of the object being changed.

Alternatively, the programmer can provide a function to be called when the interactor is
complete by putting the function in the :final-function slot. This function is called with
the following arguments:

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 263

(lambda (an-interactor object-being-changed final-points))

Final-points is a list of four values, either the left, top, width and height if :line-p is
nil, or x1, y1, x2, and y2 if :line-p is T.

6.17.6 Normal Operation

If the value of :continuous is T, then when the start event happens, the interactor deter-
mines the object to be changed as either the value of the :obj-to-change slot, or if that is
nil, then the object returned from the :start-where. The :obj-over slot of the object in
the :feedback-obj slot of the interactor is set to the object being changed. Then, for every
mouse movement until the stop event happens, the interactor sets either the :box slot or
the :points slot (depending on the value of :line-p) based on a calculation that depends
on the values in the minimum slots and :attach-point. The object that is modified while
running is either the feedback object if it exists or the object being changed if there is no
feedback object.

If the mouse goes outside of :running-where, then if :outside is :last, nothing happens
until the mouse comes back inside or the stop or abort events happen (the object stays at
its last legal inside value). If :outside is nil, then the feedback object’s :obj-over slot is
set to nil (so there should be a formula in the feedback object’s :visible slot that depends
on :obj-over). If there is no feedback object and the mouse goes outside, then the object
being changed is returned to its original size and position (before the interactor started).

If the abort event happens, then the feedback object’s :obj-over slot is set to nil, or if
there is no feedback object, then the object being changed is returned to its original size
and position (before the interactor started).

When the stop event happens, the feedback object’s :obj-over slot is set to nil, and the
:box or :points slot of the actual object are set with the last value, and the final-function
(if any) is called.

If the interactor is not continuous, when the start event happens, the :box or :points slot
of the actual object are set with the initial value, and the final-function (if any) is called.
This is probably not very useful.

6.17.7 Gridding

The move-grow-interactor supports arbitrary gridding of the values. The slot
:input-filter can take any of the following values:

• NIL - for no filtering. This is the default.

• a number - grid by that amount in both X and Y with the origin at the upper left
corner of the window.

• a list of four numbers: (xmod xorigin ymod yorigin) to allow non-uniform gridding
with a specific origin.

• a function of the form (lambda(inter x y) ...) which returns (values gridx

gridy). This allows arbitrary filtering of the values, including application-specific
gravity to interesting points of other objects, snap-dragging, etc.

6.17.8 Setting Slots

The move-grow-interactor by default sets either the :box or :points slots of objects
(depending on whether it was a rectangle or line-type object). We discovered that there

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 264

were a large number of formulas that simply copied the values out of these lists. Therefore,
in the current version, you can ask the move-grow-interactor to directly set the slots of
objects, if you don’t need any filtering on the values. If you want to use Clip-and-Map or
other filtering, you should still use the :box slot. The slot :slots-to-set can be supplied
to determine which slots to set. The values can be:

:box if line-p object, then sets the :points slot, otherwise sets the :box slot.

:points same as :box. Note that the interactor ignores the actual value put in
:slots-to-set and decides which to use based on the value of the :line-p

slot of the object.

a list of four T’s and nils (representing (:left :top :width :height)

or (:x1 :y1 :x2 :y2)) In this case, the interactor sets the slots of the object
that have T’s and doesn’t set the slots that are nil. For example, if :slots-to-
set is (T T nil nil), then the interactor will set the :x1 and :y1 slots of objects
that are :line-p, and the :left and :top slots of all other objects.

a list of four slot names or nils

In this case, the values are set into the specified slots of the object. Any NILs
mean that slot isn’t set. The specified slots are used whether the object is
:line-p or not. This can be used to map the four values into new slots.

6.17.9 Useful Function: Clip-And-Map

It is often useful to take the value returned by the mouse and clip it within a range. The
function Clip-And-Map is provided by the interactors package to help with this:

inter:Clip-And-Map val val-1 val-2 &optional target-val-1 target-val-

2[function], page 90

If target-val-1 or target-val-2 is nil or not supplied, then this function just clips val to be
between val-1 and val-2 (inclusive).

If target-val-1 and target-val-2 are supplied, then this function clips val to be in the range
val-1 to val-2, and then then scales and translates the value (using linear-interpolation) to
be between target-val-1 and target-val-2.

Target-val-1 and target-val-2 should be integers, but val, val-1 and val-2 can be any kind
of numbers. Val-1 can either be less or greater than val-2 and target-val-1 can be less or
greater than target-val-2.

Examples:

(clip-and-map 5 0 10) => 5

(clip-and-map 5 10 0) => 5

(clip-and-map -5 0 10) => 0

(clip-and-map 40 0 10) => 10

(clip-and-map 5 0 10 100 200) => 150

(clip-and-map -5 0 10 100 200) => 100

(clip-and-map 0.3 0.0 1.0 0 100) => 30

(clip-and-map 5 20 0 100 200) => 175

;; Formula to put in the :percent slot of a moving scroll bar indicator.

;; Clip the moving indicator position to be between the top and bottom of

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 265

;; the slider-shell (minus the height of the indicator to keep it inside),

;; and then map the value to be between 0 and 100.

(formula ‘(Clip-and-Map (second (gvl :box))

(gv ’,SLIDER-SHELL :top)

(- (gv-bottom ’,SLIDER-SHELL) (gvl :height) 2)

0 100))

6.18 Two-Point-Interactor

(create-instance ’inter:Two-Point-Interactor inter:interactor

;; Slots common to all interactors (see section [Slots of All Interac-

tors], page 241)

(:start-where NIL)

(:window NIL)

(:start-event :leftdown)

(:continuous T)

(:stop-event NIL)

(:running-where NIL)

(:outside NIL)

(:abort-event :control-\g)

(:waiting-priority normal-priority-level)

(:running-priority running-priority-level)

(:active T)

(:self-deactivate NIL)

; Slots specific to the two-point-interactor (discussed in this section)

(:final-function NIL) ; (lambda (inter final-point-list))

(:line-p NIL) ; Whether to set the :box or :points slot of the feedback-

obj

(:min-width 0) ; Minimum width for new rectangular region

(:mih-height 0) ; Minimum height for new rectangular region

(:min-length NIL) ; Minimum length for new line

(:abort-if-too-small NIL) ; Whether to draw feedback and execute fi-

nal function when the selected region

; is smaller than the minimum

(:feedback-obj NIL) ; Optional interim feedback object. The in-

ter will set this object’s :visible slot

and its :points or :box slot.

(:flip-if-change-side T) ; Whether to flip origin of rectangle when appropriate

(:input-filter NIL) ; Used for gridding (see section [gridding],

page 263)

; Advanced feature: Read-only slots.

; See section [specialslots], page 301, for details about these slots.

(:first-obj-over NIL) ; Read-only slot. The object returned from the start-

where.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 266

(:current-window NIL) ; Read-only slot. The window of the last (or cur-

rent) event.

(:start-char NIL) ; Read-only slot. The character or keyword of the start event.

; Advanced feature: Customizable action routines.

; See sections [Slots of All Interactors], page 241, and [twopcustomaction],

page 306, for details about functions in these slots.

(:start-action ...) ; (lambda (inter first-points))

(:running-action ...) ; (lambda (inter new-points))

(:stop-action ...) ; (lambda (inter final-points))

(:abort-action ...) ; (lambda (inter))

(:outside-action ...) ; (lambda (inter outside-control))

(:back-inside-action ...) ; (lambda (inter outside-control new-inside-

points))

...)

The Two-Point-interactor is used to enter one or two new points, when there is no existing
object to change. For example, this interactor might be used when creating a new rectangle
or line. If the new object needs to be defined by more than two points (for example for
polygons), then you would probably use the multi-point-interactor instead, except that
it is not implemented yet.

Since lines and rectangles are defined differently, there are two modes for this interactor,
determined by the :line-p slot. If :line-p is nil, then rectangle mode is used, so the
new object is defined by its left, top, width, and height. If :line-p is T, then the object is
defined by two points: x1, y1, and x2, y2. Both of these are stored as a list of four values.

As a convenience, this interactor will handle clipping of the values. A minimum size can be
supplied, and the object will not be smaller than this.

While the interactor is running, a feedback object, supplied in the :feedback-obj slot is
usually modified to show where the new object will be. When the interaction is complete,
however, there is no existing object to modify, so this interactor cannot just set an object
field with the final value, like most other interactors. Therefore, the final-function

(section [twopapplnotif], page 268) will usually need to be used for this interactor.

There are a number of examples of the use of two-point-interactors below, and another in
section 〈undefined〉 [twopselectexample], page 〈undefined〉. Other examples can be found
in the file demo-twop.lisp.

6.18.1 Default Operation

This section describes how the two-point interactor works if the programmer does not
remove or override any of the standard -action procedures. To supply custom action
procedures, see section [twopcustomaction], page 306.

Just as for move-grow-interactors (section 〈undefined〉 [movegrowinter], page 〈undefined〉),
the feedback object (if any) is modified indirectly, by setting slots called :box or :points.
The programmer must provide constraints between the :left, :top, :width, and :height

slots or the :x1, :y1, :x2, and :y2 slots (as appropriate). The examples in section 〈un-
defined〉 [movegrowinter], page 〈undefined〉, show how to define constraints for the feedback
object.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 267

The slot :line-p tells the interactor whether to change the :box slot or the :points slot in
the feedback object. If :line-p is nil (the default), then the interactor changes the object
by setting its :box slot to a list containing the new values for (left, top, width, height). If T,
then the interactor changes the object by setting its :points slot to a list containing the new
values for (x1, y1, x2, y2). (These are the same slots as used for move-grow-interactor).

6.18.2 Minimum sizes

The two-point interactor will automatically keep objects the same or bigger than a specified
size. There are two different mechanisms: one if :line-p is NIL (so the object is defined
by its :box), and another if :line-p is T.

In both modes, the slot :abort-if-too-small determines what happens if the size is
smaller than the defined minimum. The default is nil, which means to create the object
with the minimum size. If :abort-if-too-small is T, however, then the feedback object
will disappear if the size is too small, and if the mouse is released, the final-function will be
called with an error value (NIL) so the application will know not to create the object.

If :line-p is nil, the slots :min-width and :min-height define the minimum size of the
object. If both of these are not set, zero is used as the minimum size (the two-point-
interactor will not let the width or height get to be less than zero). If the user moves the
mouse to the left or above of the original point, the parameter :flip-if-change-side

determines what happens. If :flip-if-change-side is T (the default), then the box will
still be drawn from the initial point to the current mouse position, and the box will be
flipped. The values put into the :box slot will always be the correct left, top, width and
height. If :flip-if-change-side is nil, then the box will peg at its minimum value.

If :line-p is T, the slot :min-length determines the minimum length. This length is the
actual distance along the line, and the line will extend from its start point through the
current mouse position for the minimum length. If not supplied, then the minimum will
be zero. The :min-width, :min-height and :flip-if-change-side slots are ignored for
lines.

6.18.3 Extra Parameters

The extra parameters are:

:line-p - If T, the :points slot of the feedback object is set with the list (x1 y1 x2 y2).
If nil, the :box slot of the feedback object is set with the list (left top width

height). The values in the list passed to the final-function is also determined
by :line-p. The default is nil (rectangle mode).

:min-width

- The :min-width and :min-height fields determine the minimum legal width
and height of the rectangle or other object if :line-p is nil. Default is nil,
which means use 0. Both min-width and min-height must be non-NIL for this
to take effect. :min-width and :min-height are ignored if :line-p is non-NIL
(see :min-length).

:min-height

- See :min-width.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 268

:min-length

- If :line-p is non-NIL, then :min-width and :min-height are ignored, and the
:min-length slot is used instead. This slot determines the minimum allowable
length for a line (in pixels). If nil (the default), then there is no minimum
length.

:abort-if-too-small

- If this is nil (the default), then if the size is smaller than the minimum, then
the size is made bigger to be the minimum (this works for both :line-p T and
nil). If :abort-if-too-small is T, then instead, no object is created and no
feedback is shown if the size is smaller than :min-width and :min-height or
:min-length.

:flip-if-change-side

- This only applies if :line-p is nil (rectangle mode). If :flip-if-change-
side is T (the default), then if the user moves to the top or left of the original
point, the rectangle will be “flipped” so its top or left is the new point and the
width and height is based on the original point. If :flip-if-change-side is
nil, then the original point is always the top-left, and if the mouse goes above
or to the left of that, then the minimum legal width or height is used.

:input-filter

- Used to support gridding. See section [gridding], page 263.

6.18.4 Application Notification

Unlike with other interactors, it is usually necessary to have an application function called
with the result of the two-point-interactor. The function is put into the :final-function
slot of the interactor, and is called with the following arguments:

(lambda (an-interactor final-point-list))

The final-point-list will either be a list of the left top width, and height or the x and y
of two points, depending on the setting of the :line-p slot. If the :abort-if-too-small

slot is set (section [Minimumsizes], page 267), then the final-point-list will be nil if
the user tries to create an object that is too small.

Therefore, the function should check to see if final-point-list is nil, and if so, not
create the object. If you want to access the points anyway, the original point is available
as the :first-x and :first-y slots of the interactor, and the final point is available in
the *Current-Event* as described in section 〈undefined〉 [twopselectexample], page 〈unde-
fined〉.
IMPORTANT NOTE: When creating an object using final-point-list, the elements of
the list should be accessed individually (e.g, (first final-point-list) (second final-

point-list) etc.) or else the list should be copied (copy-list final-point-list) be-
fore they are used in any object slots, since to avoid consing, the interactor reuses the same
list. Examples:

(defun Create-New-Object1 (an-interactor points-list)

(when points-list

(create-instance NIL opal:rectangle

(:left (first points-list)) ; access the values in

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 269

(:top (second points-list)) ; the list individually

(:width (third points-list))

(:height (fourth points-list)))))

OR
(defun Create-New-Object2 (an-interactor points-list)

(when points-list

(create-instance NIL opal:rectangle

(:box (copy-list points-list)) ; copy the list

(:left (first box))

(:top (second box))

(:width (third box))

(:height (fourth box)))))

6.18.5 Normal Operation

If the value of :continuous is T, then when the start event happens, if :abort-if-too-
small is non-NIL, then nothing happens until the mouse moves so that the size is big
enough. Otherwise, if :line-p is nil, then the :visible slot of the :feedback-obj is
set to T, and its :box or :points slot is set with the correct values for the minimum size
rectangle or line. As the mouse moves, the :box or :points slot is set with the current size
(or minimum size). If the size gets to be less than the minimum and :abort-if-too-small

is non-NIL, then the :visible field of the feedback object is set to nil, and it is set to T
again when the size gets equal or bigger than the minimum.

If the mouse goes outside of :running-where, then if :outside is :last, nothing happens
until the mouse comes back inside or the stop or abort events happen (the object stays at
its last legal inside value). If :outside is nil, then the feedback object’s :visible slot is
set to nil.

If the abort event happens, then the feedback object’s :visible slot is set to nil.

When the stop event happens, the feedback object’s :visible slot is set to nil and the
final-function is called.

If the value of :continuous is nil, then the final-function is called immediately on the start
event with the final-point-list parameter as nil if :abort-if-too-small is non-NIL,
or else a list calculated based on the minimum size.

6.18.6 Examples

6.18.7 Creating New Objects

Create a rectangle when the middle button is pressed down, and a line when the right
button is pressed.

(defun Create-New-Object (an-interactor points-list)

(when points-list

(let (obj)

(if (gv an-interactor :line-p)

;; then create a line

(setq obj (create-instance NIL opal:line

(:x1 (first points-list))

(:y1 (second points-list))

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 270

(:x2 (third points-list))

(:y2 (fourth points-list))))

;; else create a rectangle

(setq obj (create-instance NIL opal:rectangle

(:left (first points-list))

(:top (second points-list))

(:width (third points-list))

(:height (fourth points-list)))))

(opal:add-components MYAGG obj)

obj)))

(create-instance ’CREATERECT Inter:Two-Point-Interactor

(:window MYWINDOW)

(:start-event :middledown)

(:start-where T)

(:final-function #’Create-New-Object)

(:feedback-obj MOVING-RECTANGLE) ; section [howobjsdefined], page 259

(:min-width 20)

(:min-height 20))

(create-instance ’CREATELINE Inter:Two-Point-Interactor

(:window MYWINDOW)

(:start-event :rightdown)

(:start-where T)

(:final-function #’Create-New-Object)

(:feedback-obj MOVING-LINE) ; section [howobjsdefined], page 259

(:line-p T)

(:min-length 20))

6.19 Angle-Interactor

(create-instance ’inter:Angle-Interactor inter:interactor

;; Slots common to all interactors (see section [Slots of All Interac-

tors], page 241)

(:start-where NIL)

(:window NIL)

(:start-event :leftdown)

(:continuous T)

(:stop-event NIL)

(:running-where NIL)

(:outside NIL)

(:abort-event :control-\g)

(:waiting-priority normal-priority-level)

(:running-priority running-priority-level)

(:active T)

(:self-deactivate NIL)

; Slots specific to the move-grow-interactor (discussed in this section)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 271

(:final-function NIL) ; (lambda (inter obj-being-rotated final-angle))

(:obj-to-change NIL) [; The object to change the :angle slot of (if NIL, then the interactor will change]

; the object returned from the start-where)

(:feedback-obj NIL) ; Optional interim feedback object. The in-

ter will set this object’s :obj-over slot

; and its :angle slot during interim selection

(:center-of-rotation NIL) ; A list (x y) indicating a coordinate around which the ob-

jects will be rotated.

; If NIL, the center of the object is used

; Advanced feature: Read-only slots.

; See section [specialslots], page 301, for details about these slots.

(:first-obj-over NIL) ; Read-only slot. The object returned from the start-

where.

(:current-window NIL) ; Read-only slot. The window of the last (or cur-

rent) event.

(:start-char NIL) ; Read-only slot. The character or keyword of the start event.

; Advanced feature: Customizable action routines.

; See sections [Slots of All Interactors], page 241, and [anglecustomaction],

page 306, for details about functions in these slots.

(:start-action ...) ; (lambda (inter obj-being-rotated first-angle))

(:running-action ...) ; (lambda (inter obj-being-rotated new-angle angle-

delta))

(:stop-action ...) ; (lambda (inter obj-being-rotated final-angle angle-

delta))

(:abort-action ...) ; (lambda (inter obj-being-rotated))

(:outside-action ...) ; (lambda (inter outside-control obj-being-

rotated))

(:back-inside-action ...) ; (lambda (inter outside-control obj-being-

rotated new-angle))

...)

This is used to measure the angle the mouse moves around a point. It can be used for
circular gauges, for rotating objects, or for “stirring motions” for objects.

It operates very much like the move-grow-interactor and has interim and final feedback
that work much the same way.

The interactor can either be permanently tied to a particular graphics object, or it will get
the object from where the mouse is when the interaction starts. There may be a feedback
object to show where the object will be moved or changed to, or the object itself may change
with the mouse.

There is an example of the use of the angle-interactor below. Other examples can be found
in the Gauge gadget in the Garnet Gadget Set, and in the files demo-angle.lisp and
demo-clock.lisp.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 272

6.19.1 Default Operation

This section describes how the angle interactor works if the programmer does not remove
or override any of the standard -action procedures. To supply custom action procedures,
see section [anglecustomaction], page 306.

The feedback object (if any) and the object being edited are modified indirectly, by setting
a slot called :angle. The programmer must provide constraints to this slot. If there is
a feedback object, the interactor also sets its :obj-over field to the actual object that is
being moved. This can be used, for example, to control the visibility of the feedback object
or its size.

The angle slot is set with a value in radians measured counter-clockwise from the far right.
Therefore, straight up is (/ PI 2.0), straight left is PI, and straight down is (* PI 1.5).

The object being changed is either gotten from the :obj-to-change slot of the interactor,
or if that is nil, then from the object returned from :start-where.

The interactor needs to be told where the center of rotation should be. The slot
:center-of-rotation can contain a point as a list of (x y). If :center-of-rotation is
nil (the default), then the center of the object being rotated is used.

For example, a line that can be rotated around an endpoint might have the following
definition:

(create-instance ’ROTATING-LINE opal:line

(:angle (/ PI 4)) ; initial value = 45 degrees up

(:line-length 50)

(:x1 70)

(:y1 170)

(:x2 (o-formula (+ (gvl :x1)

(round (* (gvl :line-length)

(cos (gvl :angle)))))))

(:y2 (o-formula (- (gvl :y1)

(round (* (gvl :line-length)

(sin (gvl :angle))))))))

(create-instance ’MYROTATOR Inter:Angle-Interactor

(:start-where T)

(:obj-to-change ROTATING-LINE)

(:center-of-rotation (o-formula (list (gvl :obj-to-change :x1)

(gvl :obj-to-change :y1))))

(:window MYWINDOW))

6.19.2 Extra Parameters

The extra parameters are:

:obj-to-change

- If an object is supplied here, then the interactor modifies the :angle slot of
that object. If :obj-to-change is nil, then the interactor operates on whatever
is returned from :start-where. The default value is nil.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 273

:center-of-rotation

- This is the center of rotation for the interaction. It should be a list of (x y).
If nil, then the center of the real object being rotated (note: not the feedback
object) is used. The default value is nil.

6.19.3 Application Notification

Often, it is not necessary to have the application notified of the result of a angle-interactor,
if you only want the object to rotate around. Otherwise, you can have constraints in the
application to the :angle slot.

Alternatively, the programmer can provide a function to be called when the interactor is
complete by putting the function in the :final-function slot. This function is called with
the following arguments:

(lambda (an-interactor object-being-rotated final-angle))

6.19.4 Normal Operation

If the value of :continuous is T, then when the start event happens, the interactor deter-
mines the object to be changed as either the value of the :obj-to-change slot, or if that
is nil, then the object returned from the :start-where. The :obj-over slot of the object
in the :feedback-obj slot of the interactor is set to the object being changed. Then, for
every mouse movement until the stop event happens, the interactor sets the :angle slot.
The object that is modified while running is either the feedback object if it exists or the
object being changed if there is no feedback object.

If the mouse goes outside of :running-where, then if :outside is :last, nothing happens
until the mouse comes back inside or the stop or abort events happen (the object stays at
its last legal inside value). If :outside is nil, then the feedback object’s :obj-over slot is
set to nil. If there is no feedback object and the mouse goes outside, then the object being
changed is returned to its original angle (before the interactor started).

If the abort event happens, then the feedback object’s :obj-over slot is set to nil, or if
there is no feedback object, then the object being rotated is returned to its original angle
(before the interactor started).

When the stop event happens, the feedback object’s :obj-over slot is set to nil, and the
:angle slot of the actual object is set with the last value, and the final-function (if any) is
called.

If the interactor is not continuous, when the start event happens, the :angle slot of the
actual object is set with the initial value, and the final-function (if any) is called.

6.20 text-interactor

(create-instance ’inter:text-interactor inter:interactor

;; Slots common to all interactors (see section [Slots of All Interac-

tors], page 241)

(:start-where nil)

(:window nil)

(:start-event :leftdown)

(:continuous t)

(:stop-event nil)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 274

(:running-where t)

(:outside nil)

(:abort-event ’(:control-\g :control-g))

(:waiting-priority normal-priority-level)

(:running-priority running-priority-level)

(:active t)

(:self-deactivate nil)

; Slots specific to the text-interactor (discussed in this section)

(:final-function nil) ; (lambda (inter obj-being-edited final-event final-

string x y))

(:obj-to-change nil) [; The object to change the :string slot of (if nil, then the interactor will change]

; the object returned from the start-where)

(:feedback-obj nil) ; Optional interim feedback object. The in-

ter will set this object’s :string, :cursor-index,

; :obj-over, and :box slots

(:cursor-where-press T) ; Whether to position the cursor under the mouse or at the end of the string

(:input-filter nil) ; Used for gridding (see section [gridding],

page 263)

(:button-outside-stop? T) ; Whether a click outside the string should stop edit-

ing (see section [extra-text-parameters], page 277)

; Advanced feature: Read-only slots.

; See section [specialslots], page 301, for details about these slots.

(:first-obj-over nil) ; Read-only slot. The object returned from the start-

where.

(:current-window nil) ; Read-only slot. The window of the last (or cur-

rent) event.

(:start-char nil) ; Read-only slot. The character or keyword of the start event.

; Advanced feature: Customizable action routines.

; See sections [Slots of All Interactors], page 241, and [textcustomaction],

page 308, for details about functions in these slots.

(:start-action ...) ; (lambda (inter new-obj-over start-event))

(:running-action ...) ; (lambda (inter obj-over event))

(:stop-action ...) ; (lambda (inter obj-over stop-event))

(:abort-action ...) ; (lambda (inter obj-over abort-event))

(:outside-action ...) ; (lambda (inter obj-over))

(:back-inside-action ...) ; (lambda (inter obj-over event))

...)

If you want to use multi-font, multi-line text objects, you will probably want to use the
special interactors defined for them, which are described in the Opal chapter.

The text-interactor will input a one-line or multi-line string of text, while allowing editing
on the string. A fairly complete set of editing operations is supported, and the programmer
or user can add new ones or change the bindings of the default operations. The intention

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 275

is that this be used for string entry in text forms, for file names, object names, numbers,
labels for pictures, etc. The strings can be in any font, but the entire string must be in
the same font. More complex editing capabilities are clearly possible, but not implemented
here.

Text-interactors work on opal:text objects. The interactor can either be permanently tied
to a particular text object, or it will get the object from where the mouse is when the
interaction starts. There may be a feedback object to show the edits, with the final object
changed only when the editing is complete, or else the object itself can be edited. (Feedback
objects are actually not very useful for text-interactors.) Both the feedback and the main
object should be an opal:text object.

There is an example of the use of the text-interactor below. Other examples can be found
in the top type-in area in the v-slider gadget in the Garnet Gadget Set, and in the file
demo-text.lisp.

6.20.1 Default Editing Commands

There is a default set of editing commands provided with text interactors. These are
based on the EMACS command set. The programmer change this and can create his own
mappings and functions (see section [keytranslations], page 280). In the following, keys
like "insert" and "home" are the specially labeled keys on the IBM/RT or Sun keyboard.
If your keyboard has some keys you would like to work as editing commands, see section
[eventspec], page 228.

^h, delete, backspace

delete previous character.

^w, ^backspace, ^delete

delete previous word.

^d delete next character.

^u delete entire string.

^k delete to end of line.

^b, left-arrow

go back one character.

^f, right-arrow

go forward one character.

^n, down-arrow

go vertically down one line (for multi-line strings).

^p, up-arrow

go vertically up one line (for multi-line strings).

^<, ^comma, home

go to the beginning of the string.

^>, ^period, end

go to the end of the string.

^a go to beginning of the current line (different from ^< for multi-line strings).

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 276

^e go to end of the current line (different from ^> for multi-line strings).

^y, insert

insert the contents of the cut buffer into the string at the current point.

^c copy the current string to the cut buffer.

enter, return, ^j, ^J

Add a new line.

^o Insert a new line after the cursor.

any mouse button down inside the string

move the cursor to the specified point. This only works if the :cursor-where-
press slot of the interactor is non-NIL.

In addition, the numeric keypad is mapped to normal numbers and symbols.

Note: if you manage to get an illegal character into the string, the string will only be
displayed up to the first illegal character. The rest will be invisible (but still in the :string
slot).

The interactor’s :stop-event and :abort-event override the above operations. For exam-
ple, if the :stop-event is :any-mousedown, then when you press in the string, editing will
stop rather than causing the cursor to move. Similarly, if #\RETURN is the :stop-event,
then it cannot be inserted into the string for a multi-line string, and if :control-\c is
the :abort-event, it cannot be used to copy to the X cut buffer. Therefore, you need to
pick the :stop-event and :abort-event appropriately, or change the bindings (see section
[keytranslations], page 280)

6.20.2 Default Operation

This section describes how the text interactor works if the programmer does not remove or
override any of the standard -action procedures. To supply custom action procedures, see
section [textcustomaction], page 308.

Unlike other interactors, the feedback object (if any) and the object being edited are mod-
ified directly, by setting the :string and :cursor-index fields (that control the value
displayed and the position of the cursor in the string). If there is a feedback object, the
interactor also sets the first two values of its :box field to be the position where the start
event happened. This might be used to put the feedback object at the mouse position when
the user presses to start a new string.

In general, feedback objects are mainly useful when you want to create new strings as a
result of the event.

The object being changed is either gotten from the :obj-to-change slot of the interactor,
or if that is nil, then from the object returned from :start-where.

6.20.3 Multi-line text strings

The default stop event for text interactors is #\RETURN, which is fine for one-line strings,
but does not work for multi-line strings. For those, you probably want to specify a stop
event as something like :any-mousedown so that #\RETURNs can be typed into the string
(actually, the character in the string that makes it go to the next line is #\NEWLINE; the
interactor maps the return key to #\NEWLINE). Also :any-mousedown would be a bad

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 277

choice for the stop event if you wanted to allow the mouse to be used for changing the text
insert cursor position.

Note that the stop event is not edited into the string.

The :outside slot is ignored.

The default :running-where is T for text-interactors.

6.20.4 Extra Parameters

The extra parameters are:

:obj-to-change

If an object is supplied here, then the interactor modifies the

:string and :cursor-index

slots of that object. If :obj-to-change is nil, then the interactor operates on
whatever is returned from :start-where. The default value is nil.

:cursor-where-press

If this slot is non-NIL, then the initial position of the text editing cursor is under-
neath the mouse cursor (i.e, the user begins editing the string on the character
under where the mouse was pressed). This is the default. If :cursor-where-
press is specified as nil, however, the cursor always starts at the end of the
string. This slot also controls whether the mouse is allowed to move the cursor
while the string is being edited. If :cursor-where-press is nil, then mouse
presses are ignored while editing (unless they are the :stop- or :abort- events),
otherwise, presses can be used to move the cursor.

:input-filter

Used to support gridding. See section [gridding], page 263.

:button-outside-stop?

Whether a mouse click outside the string should stop editing, but still do the
action it would have done if text wasn’t being edited. This means, for exam-
ple, that you typically won’t have to type RETURN before hitting the OK
button, since the down press will stop editing and still operate the OK but-
ton. By default this feature is enabled, but you can turn it off by setting the
:button-outside-stop? parameter to nil.

6.20.5 Application Notification

Often, it is not necessary to have the application notified of the result of a text-interactor,
if you only want the string object to be changed, it will happen automatically.

Alternatively, the programmer can provide a function to be called when the interactor is
complete by putting the function in the :final-function slot. This function is called with
the following arguments:

(lambda (an-interactor obj-being-edited final-event final-string x y))

The definition of the type for final-event is in section Section 14.22 [Events], page 687. (It
is a Lisp structure containing the particular key hit.) The final-string is the final value
for the entire string. It is important that you copy the string (with copy-seq) before using
it, since it will be shared with the feedback object. The x and y parameters are the initial

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 278

positions put into the feedback object’s :box slot (which might be used as the position of
the new object). The values of x and y are filtered values computed via the :input-filter
given to the interactor (see section [gridding], page 263).

6.20.6 Normal Operation

If the value of :continuous is T, then when the start event happens, if there is a feedback
object, then its :box slot is set to the position of the start-event, and its :obj-over slot
is set to :obj-to-change or the result of the :start-where. Its :cursor-index is set to
the position of the start-event (if :cursor-where-press is T) or to the end of the string
(so the cursor becomes visible). If there is no :feedback-obj, then the :obj-to-change

or if that is nil, then the object returned from :start-where has its cursor turned on at
the appropriate place. If the start event was a keyboard character, it is then edited into
the string. Therefore, you can have a text interactor start on :any-keyboard and have the
first character typed entered into the string.

Then, for every subsequent keyboard down-press, the key is either entered into the string,
or if it is an editing command, then it is performed.

If the mouse goes outside of :running-where, then the cursor is turned off, and it is turned
back on when the mouse goes back inside. Events other than the stop event and the abort
event are ignored until the mouse goes back inside. Note: this is usually not used because
:running-where is usually T for text-interactors. If it is desirable to only edit while the
mouse is over the object, then :running-where can be specified as ’(:in *) which means
that the interactor will work only when the mouse is over the object it started over.

If the abort event happens, then the feedback object’s :string is set with its initial value,
its :cursor-index is set to nil, and its :obj-over is set to nil. If there is no feedback
object, then the main object’s :string is set to its original value and its :cursor-index
is set to nil.

When the stop event happens, if there is a feedback object, then its :visible slot is set
with nil, the main object is set with feedback object’s :string, and the :cursor-index

is set to nil. If there is no feedback object, then the :cursor-index of the main object is
set to nil. Note that the stop event is not edited into the string. Finally, the final-function
(if any) is called.

If the interactor is not continuous, when the start event happens, the actions described
above for the stop event are done.

6.20.7 Useful Functions

inter:Insert-Text-Into-String text-obj new-string &optional (move-back-

cursor 0)[function], page 90

The function Insert-Text-Into-String inserts a string new-string into an opal:text

object text-obj at the current cursor point. This can be used even while the text-interactor
is running. For example, an on-screen button might insert some text into a string. After
the text is inserted, the cursor is moved to the end of the new text, minus the optional
offset move-back-cursor (which should be a non-negative integer). For example, to insert
the string "(+ foo 5)" and leave the cursor between the "5" and the ""], you could call:

(Insert-Text-Into-String MYTEXT "(+ foo 5)" 1)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 279

6.20.8 Examples

6.20.9 Editing a particular string

This creates an aggregadget containing a single-line text object and an interactor to edit it
when the right mouse button is pressed.

(create-instance ’EDITABLE-STRING opal:aggregadget

(:left 10)

(:top 200)

(:parts

‘((:txt ,opal:text

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:string "Hello World")))) ; default initial value

(:interactors

‘((:editor ,Inter:Text-Interactor

(:start-where ,(o-formula (list :in (gvl :operates-on :txt))))

(:window ,(o-formula (gvl :operates-on :window)))

(:stop-event (:any-mousedown #\RETURN)) ; either

(:start-event :rightdown)))))

6.20.10 Editing an existing or new string

Here, the right button will create a new multi-line string object when the user presses on
the background, and it will edit an existing object if the user presses on top of it, as in
Macintosh MacDraw.

Note: This uses a formula in the :feedback-obj slot that depends on the :first-obj-

over slot of the interactor. This slot, which holds the object the interactor starts over, is
explained in section [specialslots], page 301.

(create-instance ’THE-FEEDBACK-OBJ opal:text

(:string "")

(:visible NIL)

(:left (formula ’(first (gvl :box))))

(:top (formula ’(second (gvl :box)))))

;;; Assume there is a top level aggregate in the window called top-agg.

;;; Create an aggregate to hold all the strings. This aggregate must have a fixed

;;; size so user can press inside even when it does not contain any objects.

(create-instance ’OBJECT-AGG opal:aggregate

(:left 0)(:top 0)

(:width (o-formula (gvl :window :width)))

(:height (o-formula (gvl :window :height))))

(opal:add-components TOP-AGG THE-FEEDBACK-OBJ OBJECT-AGG)

(opal:update MYWINDOW)

(create-instance ’CREATE-OR-EDIT Inter:Text-Interactor

(:feedback-obj (o-formula

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 280

(if (eq :none (gvl :first-obj-over))

;then create a new object, so use feedback-obj

THE-FEEDBACK-OBJ

;else use object returned by mouse

NIL)))

(:start-where ‘(:element-of-or-none ,OBJECT-AGG))

(:window MYWINDOW)

(:start-event :any-rightdown)

(:stop-event ’(:any-mousedown :control-\j)) ; either one stops

(:final-function

#’(lambda (an-interactor obj-being-edited stop-event final-string x y)

(declare (ignore an-interactor stop-event))

(when (eq :none obj-being-edited)

;; then create a new string and add to aggregate.

;; Note that it is important to copy the string.

(let ((new-str (create-instance NIL opal:text

(:string (copy-seq final-string))

(:left x)(:top y))))

(opal:add-component OBJECT-AGG new-str)

(s-value THE-FEEDBACK-OBJ :string "") ; so starts empty next time

)))))

6.20.11 Key Translation Tables

The programmer can change the bindings of keyboard keys to editing operations, and even
add new editing operations in a straightforward manner.

Each text interactor can have its own key translation table. The default table is stored
in the top-level Text-Interactor object, and so text-interactor instances will inherit it
automatically. If you want to change the bindings, you need to use Bind-key, Unbind-key,
Unbind-All-Keys, or Set-Default-Key-Translations (these functions are defined below).

If you want to change the binding for all of your text interactors, you can edit the bindings of
the top-level Text-Interactor object. If you want a binding to be different for a particular
interactor instance, just modify the table for that instance. What happens in this case is
that the inherited table is copied first, and then modified. That way, other interactors that
also inherit from the default table will not be affected. This copy is performed automatically
by the first call to one of these functions.

Bindings can be changed while the interactor is running, and they will take effect immedi-
ately.

inter:Bind-Key key val an-interactor[function], page 90

Bind-Key sets the binding for key to be val for an-interactor. The key can either be a Lisp
character (like :control-\t) or a special keyword that is returned when a key is hit (like
:uparrow). If the key used to have some other binding, the old binding is removed. It
is fine to bind multiple keys to the same value, however (e.g., both ^p and :uparrow are
bound to :upline).

The second parameter (val) can be any one of the following four forms:

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 281

A character to map into. This allows special keys to map to regular keys. So, for
example, you can have :super-4 map to #\4.

A string. This allows the key to act like an abbreviation and expand into a string.
For example, (inter:bind-key :F2 "long string" MYINTER) will insert "long string"
whenever F2 is hit. Unfortunately, the string must be constant and cannot, for example,
be computed by a formula.

One of the built-in editing operations which are keywords. These are implemented
internally to the text interactor, but the user can decide which key(s) causes them to
happen. The keywords that are available are:

:prev-char - move cursor to previous character.

:next-char - move cursor to next character.

:up-line - move cursor up one line.

:down-line - move cursor down one line.

:delete-prev-char - delete character to left of cursor.

:delete-prev-word - delete word to left of cursor.

:delete-next-char - delete character to right of cursor.

:kill-line - delete to end of line.

:insert-lf-after - add new line after cursor.

:delete-string - delete entire string.

:beginning-of-string - move cursor to beginning of string.

:beginning-of-line - move cursor to beginning of line.

:end-of-string - move cursor to end of string.

:end-of-line - move cursor to end of line.

:copy-to-X-cut-buffer - copy entire string to cut buffer.

:copy-from-X-cut-buffer - insert cut buffer at current cursor.

For example, (inter:bind-key :F4 :upline MYINTER) will make the F4 key move the
cursor up one line.

A function that performs an edit. The function should be of the following form:

(lambda (an-interactor text-obj event))

The interactor will be the text-interactor, the text object is the one being edited, and
the event is an Interactor event structure (see section 〈undefined〉 [events], page 〈unde-
fined〉). Note: not a lisp character; the character is a field in the event. This function
can do arbitrary manipulations of the :string slot and the :cursor-index slot of
the text-obj. For example, the following code could be used to implement the “swap
previous two character” operation from EMACS:

;; first define the function

(defun flip (inter str event) ; swap the two characters to the left of the cursor

(let ((index (gv str :cursor-index)) ; get the old values

(s (gv str :string)))

(when (> index 1) ; make sure there are 2 chars to the left of the cursor

(let ((oldsecondchar (elt s (1- index)))) ; do the swap in place in the str

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 282

(setf (elt s (1- index)) (elt s (- index 2)))

(setf (elt s (- index 2)) oldsecondchar)

(mark-as-changed str :string))))) ; since we modified the string value

; of the object in place, we have to let KR know

; it has been modified.

;; now bind it to ^t for a particular text-interactor called my-text-inter.

(inter:bind-key :control-\t #’flip MY-TEXT-INTER) ; lower case t

The function Unbind-Key removes the binding of key for an-interactor. All keys that are not
bound to something either insert themselves into the string (if they are printable characters),
or else cause the interactor to beep when typed.

inter:Unbind-Key key an-interactor[function], page 90

inter:Unbind-All-Keys an-interactor[function], page 90

Unbind-All-Keys unbinds all keys for an-interactor. This would usually be followed by
binding some of the keys in a different way.

inter:Set-Default-Key-Translations an-interactor[function], page 90

This sets up an-interactor with the default key bindings presented in section
[defaulteditingcommands], page 275. This might be useful to restore an interactor after
the other functions above were used to change the bindings.

6.20.12 Editing Function

If you need even more flexibility than changing the key translations offers, then you can
override the entire editing function, which is implemented as a method. Simply set the
:edit-func slot of the text interactor with a function as follows:

lambda (an-interactor string-object event)

It is expected to perform the modifications of the string-object based on the event, which
is a Garnet event structure (section 〈undefined〉 [events], page 〈undefined〉).

6.21 Gesture-Interactor

(create-instance ’inter:Gesture-Interactor inter:interactor

;; Slots common to all interactors (see section [Slots of All Interac-

tors], page 241)

(:start-where NIL)

(:window NIL)

(:start-event :leftdown)

(:continuous T) ; Must be T for gesture-interactor

(:stop-event NIL)

(:running-where T)

(:outside NIL)

(:abort-event ’(:control-\g :control-g))

(:waiting-priority normal-priority-level)

(:running-priority running-priority-level)

(:active T)

(:self-deactivate NIL)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 283

; Slots specific to the gesture-interactor (discussed in this section)

(:final-function NIL) ; (lambda (inter first-obj-over gesture-

name attribs points-array nap dist))

(:classifier NIL) ; classifier to use

(:show-trace T) ; show trace of gesture?

(:min-non-ambig-prob nil) ; non-ambiguity probability

(:max-dist-to-mean nil) ; distance to class mean

(:went-outside NIL) ; Read-only slot. Set in outside action function

; Advanced feature: Read-only slots.

; See section [specialslots], page 301, for details about these slots.

(:first-obj-over NIL) ; Read-only slot. The object returned from the start-

where.

(:current-window NIL) ; Read-only slot. The window of the last (or cur-

rent) event.

(:start-char NIL) ; Read-only slot. The character or keyword of the start event.

; Advanced feature: Customizable action routines.

; See sections [Slots of All Interactors], page 241, and [gestcustomaction],

page 308, for details about functions in these slots.

(:start-action ...) ; (lambda (inter obj-under-mouse point))

(:running-action ...) ; (lambda (inter new-obj-over point))

(:stop-action ...) ; (lambda (inter final-obj-over point))

(:abort-action ...) ; (lambda (inter))

(:outside-action ...) ; (lambda (inter prev-obj-over))

(:back-inside-action ...) ; (lambda (inter new-obj-over))

...)

The Gesture-interactor is used to recognize single-path gestures that are drawn with the
mouse. For example, this interactor might be used to allow the user to create circles and
rectangles by drawing an ellipse for a circle and an “L” shape for a rectangle with the mouse.
A classifier will be created for these two gestures. A “classifier” is a data structure that holds
the information the gesture interactor needs to differentiate the gestures. Classifiers are
created by using a special training program to give several examples of each kind of gesture
that will be recognized. For instance, you might use Agate (section [agate], page 288), the
Garnet gesture trainer, to give 15 examples of the ellipses and 15 of the “L” shape. Each
gesture is named with a keyword (here, :circle and :rectangle might be used). Then,
the classifier will be written to a file. The gesture interactor will then read this file and
know how to recognize the specified gestures.

The classification algorithm is based on Rubine’s gesture recognition algorithm rubine,
rubinesiggraph. It uses a statistical technique.

There is one example of the gesture-interactor below. Other examples can be found in the
files demo-arith.lisp and demo-gesture.lisp.

Unlike other interactors, Gestures are not automatically loaded when you load Garnet. To
load gestures, use:

(load Garnet-Gesture-Loader)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 284

6.21.1 Default Operation

This section describes how the gesture-interactor works if the programmer does not remove
or override any of the standard -action procedures. To supply custom action procedures,
see section [gestcustomaction], page 308.

The interactor is used by specifying a classifier to use and a final-function

([gestapplnotif], page 285) to call with the result of the classification.

The :classifier slot should be set to the value of a gesture classifier. Classifiers
trained and saved by Agate can be read with inter:gest-classifier-read. The
:final-function slot should be set to a function to call with the result of the gesture
classification.

Since the programmer may or not want the trace of the gesture to be shown, there are two
drawing modes for the interactor, determined by the :show-trace slot. If :show-trace
is non-NIL (the default), then the points making up the gesture will be displayed as the
gesture is drawn and erased when it is finished.

6.21.2 Rejecting Gestures

If the gesture-interactor is unable to classify the gesture, it will call the final-function

with a value of nil for the classified gesture name. Often, the gesture will be ambiguous,
in that it is similar to more than one known gesture. By setting the :min-non-ambig-prob
slot, the programmer can specify the minimum non-ambiguous probability below which
gestures will be rejected. Empirically, a value of .95 has been found to be a reasonable
value for a number of gesture sets rubine.

Also, the gesture may be an outlier, different from any of the expected gestures. An
approximation of the Mahalanobis distance from the features of the given gesture to the
features of the gesture it was classified as gives a good indication of this. By setting the
:max-dist-to-mean slot, the programmer can specify the maximum distance above which
gestures will be rejected. Rubine shows that a value of 60 (for our feature set) is a good
compromise between accepting obvious outliers and rejecting reasonable gestures.

NIL for either parameter means that that kind of checking is not performed.

6.21.3 Extra Parameters

The extra parameters are:

:classifier

- This field determines which classifier to use when recognizing gestures. If nil
(the default), the gesture-interactor will call the final-function with a result
of nil.

:show-trace

- If non-NIL (the default), the points making up the gesture are displayed in
the supplied interactor window as the gesture is drawn. If nil, no points are
displayed.

:min-non-ambig-prob

- This field determines the minimum non-ambiguous probability below which
gestures will be rejected. The default value of nil causes the interactor to not
make this calculation and pass nil as the nap parameter to final-function.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 285

:max-dist-to-mean

- This field determines the maximum distance to the classified gesture from the
given gesture. Any gesture with a distance above this value will be rejected.
The default value of nil causes the interactor to not make this calculation and
pass nil as the dist parameter to final-function.

6.21.4 Application Notification

Like the two-point-interactor, it is always necessary to have an application function called
with the result of the gesture-interactor. The function is put into the :final-function

slot of the interactor, and is called with the following arguments:

(lambda (an-interactor first-obj-over gesture-name attribs points-array nap dist))

The gesture-name will be set to the name the drawn gesture was recognized as. These
names are stored in the classifier as keyword parameters (e.g., :circle). If the gesture
could not be recognized this will be set to nil.

The attribs will be set to a structure of gesture attributes that may be useful to the
application. For example, the bounding box of the gesture is one of these attributes. The
following function calls can be used to access these attributes:

(gest-attributes-startx attribs) ; first point

(gest-attributes-starty attribs)

(gest-attributes-initial-sin attribs) ; initial angle to the x axis

(gest-attributes-initial-cos attribs)

(gest-attributes-dx2 attribs) ; differences: endx - prevx

(gest-attributes-dy2 attribs) ; endy - prevy

(gest-attributes-magsq2 attribs) ; (dx2 * dx2) + (dy2 * dy2)

(gest-attributes-endx attribs) ; last point

(gest-attributes-endy attribs)

(gest-attributes-minx attribs) ; bounding box

(gest-attributes-maxx attribs)

(gest-attributes-miny attribs)

(gest-attributes-maxy attribs)

(gest-attributes-path-r attribs) ; total path length (in rads)

(gest-attributes-path-th attribs) ; total rotation (in rads)

(gest-attributes-abs-th attribs) ; sum of absolute values of path angles

(gest-attributes-sharpness attribs) ; sum of non-linear function of ab-

solute values

; of path angles counting acute an-

gles heavier

The points-array will be set to an array (of the form [x1 y1 x2 y2...]) containing the
points in the gesture. This array can be used along with a nil classifier to use the gesture-
interactor as a trace-interactor. A trace-interactor returns all the points the mouse goes

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 286

through between the start-event and the stop-event. This is useful for inking in a
drawing program.

IMPORTANT NOTE: The elements of the attribs structure and the points-array should
be accessed individually (e.g., (gest-attributes-minx attribs) (aref points-array 0)

etc.) or else they should be copied (e.g., (copy-gest-attributes attribs) (copy-seq

points-array)) before they are used in any object slots. This is necessary because the
interactor reuses the attribs structure and the points-array in order to avoid extra
memory allocation.

If :min-non-ambig-prob is not nil, the nap parameter will be set to the calculated non-
ambiguous probability of the entered gesture.

If :max-dist-to-mean is not nil, the dist parameter will be set to the calculated distance
of the entered gesture from the classification.

6.21.5 Normal Operation

When the start event happens, if :show-trace is non-NIL, a trace following the mouse
pointer will be displayed. If :show-trace is nil, no trace will be seen.

If the mouse goes outside of :running-where, then the system will beep and if :show-trace
is non-NIL, the trace will be erased.

If the abort event happens and if :show-trace is non-NIL, the trace will be erased.

When the stop event happens, if :show-trace is non-NIL, the trace will be erased. Then,
the final-function is called with the result of classifying the given gesture with the classifier
supplied in the :classifier slot.

An error will be generated if the :continuous slot is anything other than T, the default.

6.21.6 Example - Creating new Objects

Create a rectangle when an “L” shape is drawn and create a circle when a circle is drawn.

; load the gesture interactor, unless already loaded (Garnet does NOT load the gesture-

interactor by default)

(defvar DEMO-GESTURE-INIT

(load Garnet-Gesture-Loader))

; handle-gesture is called by the gesture interactor after it classifies a gesture

(defun Handle-Gesture (inter first-obj-over gesture-name attribs

points-array nap dist)

(declare (ignore inter first-obj-over points-array nap dist))

(case gesture-name

(:CIRCLE

; create a circle with the same "radius" as the gesture and with the same up-

per left of the gesture

(opal:add-components SHAPE-AGG

(create-instance nil opal:circle

(:left (inter:gest-attributes-minx attribs))

(:top (inter:gest-attributes-miny attribs))

(:width (- (inter:gest-attributes-maxx attribs)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 287

(inter:gest-attributes-minx attribs)))

(:height (- (inter:gest-attributes-maxx attribs)

(inter:gest-attributes-minx attribs)))))

)

(:RECTANGLE

; create a rectangle with the same height and width as the ges-

ture and with the same upper left of the gesture

(opal:add-components SHAPE-AGG

(create-instance nil opal:rectangle

(:left (inter:gest-attributes-minx attribs))

(:top (inter:gest-attributes-miny attribs))

(:width (- (inter:gest-attributes-maxx attribs)

(inter:gest-attributes-minx attribs)))

(:height (- (inter:gest-attributes-maxy attribs)

(inter:gest-attributes-miny attribs)))))

)

(otherwise

(format T "Can not handle this gesture ...~%~%")

)

)

(opal:update TOP-WIN)

)

; create top-level window

(create-instance ’TOP-WIN inter:interactor-window

(:left 750) (:top 80) (:width 520) (:height 400)

)

; create the top level aggregate in the window

(s-value TOP-WIN :aggregate (create-instance ’TOP-AGG opal:aggregate))

; create an aggregate to hold the shapes we will create

(create-instance ’SHAPE-AGG opal:aggregate)

(opal:add-components TOP-AGG SHAPE-AGG)

(opal:update TOP-WIN)

; create a gesture interactor that will allow us to create circles and rectangles

(create-instance ’GESTURE-INTER inter:gesture-interactor

(:window TOP-WIN)

(:start-where (list :in TOP-WIN))

(:running-where (list :in TOP-WIN))

(:start-event :any-mousedown)

(:classifier (inter:gest-classifier-read

(merge-pathnames "demo-gesture.classifier"

#+cmu "gesture-data:"

#-cmu user::Garnet-Gesture-Data-Pathname)))

(:final-function #’Handle-Gesture)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 288

(:min-non-ambig-prob .95)

(:max-dist-to-mean 60)

)

6.21.7 Agate

Agate is a Garnet application that is used to train gestures for use with the gesture inter-
actor. Agate stands for A Gesture-recognizer And Trainer by Example. Agate is in the
gesture subdirectory, and can be loaded using (garnet-load "gestures:agate"). Then
type (agate:do-go) to begin.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 289

AGATE: Garnet Gesture Trainer (v. 2.0)

New Classifier Load Classifier Save Classifier Quit

Classifier Name:

Gesture Classes

New Class Delete Class

Gesture Class Name: ZIG-ZAG

Examples

Delete Example

Train Recognize

Canvas

ZIG-ZAG

Figure 6.2: An example session with the Agate gesture trainer

6.21.8 End-User Interface

To train a gesture classifier, the user first types a gesture name into the Gesture Class

Name field and then demonstrates approximately 15 examples of the gesture by drawing on

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 290

the Canvas window with one of the mouse buttons pressed. To train another gesture class
the user can press on the New Class button, type in the new gesture name, and give some
examples of the gesture. This is done repeatedly for each of the gestures that the user would
like the classifier to recognize.

At any point, the user can try out the gestures trained so far by switching to Recognize

mode by clicking on the Recognize toggle button. After demonstrating a gesture in
Recognize mode, Agate will print the name of the gesture in the Gesture Class Name

field, along with numbers that represent the non-ambiguity probability and distance of the
example from the mean (see section [rejecting-gestures], page 284).

When the gesture classifier performs as desired, it can be saved to a file by clicking on the
Save Classifier button. Existing classifiers can be modified by first loading them into
Agate by clicking on the Load Classifier button. Then the user can add more examples
to existing gestures or add entirely new gestures to the classifier.

A gesture example can be deleted by first selecting the example (a full-sized version of
the gesture will be displayed on the Canvas) and then clicking on the Delete Example

button. Similarly, an entire class can be deleted by selecting the class (all of the examples
will be displayed in the Examples window) and then clicking on the Delete Class button.
A gesture class can be renamed by selecting the class and then editing the name in the
Gesture Class Name field.

The current gesture classifier can be cleared out by clicking on the New Classifier. The
user will be prompted to save the classifier if it has not been previously saved.

6.21.9 Programming Interface

Agate V2.0 is a self-contained interface tool that can be integrated within another Garnet
application. A designer can call agate:do-go with parameters for an initial classifier, an
initial name to be displayed in the Gesture Class Name field, and a final function to call
when the user quits Agate.

agate:Do-Go &key dont-enter-main-event-loop double-buffered-p[function],

page 90

initial-classifier initial-examples initial-gesture-

name final-function

Do-go creates the necessary windows and Garnet objects, and then starts the application.
The parameters to do-go are as follows:

dont-enter-main-event-loop

if T, don’t enter the main event loop

double-buffered-p

if T, use double buffered windows

initial-classifier

initial classifier to use

initial-examples

initial examples to display

initial-gesture-name

name to fill in gesture class name field

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 291

final-function

function to call on quit

The final function takes five parameters:

last-saved-filename
the last filename saved to

cur-classifier
the current classifier (as of last training)

cur-examples
the current examples (if untrained, will not necessarily correspond to the cur-
classifier)

saved-p has the current classifier been saved?

trained-p has the current classifier been trained?

6.21.10 Gesture Demos

There are two demos that show how gestures can be used in an application. Demo-gesture
allows you to draw rough approximations of circles and rectangles, which become perfect
shapes in the window. Demo-unidraw is a gesture-based text editor which uses a gesture
shorthand for entering characters. Both of these demos are discussed in the Demos section
of this chapter, starting on page 〈undefined〉 [demos-first-page], page 〈undefined〉.

6.22 Animator-Interactor

(create-instance ’inter:Animator-Interactor inter:interactor

;; Slots common to all interactors (see section [Slots of All Interac-

tors], page 241)

(:window nil)

(:active T)

; Slots specific to the button-interactor (discussed in this section)

(:timer-handler nil) ; (lambda (inter)) ;; function to execute

(:timer-repeat-wait 0.2) ; time in seconds

...)

The animator-interactor has been implemented using the multiple process mechanism of
Allegro, LispWorks, Lucid (also Sun and HP) Common Lisp. It does not work under CMU
Common Lisp, AKCL, CLISP, etc.; sorry.

The animator-interactor works quite differently from other interactors. In particular, it is
more procedural. You provide a function to be called at a fixed rate in the :timer-handler
slot, and a time interval in the slot :timer-repeat-wait at which this function will be
executed. The :timer-handler function takes as a parameter the animation interactor
and should update the appropriate graphics.

Unlike other interactors, the animation interactor does not start immediately when cre-
ated. You must explicitly start it operating with inter:Start-Animator and stop it with
inter:Stop-Animator:

inter:Start-Animator animator-inter[function], page 90

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 292

inter:Stop-Animator animator-inter[function], page 90

After starting, the interactor will call the :timer-handler every :timer-repeat-wait

seconds until you explicitly stop the interactor. It is OK for the :timer-handler itself to
call stop-animator.

Two special-purpose animator interactors have been supplied that have built-in timer func-
tions (so you don’t have to supply the :timer-handler for these):

(create-instance ’inter:Animator-Bounce inter:animator-interactor

(:x-inc 2)

(:y-inc 2)

(:timer-repeat-wait 0.2) ; seconds

(:obj-to-change nil) ; fill this in

...)

(create-instance ’inter:Animator-Wrap inter:animator-interactor

(:x-inc 2)

(:y-inc 2)

(:timer-repeat-wait 0.2) ; seconds

(:obj-to-change nil) ; fill this in

...)

Animator-bounce will move the object supplied in the :obj-to-change by :x-inc pixels
in the x direction and :y-inc pixels in the y direction every :timer-repeat-wait seconds.
The object is modified by directly setting its :left and :top. (Note: not its :box slot.)
When the object comes to the edge of its window, it will bounce and change direction.

Animator-wrap moves an object the same way except that when it gets to an edge, it
re-appears at the opposite edge of the window.

See the demo demo-animator for examples.

+++

All the interactors that are not yet implemented

+++

@section Button-Trill-Interactor

@node Button-Trill-Interactor

@emph{Performs the action once when the interactor starts, then after a

specified delay, does the action repeatedly at a particular rate until

stop-event}.

@emph{This section not yet written or implemented.}

@section Trace-Interactor

@node Trace-Interactor

@emph{This section not yet written or implemented.}

@section Multi-Point-Interactor

@node Multi-Point-Interactor

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 293

Stopping conditions: One of a set of other interactors wants to run, or two

points in the same place, or last point same as first point, or some other

special event, or event while outside.

@emph{This section not yet written or implemented.}

+++

6.23 Transcripts

Garnet will create a transcript of all mouse and keyboard events in a file, and allow the
file to be replayed later as if the user had executed all events again. This can be used for
demonstrations, human factors testing, and/or debugging. Using the transcript mechanism
is very easy. The procedure to start saving events is:

inter:Transcript-Events-To-File filename window-list[function], page 90

&key (motion T) (if-exists :supersede)

(wait-elapsed-time T) (verbose T)

Events are then written to file filename. The window-list is a list of windows that events
should be saved for. It is also allowed to be a single window. (Note: subwindows of windows
on the window list are also handled automatically, and do not have to be specified.) If the
:motion parameter is specified as nil, then mouse movement events are not saved to the
file, which can significantly decrease the file size. The :if-exists parameter is used in the
Lisp open command when opening a file, and takes the same values (see the Common Lisp
book). If specified as :append, then the new events are appended to the end of an existing
file. The transcript is a textual file, where each event has its own line.

When you are finished making the transcript, call

inter:Close-Transcript[function], page 90

To replay a transcript, use:

inter:Transcript-Events-From-File filename window-list &key (wait-elapsed-

time T)[function], page 90

The filename is the file to read from. Wait-elapsed-time determines if the replay should
wait for the correct time so the replay goes about the same speed as the original user went,
or else (if nil) whether the replay should just go as fast as possible. (Each event in the
transcript has a timestamp in it.)

It is important that the window-list passed to Transcript-Events-From-File be
windows that are the same type and in the same order as the windows passed to the
Transcript-Events-To-File call that made the transcript. Garnet maps each event from
the transcript into the corresponding window in the specified window-list. The windows
do not have to be in the same places (all events are window-relative), however.

A typical example would be to create a bunch of windows, call Transcript-Events-To-
File, do some operations, call Close-Transcript, then sometime later, create new windows
the same way, then call Transcript-Events-From-File.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 294

During playback, all mouse and keyboard events are ignored, except inter:*Garnet-Break-
Key*, which is normally bound to :F1. This aborts the transcript playback. Window
refresh events are handled while replaying, however.

6.24 Advanced Features

This chapter describes a number of special features that will help experienced Interactor
users achieve some necessary effects. The features described in this chapter are:

Priorities Interactors can be put at different priority levels, to help control which ones
start and stop with events.

Modes The priority levels and the :active slots can be used for local or global modes.

Events The event structure that describes the user’s event can be useful.

Start-interactor and Abort-Interactor
These functions can be used to explicitly start and stop an interactor without
waiting for its events.

Special slots of interactors
There are a number of slots of interactors that are maintained by the system
that can be used by programmers in formulas or custom action routines.

Multiple windows
Interactors can be made to work over multiple windows.

Waiting for interaction to complete
To support synchronous interfaces.

Custom Action Routines
Some advice about how to write your own action routines, when necessary.

6.25 Priority Levels

Normally, when events arrive from the user, they are processed by all the interactors that
are waiting for events. This means that if two interactors are waiting for the same event (e.g.
:leftdown) they may both start if the mouse location passes both of their :start-wheres.

The interactors do not know about object covering, so that even if an object is covered
by some other object, the mouse can still be in that object. For example, you might have
an interactor that starts when you press over the indicator of a scroll bar, and a different
interactor that starts when you press on the background of the scroll bar. However, if these
interactors both start with the same event, they will both start when the user presses on
the indicator, because it is also inside the background. Priority levels can be used to solve
this problem. The higher-priority interactors get to process events and run first, and if they
accept the event, then lower-priority interactors can be set up so they do not run. Garnet
normally uses three priority levels, but you can but you can add more priority levels for
your interactors as you need them (see below).

By default, interactors wait at “normal” priority for their start event to happen, and then
are elevated to a higher priority while they are running. This means that the stop event
for the running interactor will not be seen by other interactors. The programmer has full

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 295

control over the priorities of interactors, however. There are two slots of interactors that
control this:

:waiting-priority

- the priority of the interactor while waiting for its start event. The default
value is inter:normal-priority-level.

:running-priority

- the priority of the interactor while running (waiting for the stop event). The
default value is inter:running-priority-level.

There are a list of priority levels, each of which contains a list of interactors. The events
from the user are first processed by all the interactors in the highest priority level. All
the interactors at this level are given the event. After they are finished, then lower level
priorities may be given the event (controlled by the :stop-when slot of the priority level
that has just finished running, see below). Thus, all the interactors at the same priority
level get to process the events that any of them get.

There is a list of priorities stored in the variable inter:priority-level-list. The first
element of this list has the highest priority, and the second element has the second priority,
etc. This list is exported so programs can use the standard list manipulation routines to
modify it.

The elements of this list must be instances of inter:priority-level, which is a KR schema
with the following slots:

:interactors

- List of interactors at this priority level. This slot is maintained
automatically based on the values in the interactor’s :waiting-priority and
:running-priority slots. Do not set or modify this slot directly.

:active - Determines whether this priority level and all the interactors in it are active.
The default value is T. For an interactor to be usable, both the interactor’s
:active slot and the priority-level’s :active slot must be non-NIL. If this slot is
nil, then this level is totally ignored, including its :stop-when field (see below).
The value of the :active slot can be a formula, but if it changes to be nil, the
interactors will not be automatically aborted. Use the change-active function
to get the priority level and all its interactors to be aborted immediately (see
section [active], page 297). Note: It is a really bad idea to make the :active

slot of any running-priority levels be nil, since interactors will start but never
complete.

:stop-when

- This slot controls what happens after the event has been processed by the
interactors at this priority level. This slot can take one of three values:

:always - Always stop after handling this level. This means that the
event is never seen by interactors at lower levels. Pushing a
new priority level with :stop-when as :always on the front of
:priority-level-list is a convenient way to set up a special
mode where the interactors in the new priority level are processed
and all other ones are ignored. The priority level can be popped

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 296

or de-activated (by setting its :active slot to nil) to turn this
mode off.

:if-any - If any of the interactors at this level accept the event, then do not
pass the event down to lower levels. If no interactors at this level
want the event, then do pass it through to lower levels. This is used,
for example, for the :stop-when of the default running-priority-
level to keep the stop-event of a running interactor from starting
a different interactor.

nil - If :stop-when is nil, then the events are always passed through.
This might be useful if you want to control the order of interactors
running, or if you want to set the :active slots of the priority levels
independently.

:sorted-interactors

- See section [sorted-sec], page 297.

Three priority levels are supplied by default. These are:

inter:running-priority-level

- The highest default priority is for interactors that are running. It is defined
with :stop-when as :if-any.

inter:high-priority-level

- A high-priority level for use by programs. It is defined with :stop-when as
:if-any.

inter:normal-priority-level

- The normal priority for use by interactors that are waiting to run. :Stop-when
is nil.

The initial value of priority-level-list is:

(list running-priority-level high-priority-level normal-priority-level)

The programmer can create new priority levels (using (create-instance nil

inter:priority-level ...) and add them to this list (using the standard Common Lisp
list manipulation routines). The new priorities can be at any level. Priorities can also be
removed at any time, but do not remove the three default priority levels. There is nothing
special about the pre-defined priorities. They are just used as the defaults for interactors
that do not define a waiting and running priority. For example, it is acceptable to use the
pre-defined inter:running-priority-level as the :waiting-priority for an interactor,
or to use inter:high-priority-level as the :running-priority of another interactor.

It is acceptable for an interactor to use the same priority level for its :waiting-priority
and :running-priority, but it is a bad idea for the :running-priority to be lower
than the :waiting-priority. Therefore, if you create a new priority level above the
running-priority-level and use it as the :waiting-priority of an interactor, be sure
to create an even higher priority level for use as the :running-priority of the interactor
(or use the same priority level as both the waiting and running priorities).

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 297

6.25.1 Example

Consider the scroll bar. The interactor that moves the indicator might have higher priority
than the one that operates on the background.

(create-instance NIL Inter:Move-Grow-Interactor

(:window MYWINDOW)

(:start-where (list :in-box INDICATOR))

(:running-where (list :in-box SLIDER-SHELL))

(:outside :last)

(:attach-point :center)

(:waiting-priority inter:high-priority-level))

(create-instance NIL Inter:Move-Grow-Interactor

(:continuous NIL)

(:window MYWINDOW)

(:start-event :leftdown)

(:start-where (list :in-box SLIDER-SHELL))

(:obj-to-change indicator)

(:attach-point :center))

6.25.2 Sorted-Order Priority Levels

As an experiment, and to support the Marquise tool which is in progress, there is an
alternative way to control which interactors run. You can mark an interactor priority level
as having :sorted-interactors. When this slot of a priority level is non-NIL, then the
interactors in that level run in sorted order by the number in the :sort-order slot of each
interactor (which can be an integer or float, negative or positive). The lowest numbered
interactor runs first. Then, if that interactor has a value in its :exclusivity-value slot,
then no other interactor with the same value in that slot will be run, but interactors with
a different value in that slot will be run in their sorted order. Interactors with nil in their
:sort-order and/or :exclusivity-value slot will run after all other interactors are run.
Note that multiple interactors with the same number in the :sort-order slot will run in
an indeterminate order (or if they have the same :exclusivity-value, then only one of
them will run, but no telling which one). The :stop-when slot of the priority-level works
as always to determine what happens when the interactors in that level are finished.

6.26 Modes and Change-Active

In order to implement “Modes” in a user interface, you need to have interactors turn off
sometimes. This can be done in several ways. Section [modal-p], page 297, below discusses
how to restrict all interactor input to a single window (like a dialog box) while suspending
the interactors in all other windows. Section [change-active], page 298, below discusses how
to turn off particular interactors or groups of interactors.

6.26.1 Modal Windows

When the :modal-p slot of an interactor-window is T, then interaction in all other Garnet
windows will be suspended until the window goes away (e.g., the user clicks an "OK"
button). Any input directed to a non-modal window will cause a beep. If more than one

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 298

modal window is visible at the same time, then input can be directed at any of them (this
allows stacking of modal windows). The :modal-p slot can be calculated by a formula.
Typically, however, the :modal-p slot will stay T, and you will simply set the window to
be visible or invisible.

The :modal-p slot is often used in conjunction with wait-interaction-complete, a func-
tion which suspends all lisp activity until interaction-complete is called. An example
application would make a modal window visible, then call wait-interaction-complete.
The user would be unable to interact with the rest of the interface until the modal window
was addressed. Then, when the user clicks on the "OK" button in the modal window, the
window becomes invisible and interaction-complete is called. Interaction then resumes as
usual in the interface. See section [w-i-c], page 302, for a discussion of wait-interaction-
complete.

The error-gadget and query-gadget dialog boxes use this feature exactly as in the ex-
ample above. They ensure that the user responds to the error message before continuing
any action in the rest of the interface. The property sheet gadget display routines and the
gilt:show-in-window routine have an optional modal parameter which uses this feature.
You may be able to implement your design using these gadgets and routines, rather than
using the :modal-p slot explicitly.

6.26.2 Change-Active

Interactors can either be turned on and off individually using the :active slot in each
interactor, or you can put a group of interactors together in a priority level (see section
[priorities], page 294) and turn on and off the entire group using the priority level’s :active
slot.

The :active slot of an interactor may be s-value’d explicitly, causing the interactor to
abort immediately. But to change the activity of a priority level, you should use the function
Change-Active:

inter:Change-Active an-interactor-or-priority-level new-value[function],

page 90

This makes the interactor or priority-level be active (if new-value is T) or inactive (if new-
value is nil). When change-active makes a priority level not active, then all interactors
on the priority level will abort immediately. Interactors are not guaranteed to abort imme-
diately if their priority level’s :active slot is simply set to nil.

6.27 Events

Some functions, such as Start-Interactor (see section [startinteractor], page 300) take an
“event” as a parameter. You might also want to look at an event to provide extra features.

Inter:Event is an interactor-defined structure (a regular Lisp structure, not a KR schema),
and is not the same as the events created by the X window manager or Mac QuickDraw.
Normally, programs do not need to ever look at the event structure, but it is exported from
interactors in case you need it.

Inter:Event has the following fields:

window - The Interactor window that the event occurred in.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 299

char - The Lisp character that the event corresponds to. If this is a mouse event,
then the Char field will actually hold a keyword like :leftdown.

code - The X11 or MCL internal code for the event.

mousep - Whether the event is a mouse event or not.

downp - If a mouse event, whether it is a down-transition or not.

x - The X position of the mouse when the event happened.

y - The Y position of the mouse when the event happened.

timestamp

- The X11 or MCL timestamp for the event.

Each of the fields has a corresponding accessor and setf function:

(event-window event) (setf (event-window event) w)

(event-char event) (setf (event-char event) c)

(event-code event) (setf (event-code event) c)

(event-mousep event) (setf (event-mousep event) T)

(event-downp event) (setf (event-downp event) T)

(event-x event) (setf (event-x event) 0)

(event-y event) (setf (event-y event) 0)

(event-timestamp event) (setf (event-timestamp event) 0)

You can create new events (for example, to pass to the Start-Interactor function), using
the standard structure creation function Make-Event.

inter:Make-Event &key (window NIL) (char :leftdown) (code 1) (mousep T) [function],

page 90

(downp T) (x 0) (y 0) (timestamp 0))

The last event that was processed by the interactors system is stored in the variable
Inter:*Current-Event*. This is often useful for functions that need to know where the
mouse is or what actual mouse or keyboard key was hit. Note that two of the fields of this
event (window and char) are copied into the slots of the interactor (see section [specialslots],
page 301) and can be more easily accessed from there.

6.27.1 Example of using an event

The two-point interactor calls the final-function with a nil parameter if the rectangle is
smaller than a specified size (see section [twopapplnotif], page 268). This feature can be
used to allow the end user to pick an object under the mouse if the user presses and releases,
but to select everything inside a rectangle if the user presses and moves (in this case, moves
more than 5 pixels).

Assume the objects to be selected are stored in the aggregate all-obj-agg.

(create-instance ’SELECT-POINT-OR-BOX Inter:Two-Point-Interactor

(:start-where T)

(:start-event :leftdown)

(:abort-if-too-small T)

(:min-width 5)

(:min-height 5)

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 300

(:line-p NIL)

(:flip-if-change-sides T)

(:final-function

#’(lambda (an-interactor final-point-list)

(if (null final-point-list)

; then select object at point. Get point from

; the *Current-event* structure, and use it in the

; standard point-to-component routine.

(setf selected-object

(opal:point-to-component ALL-OBJ-AGG

(inter:event-x inter:*Current-event*)

(inter:event-y inter:*Current-event*)))

; else we have to find all objects inside the rectangle.

; There is no standard function to do this.

(setf selected-object

(My-Find-Objs-In-Rectangle ALL-OBJ-AGG final-point-list))))))

6.28 Starting and Stopping Interactors Explicitly

Normally an interactor will start operating (go into the “running” state) after its start-event
happens over its start-where. However, sometimes it is useful to explicitly start an interactor
without waiting for its start event. You can do this using the function Start-interactor.
For example, if a menu selection should cause a sub-menu to start operating, or if after
creating a new rectangle you want to immediately start editing a text string that is the
label for that rectangle.

inter:Start-Interactor an-interactor &optional (event T)[function], page 90

This function does nothing if the interactor is already running or if it is not active. If an event
is passed in, then this is used as the x and y location to start with. This may be important
for selecting which object the interactor operates on, for example if the :start-where of
the interactor is (:element-of <agg>), the choice of which element is made based on the
value of x and y in the event. (See section 〈undefined〉 [events], page 〈undefined〉, for a
description of the event). If the event parameter is T (the default), then the last event
that was processed is re-used. The event is also used to calculate the appropriate default
stop event (needed if the start-event is a list or something like :any-mousedown and the
stop-event is not supplied). If the event is specified as nil or the x and y in the event do
not pass :start-where, the interactor is still started, but the initial object will be nil,
which might be a problem (especially for button-interactors, for example). NOTE: If you
want the interactor to never start by itself, then its :start-where or :start-event can be
set to nil.

Examples of using start-interactor are in the file demo-sequence.lisp.

Similarly, it is sometimes useful to abort an interactor explicitly. This can be done with the
function:

inter:Abort-Interactor an-interactor[function], page 90

If the interactor is running, it is aborted (as if the abort event had occurred).

Stop-Interactor can be called to stop an interactor as if the stop event had happened.

inter:Stop-Interactor an-interactor[function], page 90

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 301

It reuses the last object the interactor was operating on, and the current event is ignored.
This function is useful if you want to have the interactor stopped due to some other external
action. For example, to stop a text-interactor when the user chooses a menu item, simply
call stop-interactor on the text-interactor from the final-function of the menu.

6.29 Special slots of interactors

There are a number of slots of interactors that are maintained by the system that can be
used by programmers in formulas or custom action routines. These are:

:first-obj-over

this is set to the object that is returned from

:start-where

This might be useful if you want a formula in the

:obj-to-change

lot that will depend on which object is pressed on (see the examples below and
in section [editstringexample], page 279). Note that if the :start-where is T,
then

:first-obj-over

ill be T, rather than an object. The value in

:first-obj-over

does not change as the interactor is running (it is only set once at the beginning).

:current-obj-over

this slot is set with the object that the mouse was last over (see section
[menufinalfeedbackobj], page 250).

:current-window

this is set with the actual window of the last (or current) input event. This might
be useful for multi-window interactors (see section [multiwindow], page 302).
The :current-window slot is set repeatedly while the interactor is running.

:start-char

The Lisp character (or keyword if a mouse event) of the actual start event. This
might be useful, for example, if the start event can be one of a set of things,
and some parameter of the interactor depends on which one. See the example
below. The value in

:start-char

does not change as the interactor is running (it is only set once at the beginning).

6.29.1 Example of using the special slots

This example uses two slots of the interactor in formulas. A formula in the :grow-p slot
determines whether to move or grow an object based on whether the user starts with a
left or right mouse button (:start-char). A formula in the :line-p slot decides whether
to change this object as a line or a rectangle based on whether the object started on
(:first-obj-over) is a line or not. Similarly, a formula in the feedback slot chooses the
correct type of object (line or rectangle).

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 302

The application creates a set of objects and stores them in an aggregate called all-object-

agg.

(create-instance ’MOVE-OR-GROWER Inter:Move-Grow-Interactor

(:start-event ’(:leftdown :rightdown)) ; either left or right

(:grow-p (o-formula (eq :rightdown (gvl :start-char)))) ; grow if right button

(:line-p (o-formula (is-a-p (gvl :first-obj-over) opal:line)))

(:feedback-obj (o-formula

(if (gvl :line-p)

MY-LINE-FEEDBACK-OBJ

MY-RECTANGLE-FEEDBACK-OBJ)))

(:start-where ‘(:element-of ,ALL-OBJECT-AGG))

(:window MYWINDOW))

6.30 Multiple Windows

Interactors can be made to work over multiple windows. The :window slot of an interactor
can contain a single window (the normal case), a list of windows, or T which means all
Interactor windows (this is rather inefficient). If one of the last two options is used, then
the interactor will operate over all the specified windows. This means that as the interactor
is running, mouse movement events are processed for all windows that are referenced. Also,
when the last of the windows referenced is deleted, then the interactor is automatically
destroyed.

This is mainly useful if you want to have an object move among various windows. If you
want an object to track the mouse as it changes windows, however, you have to explicitly
change the aggregate that the object is in as it follows the mouse, since each window has a
single top-level aggregate and aggregates cannot be connected to multiple windows. You will
probably need a custom :running-action routine to do this (see section [customroutines],
page 303). This is true of the feedback object as well as the main object.

You can look at the demonstration program demo-multiwin.lisp to see how this might be
done.

6.31 Wait-Interaction-Complete

Interactors supplies a pair of functions which can be used to suspend Lisp processing while
waiting for the user to complete an action. It is a little complicated to do this at the
Interactors level, but there is a convenient function for Gilt-created dialog boxes called
gilt:Show-In-Window-And-Wait (see the Gilt chapter). Also, garnet-gadgets:display-
error-and-wait and garnet-gadgets:display-query-and-wait can be used to pop up
message windows and wait for the user’s response (see the error-gadget in the Gadgets
chapter).

For other applications, you can call:

inter:Wait-Interaction-Complete &optional window-to-raise[function], page 90

which does not return until an interactor executes:

inter:Interaction-Complete &optional val[function], page 90

If a val is supplied, then this is returned as the value of Inter:Wait-Interaction-

Complete. The window-to-raise parameter is provided to avoid a race condition that occurs

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 303

when you call update on a window and immediately call wait-interaction-complete.
If you have problems with this function, then try supplying your window as the optional
argument. Wait-interaction-complete will then raise your window to the top and
update it for you.

Typically, Inter:Interaction-Complete will be called in the final-function of the interac-
tor (or the selection-function of the gadget) that should cause a value to be returned, such
as a value associated with the "OK" button of a dialog box. Note that you must use some
other mechanism of interactors to make sure that only the interactors you care about are
executable; Wait-Interaction-Complete allows all interactors in all windows to run.

6.32 Useful Procedures

The text interactor beeps (makes a sound) when you hit an illegal character. The function
to cause the sound is exported as

inter:Beep[function], page 90

which can be used anywhere in application code also.

The Interactors package exports the function

inter:Warp-Pointer window x y[function], page 90

which moves the position of the mouse cursor to the specified point in the specified window.
The result is the same as if the user had moved the mouse to position <x,y>.

6.33 Custom Action Routines

We have found that the interactors supply sufficient flexibility to support almost all kinds of
interactive behaviors. There are many parameters that you can set in each kind of interactor,
and you can use formulas to determine values for these dynamically. The final-function
can be used for application notification if necessary.

However, sometimes a programmer may find that special actions are required for one or
more of the action routines. In this case, it is easy to override the default behavior and
supply your own functions. As described in section [Slots of All Interactors], page 241, the
action routines are:

:stop-action

:start-action

:running-action

:abort-action

:outside-action

:back-inside-action

Each of the interactor types has its own functions supplied in each of these slots.

If you want the default behavior in addition to your own custom behavior, then you can use
the KR function Call-Prototype-Method to call the standard function from your function.
The parameters are the same as for your function.

For example, the :running-action for Move-Grow interactors is defined (in section
[movegrowcustomaction], page 305) as:

(lambda (an-interactor object-being-changed new-points))

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 304

so to create an interactor with a custom action as well as the default action, you might do:

(create-instance NIL Inter:Move-Grow-Interactor

... the other usual slots

(:running-action

#’(lambda (an-interactor object-being-changed new-points)

(call-prototype-method an-interactor object-being-changed new-points)

(Do-My-Custom-Stuff))))

The parameters to all the action procedures for all the interactor types are defined in the
following sections.

6.33.1 Menu Action Routines

The parameters to the action routines of menu interactors are:

:Start-action

(lambda (an-interactor first-object-under-mouse))

Note that :running-action is not called until the mouse is moved to a different
object (it is not called on this first object which is passed as first-object-

under-mouse).

:Running-action

(lambda (an-interactor prev-obj-over new-obj-over))

This is called once each time the object under the mouse changes (not each
time the mouse moves).

:Outside-action

(lambda (an-interactor outside-control prev-obj-over))

This is called when the mouse moves out of the entire menu. Outside-Control
is simply the value of the :outside slot.

:Back-inside-action

(lambda (an-interactor outside-control prev-obj-over new-obj-over))

Called when the mouse was outside all items and then moved back inside.
Prev-obj-over is the last object the mouse was over before it went outside.
This is used to remove feedback from it if :outside is :last.

:Stop-action

(lambda (an-interactor final-obj-over))

The interactor guarantees that :running-action has been called on
final-obj-over before the :stop-action procedure is called.

:Abort-action

(lambda (an-interactor last-obj-over))

6.33.2 Button Action Routines

The parameters to the action routines of button interactors are:

:Start-action

(lambda (an-interactor object-under-mouse))

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 305

Note that back-inside-action is not called this first time.

:running-action This is not used by this interactor. :Back-inside-action and
:Outside-action are used instead.

:back-inside-action

(lambda (an-interactor new-obj-over))

This is called each time the mouse comes back to the original object.

:outside-action

(lambda (an-interactor last-obj-over))

This is called if the mouse moves outside of :running-where before stop-event.
The default :running-where is ’(:in *) which means in the object that the
interactor started on.

:stop-action

(lambda (an-interactor final-obj-over))

:abort-action

(lambda (an-interactor obj-over))

Obj-over will be the object originally pressed on, or nil if outside when aborted.

6.33.3 Move-Grow Action Routines

The parameters to the action routines of move-grow interactors are:

:start-action

(lambda (an-interactor object-being-changed first-points))

First-points is a list of the original left, top, width and height for the object,
or the original X1, Y1, X2, Y2, depending on the setting of :line-p. The
object-being-changed is the actual object to change, not the feedback object.
Note that :running-action is not called on this first point; it will not be called
until the mouse moves to a new point.

:running-action

(lambda (an-interactor object-being-changed new-points))

The object-being-changed is the actual object to change, not the feedback
object.

:outside-action

(lambda (an-interactor outside-control object-being-changed))

The object-being-changed is the actual object to change, not the feedback
object. Outside-control is set with the value of :outside.

:back-inside-action

(lambda (an-interactor outside-control object-being-changed new-inside-points))

The object-being-changed is the actual object to change, not the feedback
object. Note that the running-action procedure is not called on the point passed
to this procedure.

:stop-action

(lambda (an-interactor object-being-changed final-points))

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 306

The object-being-changed is the actual object to change, not the feedback
object. :Running-action was not necessarily called on the point passed to this
procedure.

:abort-action

(lambda (an-interactor object-being-changed))

The object-being-changed is the actual object to change, not the feedback
object.

6.33.4 Two-Point Action Routines

The parameters to the action routines of two-point interactors are:

:start-action

(lambda (an-interactor first-points))

The first-points is a list of the initial box or 2 points for the object (the
form is determined by the :line-p parameter). If :abort-if-too-small is
non-NIL, then first-points will be nil. Otherwise, the width and height
of the object will be the :min-width and :min-height or 0 if there are no
minimums. Note that :running-action is not called on this first point; it will
not be called until the mouse moves to a new point.

:running-action

(lambda (an-interactor new-points))

New-points may be nil if :abort-if-too-small and the size is too small.

:outside-action

(lambda (an-interactor outside-control))

Outside-control is set with the value of :outside.

:back-inside-action

(lambda (an-interactor outside-control new-inside-points))

Note that the running-action procedure is not called on the point passed to
this procedure. New-inside-points may be nil if :abort-if-too-small is
non-NIL.

:stop-action

(lambda (an-interactor final-points))

:Running-action was not necessarily called on the point passed to this proce-
dure. Final-points may be nil if :abort-if-too-small is non-NIL.

:abort-action

(lambda (an-interactor))

6.33.5 Angle Action Routines

In addition to the standard measure of the angle, the procedures below also provide an
incremental measurement of the difference between the current and last values. This might
be used if you just want to have the user give circular gestures to have something ro-
tated. Then, you would just want to know the angle differences. An example of this is in
demo-angle.lisp.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 307

The parameters to the action routines of angle interactors are:

:Start-action -

(lambda (an-interactor object-being-rotated first-angle))

The first-angle is the angle from directly to the right of the :center-of-

rotation that the mouse presses. This angle is in radians. The object-being-
rotated is the actual object to move, not the feedback object. Note that
:running-action is not called on first-angle; it will not be called until the
mouse moves to a new angle.

:Running-action -

(lambda (an-interactor object-being-rotated new-angle angle-delta))

The object-being-rotated is the actual object to move, not the feedback ob-
ject. Angle-delta is the difference between the current angle and the last an-
gle. It will either be positive or negative, with positive being counter-clockwise.
Note that it is always ambiguous which way the mouse is rotating from sampled
points, and the system does not yet implement any hysteresis, so if the user
rotates the mouse swiftly (or too close around the center point), the delta may
oscillate between positive and negative values, since it will guess wrong about
which way the user is going. In the future, this could be fixed by keeping a his-
tory of the last few points and assuming the user is going in the same direction
as previously.

:Outside-action -

(lambda (an-interactor outside-control object-being-rotated))

The object-being-rotated is the actual object to move, not the feedback
object. Outside-control is set with the value of :outside.

:Back-inside-action -

(lambda (an-interactor outside-control object-being-rotated new-angle))

The object-being-rotated is the actual object to move, not the feedback
object. Note that the running-action procedure is not called on the point
passed to this procedure. There is no angle-delta since it would be zero
if :outside-control was NIL and it would probably be inaccurate for :last
anyway.

:Stop-action -

(lambda (an-interactor object-being-rotated final-angle angle-delta))

The object-being-rotated is the actual object to move, not the feedback
object. :Running-action was not necessarily called on the angle passed
to this procedure. Angle-delta is the difference from the last call to
:running-action.

:Abort-action -

(lambda (an-interactor object-being-rotated))

The object-being-rotated is the actual object to move, not the feedback
object.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 308

6.33.6 Text Action Routines

The parameters to the action routines of text interactors are:

:Start-action -

(lambda (an-interactor new-obj-over start-event))

New-Obj-over is the object to edit, either :obj-to-change if it is supplied, or
if :obj-to-change is nil, then the object returned from :start-where. The
definition of events is in section 〈undefined〉 [events], page 〈undefined〉.
:Running-action -

(lambda (an-interactor obj-over event))

:Outside-action -

(lambda (an-interactor obj-over))

Often, :running-where will be T so that this is never called.

:Back-Inside-action -

(lambda (an-interactor obj-over event))

:Stop-action -

(lambda (an-interactor obj-over stop-event))

:Abort-action -

(lambda (an-interactor obj-over abort-event))

6.33.7 Gesture Action Routines

The parameters to the action routines of gesture interactors are:

:Start-action -

(lambda (an-interactor object-under-mouse point))

The point is the first point of the gesture.

:Running-action -

(lambda (an-interactor new-obj-over point))

:Outside-action -

(lambda (an-interactor prev-obj-over))

This beeps and erases the trace if show-trace is non-NIL. It also sets
:went-outside to T.

:Back-inside-action -

(lambda (an-interactor new-obj-over))

This currently does nothing.

:Stop-action -

(lambda (an-interactor final-obj-over point))

:Running-action was not necessarily called on the point passed to this pro-
cedure, so it is added to *points*. This procedure calls gest-classify with
the points in the trace, *points*, and the classifier given by :classifier.

:Abort-action -

(lambda (an-interactor))

This erases the trace if :show-trace is non-NIL and :went-outside is nil.

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 309

6.33.8 Animation Action Routines

The animator-interactor does not use these action slots. All of the work is done by the
function supplied in the :timer-handler slot.

6.34 Debugging

There are a number of useful functions that help the programmer debug interactor code.
Since these are most useful in conjunction with the tools that help debug KR structures and
Opal graphical objects, all of these are described in a separate Garnet Debugging chapter.

In summary, the functions provided include:

Interactors are KR objects so they can be printed using kr:ps and hemlock-schemas.

The Inter:Trace-Inter routine is useful for turning on and off tracing output that
tells what interactors are running. Type (describe ’inter:trace-inter) for a de-
scription. This function is only available when the garnet-debug compiling switch is
on (the default).

(garnet-debug:ident) will tell the name of the next event (keyboard key or mouse
button) you hit.

(garnet-debug:look-inter &optional parameter) describes the active interactors,
or a particular interactor, or the interactors that affect a particular graphic object.

(inter:Print-Inter-Levels) will print the names of all of the active interactors in
all priority levels.

(inter:Print-Inter-Windows) will print the names of all the interactor windows, and
(garnet-debug:Windows) will print all Opal and Interactor windows.

Destroying the interactor windows will normally get rid of interactors. You can use
(opal:clean-up :opal) to delete all interactor windows.

If for some reason, an interactor is not deleted (for example, because it is not attached
to a window), then

inter:Reset-Inter-Levels &optional level[function], page 90

will remove all the existing interactors by simply resetting the queues (it does not
destroy the existing interactors, but they will never be executed). If a level is specified,
then only interactors on that level are destroyed. If level is nil (the default), then all
levels are reset. This procedure should not be used in applications, only for debugging.
It is pretty drastic.

==

@section Issues

@node Issues

How handle sliding out of a menu and having a sub-menu appear?

Should we increase the number of interactors and decrease the number of

parameters to each?

What other specific interactors are needed?

Chapter 6: Interactors: Encapsulating Mouse and Keyboard Behaviors 310

Need trill button also?

Can we eliminate some of these interactors if we make interactors simpler?

For example, use a timer interactor and a regular button interactor

together to make a trill.

Can Menu and Button interactors be combined?

How to make the feedback object have the same properties as the real

object, e.g., with respect to constraints on movement (grids, only in X,

etc.). Want to be able to get them dynamically from the object and/or from

the particular interactor or parameters to the interactor (e.g., when press

here, only move in X) Solutions: extra parameters w/filters passed to the

interactors, have a "move-object" function (like create-function in twop)

that is passed either the feedback-obj or the real object (but this is

similar to the running-action and stop-action), somehow copy the

constraints into the feedback object (may require creating a new object

and/or new constraint objects), or leave as is so user defines own

running-action and stop-action procedures.

==

〈undefined〉 [References], page 〈undefined〉,

311

7 Aggregadgets, Aggrelists & Aggregraphs

Andrew Mickish, Roger B. Dannenberg, Philippe Marchal, David Kosbie, A. Bryan Loyall

14 May 2020

7.1 Abstract

Aggregadgets and aggrelists are objects used to define natural hierarchies of other objects in
the Garnet system. They allow the interface designer to group graphical objects and associ-
ated behaviors into a single prototype object by declaring the structure of the components.
Aggrelists are particularly useful in the creation of menu-type objects, whose components
are a sequence of similar items corresponding to a list of elements. Aggrelists will automat-
ically maintain the layout of the graphical list of objects. Aggregraphs are similarly used
to create and maintain graph structures.

7.2 Aggregadgets

7.3 Accessing Aggregadgets and Aggrelists

The aggregadgets and aggrelists files are automatically loaded when the file
garnet-loader.lisp is used to load Garnet. The garnet-loader file uses one loader file
for both aggregadgets and aggrelists called aggregadgets-loader.lisp. Loading this file
causes the KR, Opal, and Interactors files to be loaded also.

Aggregadgets and aggrelists reside in the Opal package. All identifiers in this chapter are
exported from the Opal package unless another package name is explicitly given. These
identifiers can be referenced by using the opal prefix, e.g. opal:aggregadget; the package
name may be dropped if the line (use-package "OPAL") is executed before referring to any
object in that package.

7.4 Aggregadgets

During the construction of a complicated Garnet interface, the designer will frequently be
required to arrange sets of objects into groups that are easy to manipulate. These sets
may have intricate dependencies among the objects, or possess a hierarchical structure that
suggests a further subgrouping of the individual objects. Interactors may also be associated
with the objects that should intuitively be defined along with the objects themselves.

Aggregadgets provide the designer with a straightforward method for the definition and use
of sets of Garnet objects and interactors. When an aggregadget is supplied with a list of
object definitions, Garnet will internally create instances of those objects and add them to
the aggregadget as components. If the objects are given names, Garnet will create slots
in the aggregadget which point to the objects, granting easy access to the components.
Interactors that manipulate the components of the aggregadget may be similarly defined.

By creating instances of aggregadgets, the designer actually groups the objects and interac-
tors under a single prototype (class) name. The defined prototype may be used repeatedly
to create more instances of the defined group. To illustrate this feature of aggregadgets,
consider the schemata shown below:

(create-instance ’MY-GROUP opal:aggregadget

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 312

(:parts

...) ; some group of graphical objects

(:interactors

...)) ; some group of interactors

(create-instance ’GROUP-1 MY-GROUP)

(create-instance ’GROUP-2 MY-GROUP

...) ; definition of more slots

The schema MY-GROUP defines a set of associated graphical objects and interactors using
an instance of the opal:aggregadget object. The schemata group-1 and group-2 are
instances of the my-group prototype which inherit all of the parts and behaviors defined in
the prototype. The group-2 schema additionally defines new slots in the aggregadget for
some special purpose.

7.4.1 How to Use Aggregadgets

In order to group a set of objects together as components of an aggregadget, the designer
must define the objects in the :parts slot of the aggregadget.

The syntax of the :parts slot is a backquoted list of lists, where each inner list defines one
component of the aggregadget. The definition of each component includes a keyword that
will be used as a name for that part (or nil if the part is to be unnamed), the prototype of
that part, and a set of slot definitions that customize the component from the prototype.

The aggregadget will internally convert this list of parts into components of the aggregadget,
with each part named by the keyword provided (or unnamed, if the keyword is nil).

Everything inside the backquote that should be evaluated immediately must be preceded
by a comma. Usually the following will need commas: the prototype of the component,
variable names, calls to formula and o-formula, etc.

After an aggregadget is created, the designer should not refer to the :parts slot. Each
component may be accessed by name as a slot of the aggregadget. Additionally, all com-
ponents are listed in the :components slot just as in aggregates. in display order, that is,
from back to front.

A short example of an aggregadget definition is shown in figure [check-mark], page 313, and
the picture of this aggregadget is in figure [simple-expl-pict-ref], page 314.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 313

(create-instance ’CHECK-MARK opal:aggregadget

(:parts

‘((:left-line ,opal:line

(:x1 70)

(:y1 45)

(:x2 95)

(:y2 70))

(:right-line ,opal:line

(:x1 95)

(:y1 70)

(:x2 120)

(:y2 30)))))

Figure 7.1: A simple CHECK-MARK aggregadget.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 314

Figure 7.2: The picture of the CHECK-MARK aggregadget.

Of course, the designer may define other slots in the aggregadget besides the :parts slot.
One convenient programming style involves the definition of several slots in the top-level
aggregadget (such as :left, :top, etc.) with formulas in several components that refer to
these values, thereby allowing a change in one top-level slot to propagate to all dependent

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 315

slots in the components. Slots of components may also contain formulas that refer to other
components (see section [agg-dependencies], page 318).

7.4.2 Named Components

When keywords are given in the :parts list that correspond to each component, those key-
words are used as names for the components. In figure [check-mark], page 313, the names
are :left-line and :right-line. Since these names were supplied, the slots :left-line
and :right-line are set in the CHECK-MARK aggregadget with the components them-
selves as values. That is, (gv CHECK-MARK :left-line) yields the actual component that
was created from the :parts description.

The slot :known-as in the component is also set with the name of the component. In the
example above, (gv CHECK-MARK :left-line :known-as) yields :left-line. Another way
to look at these slots and objects is shown in figures [agg-ps-ref], page 315, and [part-ps-ref],
page 316.

When adding a new component to an aggregadget, you can set the :known-as slot of the
component with a keyword name, which will be used in the top-level aggregadget as a
slot name that points directly to the new component. The example at the end of section
[constants-and-aggregadgets], page 316, illustrates the idea of setting the :known-as slot.

lisp> (ps CHECK-MARK)

#k<CHECK-MARK>

:RIGHT-LINE = #k<KR-DEBUG:RIGHT-LINE-226>

:LEFT-LINE = #k<KR-DEBUG:LEFT-LINE-220>

:COMPONENTS = #k<KR-DEBUG:LEFT-LINE-220> #k<KR-DEBUG:RIGHT-LINE-226>

...

:PARTS = ((:LEFT-LINE #k<OPAL:LINE>

(:X1 70) (:Y1 45) (:X2 95) (:Y2 70))

(:RIGHT-LINE #k<OPAL:LINE>

(:X1 95) (:Y1 70) (:X2 120) (:Y2 30)))

...

:IS-A = #k<OPAL:AGGREGADGET>

NIL

lisp>

Figure 7.3: The printout of the CHECK-MARK aggregadget.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 316

[lisp>] (ps (gv CHECK-MARK :right-line))

#k<KR-DEBUG:RIGHT-LINE-226>

:PARENT = #k<CHECK-MARK>

:KNOWN-AS = :RIGHT-LINE

...

:Y2 = 30

:X2 = 120

:Y1 = 70

:X1 = 95

:IS-A = #k<OPAL:LINE>

NIL

[lisp>]

Figure 7.4: The :right-line component of CHECK-MARK.

As shown in figure [agg-ps-ref], page 315, CHECK-MARK has two components: RIGHT-
LINE-226 which is a line created according to the definition of :right-line in the :parts
slot of the CHECK-MARK aggregadget, and LEFT-LINE-220 corresponding to the def-
inition of the :left-line part. The CHECK-MARK aggregadget also has two slots,
:right-line and :left-line, whose values are the corresponding components.

7.4.3 Destroying Aggregadgets

opal:Destroy gadget〈undefined〉 [method], page 〈undefined〉,
opal:Destroy-Me gadget〈undefined〉 [method], page 〈undefined〉,
The destroy method destroys an aggregadget or aggrelist and its instances. To destroy
a gadget means to destroy its interactors, components, and item-prototype-object as well
as the gadget schema itself. The destroy-me method for aggregadgets and aggrelists de-
stroys the prototype but not its instances. Note: users of gadgets should call destroy;
implementors of subclasses should override destroy-me.

7.4.4 Constants and Aggregadgets

The ability to define constant slots is an advanced feature of Garnet that is discussed in
detail in the KR chapter. However, the aggregadgets use some of the features of constant
slots by default.

All aggregadgets created with an initial :parts list have constant :components. That is,
after the aggregadget has been created with all of its parts, the :components slot becomes
constant automatically, and the components of the aggregadget are not normally modifiable.
Also, the :known-as slot of each part and the slot in the aggregadget corresponding to
the name of each part is constant. By declaring these slots constant, Garnet is able to
automatically get rid of the greatest number of formulas possible, thereby freeing up memory
for other objects.

For example, given the following instance of an aggregadget,

(create-instance ’MY-AGG opal:aggregadget

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 317

(:parts

‘((:obj1 ,opal:rectangle

(:left 20) (:top 40))

(:obj2 ,opal:circle

(:left 50) (:top 10)))))

the slots :components, :obj1, and :obj2 will be constant in MY-AGG. The result is
that you cannot remove components or add new components to this aggregadget without
disabling the constant mechanism.

If you really want to add another component to the aggregadget, you could use the macro
with-constants-disabled, which is described in the KR chapter:

(with-constants-disabled

(opal:add-component MY-AGG (create-instance NIL opal:roundtangle

(:known-as :obj3) ; will become a constant slot

(:left 40) (:top 20))))

Adding components to a constant aggregadget is discouraged because the aggregadget’s
dimension formulas that were already thrown away (if they were evaluated) will not be
updated with the dimensions of the new components. That is, if OBJ3 in the example
above is outside of the original bounding box of MY-AGG (calculated by the formulas in
MY-AGG’s :left, :top, :width, and :height slots), then Opal will fail to display the new
component correctly because it only updates the area enclosed by MY-AGG’s bounding
box.

A better solution than forcibly adding components is to create a non-constant aggregadget
to begin with. Since only aggregadgets that are created with a :parts slot are constant,
you should start with an aggregadget without a :parts list, and add your components using
add-component. Thus, the better way to build the aggregadet above is:

(create-instance ’MY-AGG opal:aggregadget)

(opal:add-components MY-AGG (create-instance NIL opal:rectangle

(:known-as :obj1)

(:left 20) (:top 40))

(create-instance NIL opal:circle

(:known-as :obj2)

(:left 50) (:top 10)))

; Then later...

(opal:add-component MY-AGG (create-instance NIL opal:roundtangle

(:known-as :obj3)

(:left 40) (:top 20)))

Note that you will have to supply your own :known-as slots in the components if you want
the aggregadet to have slots referring to those components.

7.4.5 Implementation of Aggregadgets

An aggregadget is an instance of the prototype opal:aggregate, with an initialize method
that interprets the :parts slot and provides other functions. This initialize method performs
the following tasks:

an instance of every part is created,

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 318

all these instances are added (with add-component) as the components of the aggre-
gadget,

for each part, a slot is created in the aggregate. The name of this slot is the name of
the part, and its value is the instance of the corresponding part.

The slot :known-as in the part is set with the part’s name.

In some cases (described in detail later), some or all of the structure of the prototype
aggregadget is inherited by the new instance.

7.4.6 Dependencies Among Components

Aggregadgets are designed to facilitate the definition of dependencies among their compo-
nents. When a slot of one component depends on the value of a slot in another component
of the same aggregadget, that dependency is expressed using a formula.

The aggregadget is considered the parent of the components, and the components are all
siblings within the aggregadget. Thus, the :parent slot of each component can be used to
travel up the hierarchy, and the slot names of the aggregadget and its components can be
used to travel down.

Consider the following modification to the CHECK-MARK schema defined in section
[what-an-agg], page 312. In figure [check-mark], page 313, the :x1 and :y1 slots of the
:right-line object are the same as the :x2 and :y2 slots of the :left-line object
so that the two lines meet at a common point. Rather than explicitly repeating these
coordinates in the :right-line object, dependencies can be defined in the :right-line

object that cause its origin to always be the terminus of the :left-line. Figure
[modified-check-mark], page 318, shows the definition of this modified schema.

(create-instance ’MODIFIED-CHECK-MARK opal:aggregadget

(:parts

‘((:left-line ,opal:line

(:x1 70)

(:y1 45)

(:x2 95)

(:y2 70))

(:right-line ,opal:line

(:x1 ,(o-formula (gvl :parent :left-line :x2)))

(:y1 ,(o-formula (gvl :parent :left-line :y2)))

(:x2 120)

(:y2 30)))))

Figure 7.5: A modified CHECK-MARK schema.

Commas must precede the calls to o-formula and the references to the opal:line prototype
because these items must be evaluated immediately. Without commas, the o-formula call,
for example, would be interpreted as a quoted list due to the backquoted :parts list.

The macro gvl-sibling is provided to abbreviate references between the sibling compo-
nents of an aggregadget:

[Macro]opal:gvl-sibling sibling-name &rest slots
For example, the :x1 slot of the :right-line object in figure [modified-check-mark],
page 318, may be given the equivalent value

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 319

,(o-formula (opal:gvl-sibling :left-line :x2))

7.4.7 Multi-level Aggregadgets

Aggregadgets can be used to define more complicated objects with a multi-level hierarchical
structure. Consider the picture of a check-box shown in figure [check-box-pict-ref], page 320.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 320

Figure 7.6: A picture of a check-box.

The check-box can be considered a hierarchy of objects: the CHECK-MARK object defined
in figure [check-mark], page 313, and a box. This hierarchy is illustrated in figure [check-
box-hier-ref], page 321.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 321

check-box

/ \

/ \

box check-mark

/ \

/ \

left-line right-line

Figure 7.7: The hierarchical structure of a check-box.

The CHECK-BOX hierarchy is implemented through aggregadgets in figure [check-box-def-
ref], page 321. Although the CHECK-BOX schema defines the :box component explicitly,
the details of the :mark object have been defined elsewhere in the CHECK-MARK schema
(see figure [check-mark], page 313). The aggregadget definition for the CHECK-MARK part
could have been written out explicitly, as in the more complicated CHECK-BOX schema
of figure 〈undefined〉 [custom-check-box1], page 〈undefined〉. However, the CHECK-BOX
definition presented here uses a modular approach that allows the reuse of the CHECK-
MARK schema in other applications.

(create-instance ’CHECK-BOX opal:aggregadget

(:parts

‘((:box ,opal:rectangle

(:left 75)

(:top 25)

(:width 50)

(:height 50))

(:mark ,CHECK-MARK))))

Figure 7.8: The definition of a check-box.

See section 〈undefined〉 [Custom-check-box2], page 〈undefined〉, for another example of a
modularized multi-level aggregadget, and see section [instances-sec], page 334, for informa-
tion about inheriting structure from other multi-level aggregadgets.

7.4.8 Nested Part Expressions for Aggregadgets

Recall that parts are specified in a :parts slot and that the syntax for a part is

(name prototype slot value+[*])

where name is either a keyword or nil, prototype is a prototype for the part, and slots is a
list of local slot definitions. If prototype is an aggregadget, then slots may contain another
parts slot; thus, an entire aggregadget tree can be specified by nested :parts slots.

For example, figure [x-box-fig], page 322, implements a box containing an X. Notice how
the :mark part of X-BOX is an aggregadget containing its own parts.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 322

;;; compute vertical position in :box according to a proportion

(defun vert-prop (frac)

(+ (gvl :parent :parent :box :top)

(round (* (gvl :parent :parent :box :height)

frac))))

;;; compute horizontal position in :box according to a proportion

(defun horiz-prop (frac)

(+ (gvl :parent :parent :box :left)

(round (* (gvl :parent :parent :box :width)

frac))))

(create-instance ’X-BOX opal:aggregadget

(:left 20)

(:top 20)

(:width 50)

(:height 50)

(:parts

‘((:box ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (gvl :parent :width)))

(:height ,(o-formula (gvl :parent :height))))

(:mark ,opal:aggregadget

(:parts

((:line1 ,opal:line

(:x1 ,(o-formula (horiz-prop 0.3)))

(:y1 ,(o-formula (vert-prop 0.3)))

(:x2 ,(o-formula (horiz-prop 0.7)))

(:y2 ,(o-formula (vert-prop 0.7))))

(:line2 ,opal:line

(:x1 ,(o-formula (horiz-prop 0.7)))

(:y1 ,(o-formula (vert-prop 0.3)))

(:x2 ,(o-formula (horiz-prop 0.3)))

(:y2 ,(o-formula (vert-prop 0.7)))))))))))

Figure 7.9: A box with an X, illustrating nested parts.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 323

7.4.9 Creating a Part with a Function

Instead of defining a prototype as a part, the designer may specify a function which will
be called in order to generate the part. This feature can be useful when you plan to create
several instances of an aggregadget that are similar, but with different objects as parts. For
example, the aggregadgets in figure [single-part-fn], page 324, all have the same prototype.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 324

W

Figure 7.10: Aggregadgets that generate a part through a function.

The syntax for generating a part with a function is to specify a function within the :parts
list where a prototype for the part would usually go. The function must take one argument,
which is the aggregadget whose part is being generated. Slots of the aggregadget may be
accessed at any time inside the function.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 325

The purpose of the function is to return an object that will be a component of the aggregad-
get. You should not add the part to the aggregadget yourself in the function. However, you
must be careful to always return an object that can be used directly as a component. For
example, the opal:circle object would not be a suitable object to return, since it is the
prototype of many other objects. Instead, you would return an instance of opal:circle.

Additionally, you must be careful to consider the case where the object to be used has
already been used before. That is, if you wanted the function to return a rectangle more
than once, the function must be smart enough to return a particular rectangle the first
time, and return a different rectangle the second time and every time thereafter. Usually it
is sufficient to look at the :parent slot of the object to check if it is already part of another
aggregadget. The following code, which generates the figure in [single-part-fn], page 324,
takes this multiple usage of an object into consideration.

(defun Get-Label (agg)

(let* ((item (gv agg :item))

;; Item may be an object or a string

(new-label (if (schema-p item)

(if (gv item :parent)

;; The item has been used already --

;; Use it as a prototype

(create-instance NIL item)

;; Use the item itself

item)

(create-instance NIL opal:text

(:string item)

(:font (opal:get-standard-font

:sans-serif :bold :very-large))))))

(s-value new-label :left (o-formula (opal:gv-center-x-is-center-of (gvl :parent))))

(s-value new-label :top (o-formula (opal:gv-center-y-is-center-of (gvl :parent))))

new-label))

(create-instance ’AGG-PROTO opal:aggregadget

(:item "Text")

(:top 20) (:width 60) (:height 80)

(:parts

‘((:frame ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (gvl :parent :width)))

(:height ,(o-formula (gvl :parent :height))))

(:label ,#’Get-Label))))

(create-instance ’CIRCLE-LABEL opal:circle

(:width 30) (:height 30)

(:line-style NIL)

(:filling-style opal:black-fill))

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 326

(create-instance ’SQUARE-LABEL opal:rectangle

(:width 30) (:height 30)

(:line-style NIL)

(:filling-style opal:black-fill))

(create-instance ’AGG1 AGG-PROTO

(:left 10)

(:item CIRCLE-LABEL))

(create-instance ’AGG2 AGG-PROTO

(:left 90)

(:item SQUARE-LABEL))

(create-instance ’AGG3 AGG-PROTO

(:left 170)

(:item "W"))

Some of the functionality provided by a part-generating function is overlapped by the cus-
tomization syntax for aggregadget instances described in section [overriding-slots], page 336.
For example, the labels in figure [single-part-fn], page 324, could have been customized from
the prototype by supplying prototypes in the local :parts list of each instance. However, for
some applications using aggrelists, this feature is indespensable (see section [multi-parts-fn],
page 352).

7.4.10 Creating All of the Parts with a Function

As an alternative to supplying a list of component definitions in the :parts slot, the designer
may instead specify a function which will generate the parts of the aggregadget during its
initialization. This feature is useful when the components of the aggregadget are related in
some respect that is easily described by a function procedure, as in figure [multi-line-pict-
ref], page 327.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 327

Figure 7.11: The multi-line picture.

This feature of aggregadgets is not usually used since, in most cases, aggrelists supply the
same functionality. When all the components of an aggregadget are instances of the same
prototype, the designer should consider implementing an itemized aggrelist, discussed in
chapter [aggrelists], page 343.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 328

The function may be specified in the :parts slot as either a previously defined function
or a lambda expression. The function must take one parameter: the aggregadget whose
parts are being created. The function must return a list of the created parts (e.g., a list
of instances of opal:line) and, optionally, a list of the names of the parts. If supplied,
the names must be keywords which will become slot names for the aggregadget, providing
access to the individual components (see section [agg-dependencies], page 318). (Note: The
standard lisp function values may be used to return two arguments from the generating
function.)

Figure [multi-line1-ref], page 328, shows how to create an aggregadget made of multiple
lines, with the end-points of the lines given in the special slot :line-end-points. The
figure creates the object on the left of figure [multi-line-pict-ref], page 327.

(create-instance ’MULTI-LINE opal:aggregadget

(:parts

‘(,#’(lambda (self)

(let ((lines NIL))

(dolist (line-ends (gv self :lines-end-points))

(setf lines (cons (create-instance NIL opal:line

(:x1 (first line-ends))

(:y1 (second line-ends))

(:x2 (third line-ends))

(:y2 (fourth line-ends)))

lines)))

(reverse lines)))))

(:lines-end-points ’((10 10 100 100)

(10 100 100 10)

(55 10 55 100)

(10 55 100 55))))

Figure 7.12: An aggregadget with a function to create the parts.

Figure [multi-line2-ref], page 329, shows how to create the same aggregadgets as in figure
[multi-line-pict-ref], page 327, but with a separately defined function rather than a lambda
expression. In addition, this function returns the list of the names of the parts. Two
instances of the aggregadget are created, with only one of these instances having names for
the lines.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 329

(defun Make-Lines (lines-agg)

(let ((lines NIL))

(dolist (line-ends (gv lines-agg :lines-end-points))

(setf lines (cons (create-instance NIL opal:line

(:x1 (first line-ends))

(:y1 (second line-ends))

(:x2 (third line-ends))

(:y2 (fourth line-ends)))

lines)))

(values (reverse lines) (gv lines-agg :lines-names))))

(create-instance ’MY-MULTI-LINE1 opal:aggregadget

(:parts ‘(,#’Make-Lines))

(:lines-end-points ’((10 10 100 100)

(10 100 100 10)

(55 10 55 100)

(10 55 100 55)))

(:lines-names

’(:down-diagonal :up-diagonal :vertical :horizontal)))

(create-instance ’MY-MULTI-LINE2 opal:aggregadget

(:parts ‘(,#’Make-Lines))

(:lines-end-points ’((120 100 170 10)

(170 10 220 100)

(220 100 150 100))))

Figure 7.13: An aggregadget with a function to create named parts.

It should be noted that the use of a function to create parts is not inherited. If the :parts
slot is omitted, then the actual parts (not the function that created the parts) are inherited
from the prototype. It is possible to override the :initialize method to obtain a different
instantiation convention, but probably it is simplest just always to specify the :parts slot
indicating the function that creates parts.

7.5 Interactors in Aggregadgets

Interactors may be grouped in aggregadgets in precisely the same way that objects are
grouped. The slot :interactors is analogous to the :parts slot, and may contain a list of
interactor definitions that will be attached to the aggregadget.

As with the :parts slot, :interactors must contain a backquoted list of lists with commas
preceding everything that should be evaluated immediately〈undefined〉 [dash], page 〈un-
defined〉prototypes, function calls, variable references, etc. The name of a function that
generates a set of interactors can also be given with the same parameters and functionality
as the :parts function described in section [run-time], page 326.

If a keyword is supplied as the name for an interactor, then a slot with that name will be
automatically created in the aggregadget, and the value of that slot will be the interactor.
For example, in figure [framed-text], page 331, a slot called :text-inter will be created in

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 330

the aggregadget to refer to the text interactor. The system will also add to the aggregadget
a :behaviors slot, containing a list of pointers to the interactors. This slot is analogous to
the :components slot for graphical objects.

Each interactor will be given a new :operates-on slot which is analogous to the :parent

slot for component objects. The :operates-on slot contains a pointer to the aggregadget
that the interactor belongs to. This slot should be used when referring to the aggregadget
from within interactors.

In order to activate any interactor in Garnet, its :window slot must contain a pointer to
the window in which the interactor operates. In most cases, the window for the interactor
will be found in the :window slot of the aggregadget, which is internally maintained by
aggregates. Hence, the following slot definition should be included in all interactors defined
in an aggregadget:

(:window ,(o-formula (gv-local :self :operates-on :window)))

Note: in this formula, gv-local is used to follow local links :operates-on and :window.
Using gv-local instead of gv or gvl when referring to these slots helps avoid accidental
references to these slots in the aggregdagets’ prototype. Most values for the :window slots
of aggregadget interactors will resemble this formula.

The interactors are independent of the parts, and either feature may be used with or without
the other. When using both parts and interactors, any object may refer to any other using
the methods described in section [agg-dependencies], page 318.

Figure [framed-text], page 331, shows how to create a “framed-text” aggregadget that
allows the input and display of text. This aggregadget is made of two parts, a frame
(a rectangle) and a text object, and one interactor (a text-interactor). Figure [agg-inter-ps-
ref], page 332, is a partial printout of the FRAMED-TEXT aggregadget with its built-in
interactor, illustrating the slots created by the system. A picture of the aggregadget is
shown in figure [framed-text-pix], page 333.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 331

(create-instance ’FRAMED-TEXT opal:aggregadget

(:left 0) ; Set these slots to determine

(:top 0) ; the position of the aggregadget.

(:parts

‘((:frame ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (+ (gvl :parent :text :width) 4)))

(:height ,(o-formula (+ (gvl :parent :text :height) 4))))

(:text ,opal:text

(:left ,(o-formula (+ (gvl :parent :left) 2)))

(:top ,(o-formula (+ (gvl :parent :top) 2)))

(:cursor-index NIL)

(:string ""))))

(:interactors

; Press on the text object (inside the frame) to edit the string

‘((:text-inter ,inter:text-interactor

(:window ,(o-formula (gv-local :self :operates-on :window)))

(:feedback-obj NIL)

(:start-where ,(o-formula

(list :in (gvl :operates-on :text))))

(:abort-event #\control-\g)

(:stop-event (:leftdown #\RETURN))))))

Figure 7.14: Definition of an aggregadget with a built-in interactor.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 332

[lisp>] (ps FRAMED-TEXT)

#k<FRAMED-TEXT>

...

:COMPONENTS = #k<KR-DEBUG:FRAME-205> #k<KR-DEBUG:TEXT-207>

:FRAME = #k<KR-DEBUG:FRAME-205>

:TEXT = #k<KR-DEBUG:TEXT-207>

:BEHAVIORS = #k<KR-DEBUG:TEXT-INTER-214>

:TEXT-INTER = #k<KR-DEBUG:TEXT-INTER-214>

...

:IS-A = #k<OPAL:AGGREGADGET>

NIL

[lisp>] (ps (gv FRAMED-TEXT :text-inter))

#k<KR-DEBUG:TEXT-INTER-214>

...

:OPERATES-ON = #k<FRAMED-TEXT>

...

:IS-A = #k<INTERACTORS:TEXT-INTERACTOR>

NIL

[lisp>]

Figure 7.15: The printouts of an aggregadget and its attached interactor.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 333

Framed Text

Figure 7.16: A picture of the FRAMED-TEXT aggregadget.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 334

7.6 Instances of Aggregadgets

The preceding chapter discussed the use of the :parts slot to define the structure of new
aggregadgets. Once an aggregadget is created, the structure will be inherited by instances.
The :parts slot can be used to extend or override this default structure.

7.6.1 Default Instances of Aggregadgets

By default, when an instance of an aggregadget is created, an instance of each component
and interactor is also created. Figure [instance-fig], page 335, illustrates an aggregadget
on the left and its instance on the right. Notice that each object within the prototype
aggregadget serves as a prototype for each corresponding object in the instance aggregadget.
The structure of the instance aggregate matches the structure of the prototype, including
“external” references to objects not in either aggregate, as illustrated by the reference from
C to D. Since D is external to the aggregate, there is no D’, and the reference to D is
inherited by C’.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 335

B C

A

B’ C’

A’

D

Figure 7.17: A prototype aggregate and one instance. The dashed lines go from instances
to their prototypes, solid lines join children to parents, and the dotted line from C to D
represents a formula dependence which is inherited by C’.

When creating instances, it is possible to override slots and parts of the prototype aggre-
gadget, provided that these slots were not declared constant in the prototype.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 336

7.6.2 Overriding Slots and Structure

Just as instances of KR objects can override slots with local values, aggregadgets can
override slots or even entire parts (objects) with local values. The :parts and :interactors
syntax is used to override details of an aggregadget when constructing an instance.

When creating an instance of an aggregadget that already has components, there are several
variations of the :parts syntax that can be used to inherit components. As illustrated in
these examples, if any parts are listed in a :parts list, then all parts should be listed. This
is explained further in section [more-syntax-sec], page 341:

If the entire :parts slot is omitted, then the components are instantiated in the default
manner described above. For example,

(create-instance ’NEW-X-BOX X-BOX (:left 100))

will instantiate the :box and :mark parts of x-box by default.

Any element in the list of parts may be a keyword rather than a list. The keyword must
name a component of the prototype, and an instance of that component is created.
Parts are always added in the order they are listed, regardless of their order in the
prototype. For example:

(:parts ‘(:shadow :box :feedback))

Any element in the list of parts may be a list of the form (name :omit), where name
is the name of a component in the prototype, and :omit indicates that an instance of
that part is not included in the instance aggregadget. For example:

(:parts ‘((:shadow :omit)

:box

:feedback))

Any element in the list of parts may be a list of the form (name :modify slots), where
name is the part name, :modify means to use the default prototype, and slots is a
standard list of slot names and values which override slots inherited from the prototype.
Only the changed slots need to be listed; the others are inherited from the prototype.
[Note: this is different from the :parts slot, where you must list all the parts if you
are changing any of them.] If the object is an aggregadget, then one of the slots may
be a :parts list to further specify components. For example:

(:parts ‘((:shadow :modify (:offset 5))

:box

:feedback))

Any element of the list of parts may be a list of the form (name prototype slots), as
described in section [parts-syntax-sec], page 312. This indicates that the part should
be added to the instance aggregadget. If name names an existing component in the
aggregadget, then the new part will override the part that would otherwise be inherited.

7.6.3 Simulated Multiple Inheritance

In some cases, it is desirable to inherit particular slots from a default prototype object, but
to override the actual prototype. For example, one might want to change rectangles in a
prototype into circles but still inherit the :top and :left slots. Alternatively, one might
want to replace a number box with a dial but still inherit a :color slot from the prototype
number box.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 337

The :parts syntax has a special variation to accomplish this form of multiple inheritance.
If the keyword :inherit occurs at the top level in the slots list, then the next element of
slots must be a list of slot names. All the slots not mentioned in the :inherit clause are
inherited from the new prototype (the circle in the example below). For example:

(:parts ‘((:shadow ,opal:circle

(:offset 5)

:inherit (:left :top :width :height :filling-style))

:box

:feedback))

7.6.4 Instance Examples

Figure [circle-x-box-fig], page 338, illustrates how to override and inherit parts from an
aggregadget. The prototype aggregadget is the x-box aggregadget shown in figure [x-box-
fig], page 322. In the instance named CIRCLE-X-BOX, a circle has been inserted between
the box and the “X” mark, and the box has a gray fill.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 338

(create-instance ’CIRCLE-X-BOX X-BOX

(:left 150)

(:top 160)

(:parts

‘((:box :modify (:filling-style ,opal:gray-fill))

(:circle ,opal:circle

(:left ,(o-formula (+ (gvl :parent :left) 2)))

(:top ,(o-formula (+ (gvl :parent :top) 2)))

(:width ,(o-formula (- (gvl :parent :width) 4)))

(:height ,(o-formula (- (gvl :parent :height) 4)))

(:filling-style ,opal:white-fill))

:mark))))

Figure 7.18: Adding a circle and changing the filling style in an instance of the X-BOX
aggregadget.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 339

In figure [circle-box-fig], page 340, the CIRCLE-X-BOX aggregadget is further modified by
replacing the “X” with a circle.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 340

(defun circle-box-test ()

(create-instance ’CIRCLE-BOX CIRCLE-X-BOX

(:left 150)

(:top 220)

(:parts

‘(:box

:circle

(:mark :omit)

(:inner-circle ,opal:circle

(:left ,(o-formula (+ (gvl :parent :left) 10)))

(:top ,(o-formula (+ (gvl :parent :top) 10)))

(:width ,(o-formula (- (gvl :parent :width) 20)))

(:height ,(o-formula (- (gvl :parent :height) 20))))))))

Figure 7.19: Omitting the “X” and adding an inner circle to the CIRCLE-X-BOX aggre-
gadget.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 341

7.6.5 More Syntax: Extending an Aggregadget

Normally, each part of a prototype should be explicitly mentioned in the :parts list. This
is perhaps tedious, but it makes the code clear. There is one exception that is provided to
make it simple to add things to existing prototypes.

If none of the parts of a prototype are mentioned in the parts list, then instances of all
of the prototype’s parts are included in the instance aggregadget. If additional parts are
specified, they are added after the default parts, so they will appear graphically on top.
It is an error to mention some but not all of a prototype’s parts in a :parts list. (The
current implementation only looks to see if the first part of the prototype is mentioned in
the :parts list in order to decide whether or not to include all of the prototype parts.)

Figure [x-sq-box-fig], page 342, illustrates the extension of the :mark part of the x-box

prototype with a rectangle. Since parts :line1 and :line2 are not mentioned, they are
included in the :mark part automatically.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 342

(defun x-sq-box-test ()

(create-instance ’X-SQ-BOX X-BOX

(:left 210)

(:top 20)

(:parts

‘(:box ; inherit the box with no change

(:mark :modify ; modify the mark

(:parts ; since :line1 and :line2 are not mentioned,

; they are inherited as is

((:square ,opal:rectangle ; add a new part to the mark

(:left ,(o-formula (horiz-prop 0.2)))

(:width ,(o-formula (- (horiz-prop 0.8)

(horiz-prop 0.2))))

(:top ,(o-formula (vert-prop 0.2)))

(:height ,(o-formula (- (vert-prop 0.8)

(vert-prop 0.2))))))))))))

Figure 7.20: Extending the x-box prototype with a new rectangle in the mark part.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 343

7.7 Aggrelists

Many interfaces require the arrangement of a set of objects in a graphical list, such as
menus and parallel lines. Aggrelists are designed to facilitate the arrangement of objects
in graphical lists while providing many customizable slots that determine the appearance
of the list. The methods add-component and remove-component can be used to alter the
components in the list after the aggrelist has been instantiated. (See section [aggrelist-
manipulation-sec], page 365.)

A special style of aggrelists, called “itemized aggrelists”, may be used when the items of the
list are all instances of the same prototype (e.g., all items in a menu are text strings). These
aggrelists use the methods add-item and remove-item to manipulate the components of
the list.

Aggrelists are independent of aggregadgets and may be used separately or inside aggregad-
gets. Aggrelists may also have aggregadgets as components in order to create objects such
as menus or choice lists.

Interactors may be defined for aggrelists using the same methods that implement interactors
in aggregadgets (section [agg-interactors], page 329).

7.7.1 How to Use Aggrelists

The definition of the aggrelist prototype in Opal is:

(create-instance ’opal:aggrelist opal:aggregate

(:maybe-constant ’(:left :top :width :height :direction :h-spacing :v-spacing

:indent :h-align :v-align :max-width :max-height

:fixed-width-p :fixed-height-p :fixed-width-size

:fixed-height-size :rank-margin :pixel-margin :items :visible))

(:left 0)

(:top 0)

(:width (o-formula ...))

(:height (o-formula ...))

(:direction :vertical) ; Can be :horizontal, :vertical, or NIL

(:h-spacing 5) ; Pixels between horizontal elements

(:v-spacing 5) ; Pixels between vertical elements

(:indent 0) ; How much to indent on wraparound

(:h-align :left) ; Can be :left, :center, or :right

(:v-align :top) ; Can be :top, :center, or :bottom

(:max-width (o-formula (...)))

(:max-height (o-formula (...)))

(:fixed-width-p NIL) ; Whether to use fixed-width-size

(:fixed-height-p NIL) ; Whether to use fixed-height-size

(:fixed-width-size NIL) ; The width of all components

(:fixed-height-size NIL) ; The height of all components

(:rank-margin NIL) ; If non-NIL, the number of components in each row/column

(:pixel-margin NIL) ; Same as :rank-margin, but with pixels

(:head NIL) ; The first component (read-only slot)

(:tail NIL) ; The last component (read-only slot)

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 344

(:items NIL) ; List of the items or a number

(:item-prototype NIL) ; Specification of prototype of the items (when itemized)

(:item-prototype-object NIL) ; The actual object, set internally (read-

only slot)

...)

Aggrelists are easily customized by providing values for the controlling slots. Any slot
listed below may be given a value during the definition of an aggrelist. The slots can also
be modified (using the KR function s-value) after the aggrelist is displayed to change the
appearance of the objects. However, each slot has a default value and the designer may
choose to ignore most of the slots.

The list in :maybe-constant contains those slots that will be declared constant in an
aggrelist whose :constant slot contains T. That is, when you create an aggrelist with the
slot (:constant T), then all of these slots are guaranteed not to change, and all formulas
that depend on those slots will be removed and replaced by absolute values. This removal
of formulas has the potential to save a large amount of storage space.

The following slots are available for customization of aggrelists:

:left 〈undefined〉 [shortdash], page 〈undefined〉, The leftmost coordinate of the
aggrelist (default is 0).

:top 〈undefined〉 [shortdash], page 〈undefined〉, The topmost coordinate of the
aggrelist (default is 0).

:items 〈undefined〉 [shortdash], page 〈undefined〉, A number (indicating the
number of items in the aggrelist) or a list of values that will be used by the
components. If the value is a list, then do not destructively modify the value;
instead, set the value with a new list (using list) or use copy-list.

:item-prototype 〈undefined〉 [shortdash], page 〈undefined〉, Either a schema
or a description of a schema (see section [the-i-p-slot], page 345).

:direction 〈undefined〉 [shortdash], page 〈undefined〉, Either :horizontal,
:vertical or nil. If the value is either :horizontal or :vertical, the system
will install values in the :left and :top slots of each component, in order to
lay out the list properly according to the direction. If the value is nil, then the
designer must provide formulas for the :left and :top slots of each component
(default is :vertical).

:v-spacing 〈undefined〉 [shortdash], page 〈undefined〉, Vertical spacing be-
tween elements (default is 5).

:h-spacing 〈undefined〉 [shortdash], page 〈undefined〉, Horizontal spacing be-
tween elements (default is 5).

:fixed-width-p 〈undefined〉 [shortdash], page 〈undefined〉, If set to T, all the
components will be placed in fields of constant width. These fields will be of the
size of the widest component, unless the slot :fixed-width-size is non-NIL,
in which case it will default to the value stored there (default is nil).

:fixed-width-size 〈undefined〉 [shortdash], page 〈undefined〉, The width of
all components, if :fixed-width-p is T (default is nil).

:fixed-height-p 〈undefined〉 [shortdash], page 〈undefined〉, If set to T, all the
components will be placed in fields of constant height. These fields will be of the

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 345

size of the tallest component, unless the slot :fixed-height-size is non-NIL,
in which case it will default to the value stored there (default is nil).

:fixed-height-size 〈undefined〉 [shortdash], page 〈undefined〉, The height of
all components, if :fixed-width-p is T (default is nil).

:h-align 〈undefined〉 [shortdash], page 〈undefined〉, The type of horizontal
alignment to use within a field (only applicable if fixed-width-p is T). Allowed
values are :left, :center, or :right (default is :left).

:v-align 〈undefined〉 [shortdash], page 〈undefined〉, The type of vertical align-
ment to use within a field (only applicable is fixed-height-p is T). Allowed
values are :top, :center, or :bottom (default is :top).

:rank-margin 〈undefined〉 [shortdash], page 〈undefined〉, If non-NIL, then after
this many components, a new row will be started for horizontal lists, or a new
column for vertical lists (default is nil).

:pixel-margin 〈undefined〉 [shortdash], page 〈undefined〉, If non-NIL, then
this acts as an absolute position in pixels in the window; if adding the next
component would result in extending beyond this value, then a new row or
column is started (default is nil).

:indent 〈undefined〉 [shortdash], page 〈undefined〉, The amount to indent upon
starting a new row/column (in pixels) (default is 0).

7.7.2 Itemized Aggrelists

When all the components of an aggrelist are instances of the same prototype, the aggrelist
is referred to as an itemized aggrelist. This type of aggrelist provides for the automatic
generation of the components from a specified item prototype. This feature is convenient
when creating objects such as menus or button panels, whose components are all similar.
(In a non-itemized aggrelist, the components may be of several types, though they still take
advantage of the layout mechanisms of aggrelists, as in section [non-itemized-sec], page 355.)

To cause an aggrelist to generate its components from a prototype, the :item-prototype

and the :items slot may be set.

7.7.3 The :item-prototype Slot

The :item-prototype slot contains a description of the prototype object that will be used
to create the items. This slot is analogous to the :parts slot for aggregadgets. Gar-
net builds an object from the :item-prototype description and stores this object in the
:item-prototype-object slot of the aggrelist. Do not specify or set the :item-prototype-
object slot.

The prototype may be any Garnet object, including aggregadgets, and may be given either
as an existing schema name or as a quoted list holding an object definition, as in

(:item-prototype ‘(,opal:rectangle (:width 100)

(:height 50)))

The keyword :modify may be used to indicate changes to an inherited item prototype, as
in

(:item-prototype ‘(:modify (:width 100)

(:height 50)))

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 346

The prototype for the :item-prototype-object in this case will be the :item-prototype-
object of the prototype of the aggrelist being specified. This form would be used to modify
the default in some way (see section [modify-item-sec], page 358).

If no local :item-prototype slot is specified, the default is to create an instance of the
:item-prototype-object of the prototype aggrelist. If there is no :item-prototype-

object, then this is not an itemized aggrelist (see section [non-itemized-sec], page 355).

7.7.4 The :items Slot

The :items slot holds either a number or a list. If it is a number n, then n identical
instances of :item-prototype-object will be created and added to the aggrelist. If it is a
list of n elements, n instances of :item-prototype-object will be created and added to
the aggrelist.

When :items is a list of elements, the designer must define a formula in the
:item-prototype that extracts the desired element from the list for each component. In a
menu, for example, the :items slot will usually be a list of strings. Components should
index their individual strings from the :items list according to their :rank. The following
slot definition, to be included in the :item-prototype, would yield this functionality:

(:string (o-formula (nth (gvl :rank) (gvl :parent :items))))

This formula assigns the nth string in the :items list to the nth component of the aggrelist.

The :items slot may also hold a nested list so that the components can extract more than
one value from it. For example, if the components of a menu are characterized both by a
label and a function (to be called when the item is selected), the :item slot of the menu
will be a list of pairs ’((label function) ...), and the components will access their strings and
associated functions with formulas such as:

(:string (o-formula (first (nth (gvl :rank) (gvl :parent :items)))))

(:function (o-formula (second (nth (gvl :rank)

(gvl :parent :items)))))

The list in the :items list may not be destructively modified. If you need to modify the
current value of the slot, you should create a new list (e.g., with list) or use copy-list

on the current value and modify the resulting copied list.

7.7.5 Aggrelist Components

When the value of :items changes, the number of components corresponding to the change
will be adjusted automatically during the next call to opal:update. In most cases, users
will never have to do anything special to cause the components to become consistent with
the :items list.

In some cases, an application might need to refer to the new components (or the new
positions of the components) before calling opal:update. It is possible to explicitly adjust
the number of components in the aggrelist after setting the :items list by calling:

opal:Notice-Items-Changed aggrelist〈undefined〉 [method], page 〈undefined〉,
where aggrelist is the aggrelist whose :items slot has changed. This function will addi-
tionally execute the layout function on the components, so that they will have up-to-date
:left and :top values.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 347

7.7.6 Constants and Aggrelists

Constant :items and :components

All aggrelists created with a constant :items slot have a constant :components slot auto-
matically. That is, after the aggrelist has been created with all of its components according
to its :items list, the :components slot becomes constant by default, and the items and
components become unmodifiable (with the two exceptions below). In addition, the :head
and :tail slots of the aggrelist, which point to the first and last component, also become
constant. By declaring these slots constant, Garnet is able to automatically get rid of the
greatest number of formulas possible.

If you really want to add another item to a constant aggrelist, you could wrap a call to
add-item in with-constants-disabled, which disables the protective constant mecha-
nism, and is described fully in the KR chapter. However, just as with aggregadgets (dis-
cussed in section [constants-and-aggregadgets], page 316), this is discouraged due to the
likelihood that the dimension formulas of the aggrelist will have already been evaluated and
thrown away before the new item is added, resulting in an incorrect bounding box for the
aggrelist.

A better solution is to create a non-constant aggrelist to begin with. If you plan to change
the :items slot, then do not include it in the :constant list. If you are using T in the
constant list, be sure to :except the :items slot.

Constant :left and :top in Components

The :left and :top slots of each component are set during the layout of the aggrelist. If
all of the slots controlling the layout are constant in the aggrelist, then the :left and :top

slots of the components will be declared constant after they are set. The slots controlling
the layout are:

:left

:top

:items

:direction

:v-spacing

:h-spacing

:indent

:v-align

:h-align

:fixed-width-p

:fixed-height-p

:fixed-width-size

:fixed-height-size

:rank-margin

:pixel-margin

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 348

Even if you do not supply customized values for these slots, you will still need to declare them
constant for the desired effect. They are all included in the aggrelist’s :maybe-constant

list, so it is easy to declare them all constant with a :constant value of T.

Since the aggrelist layout function sets the :left and :top slots of each component, it is
important not to declare these slots constant yourself, unless you do so after the aggrelist
has already been laid out.

7.7.7 A Simple Aggrelist Example

The following code is a short example of an itemized aggrelist composed of text strings,
and the picture of this aggrelist is in figure [aggitem-expl-pict], page 349. Note that the
:left and :top slots of the :item-prototype have been left undefined. The aggrelist will
fill these slots with the appropriate values automatically.

(create-instance ’MY-AGG opal:aggrelist

(:left 10) (:top 10)

(:direction :horizontal)

(:items ’("This" "is" "an" "example"))

(:item-prototype

‘(,opal:text

(:string ,(formula ’(nth (gvl :rank) (gvl :parent :items)))))))

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 349

This is an example

Figure 7.21: The picture of an itemized aggrelist.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 350

7.7.8 An Aggrelist with an Interactor

As another example of an itemized aggrelist, consider the schema FRAMED-TEXT-LIST
defined in figure [framed-text-list], page 350. A picture of the FRAMED-TEXT-LIST ag-
grelist appears in figure [framed-text-list-pix], page 351.

(create-instance ’FRAMED-TEXT-LIST opal:aggrelist

(:left 0) (:top 0)

(:items ’("An aggrelist" "using an" "aggregate"

"as an" "item-prototype"))

(:item-prototype

‘(,opal:aggregadget

(:parts

((:frame ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (+ (gvl :parent :text :width) 4)))

(:height ,(o-formula (+ (gvl :parent :text :height) 4))))

(:text ,opal:text

(:left ,(o-formula (+ (gvl :parent :left) 2)))

(:top ,(o-formula (+ (gvl :parent :top) 2)))

(:cursor-index NIL)

(:string ,(o-formula

(nth (gvl :parent :rank)

(gvl :parent :parent :items)))))))

(:interactors

((:text-inter ,inter:text-interactor

(:window ,(o-formula

(gv-local :self :operates-on :window)))

(:feedback-obj NIL)

(:start-where ,(o-formula

(list :in (gvl :operates-on :text))))

(:abort-event #\control-\g)

(:stop-event (:leftdown #\RETURN))

(:final-function

,#’(lambda (inter text event string x y)

(let ((elem (gv inter :operates-on)))

(change-item (gv elem :parent)

string

(gv elem :rank)))))))))))

Figure 7.22: An aggrelist using an aggregadget as the :item-prototype.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 351

An aggrelist

using an

aggregate

as an

item-prototype

Figure 7.23: A picture of the FRAMED-TEXT-LIST aggrelist.

This aggrelist explicitly defines an aggregadget as the :item-prototype. This aggregadget
is similar to the FRAMED-TEXT schema defined in figure [framed-text], page 331, but
there is an additional :final-function slot (see figure [framed-text-list], page 350). The

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 352

purpose of the :final-function is to keep the strings in the :items list consistent with
the strings in the components.

Interaction works as follows: Each item is an aggregadget with its own text-interactor

behavior and text component. The cursor text :string slot is constrained to the cor-
responding element in the FRAMED-TEXT-LIST’s :items slot, but this is a one-way
constraint. The text interactor modifies the :string slot of the cursor text using s-value,
which leaves the formula in place, but temporarily changes the slot value. At this point, the
:items slot and the cursor text :string slots are inconsistent, and any change to :items

would cause all :string slot formulas to re-evaluate, possibly losing the string data set by
the interactor. To avoid this problem, the :final-function of the text interactor directly
sets the :items slot using change-item to be consistent with the formula. This initiates
a re-evaluation, but because all values are consistent, no data is lost. Furthermore, if the
FRAMED-TEXT-LIST is saved (see section [write-gadget-sec], page 366), the :items list
will have the current set of strings, and what is written will match what is displayed.

Since the aggregadget defined here is similar to the FRAMED-TEXT schema defined in
figure [framed-text], page 331, the :item-prototype slot definition could be replaced with

(:item-prototype

‘(,FRAMED-TEXT

(:parts

(:frame

(:text :modify

(:string ,(o-formula (nth (gvl :parent :rank)

(gvl :parent :parent :items)))))))

(:interactors

((:text-inter :modify

(:final-function

,#’(lambda (inter text event string x y)

(let ((elem (gv inter :operates-on)))

(change-item (gv elem :parent)

string

(gv elem :rank))))))))))

provided that the definition for the FRAMED-TEXT schema preceded the FRAMED-
TEXT-LIST definition.

See section [Menu-Aggrelist-Example], page 374, for an example of a menu made with an
itemized aggrelist.

7.7.9 An Aggrelist with a Part-Generating Function

Section [creating-part-fn], page 323, discussed a feature of aggregadgets that allows you
to create parts of an aggregadget by specifying part-generating functions. This feature of
aggregadgets can be especially useful when an aggregadget is the :item-prototype of an
aggrelist. While the same principles hold for aggregadgets whether they are solitary or used
in aggrelists, there is a special consideration regarding the :item-prototype-object that
warrants further discussion.

A typical application of aggrelists that would involve a part-generating function might
specify a list of objects in its :items list and generate components that have those objects as

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 353

parts. Such an application is pictured in figure [esp-cards], page 353. The :item-prototype
for this aggrelist is an aggregadget with a part-generating function that determines its label.
The definition of the aggrelist, along with its part-generating function appears below.

W

Figure 7.24: An aggrelist that uses a part-generating function in its :item-prototype

(defun Get-Label-In-Aggrelist (agg)

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 354

(let ((alist (gv agg :parent)))

(if alist ;; The item-prototype has no parent

(let* ((item (gv agg :item))

(new-label (if (schema-p item)

(if (gv item :parent)

;; The item has been used already --

;; Use it as a prototype

(create-instance NIL item)

;; Use the item itself

item)

(create-instance NIL opal:text

(:string item)

(:font (opal:get-standard-font

:sans-serif :bold :very-large))))))

(s-value new-label :left

(o-formula (+ (gvl :parent :left)

(round (- (gvl :parent :width)

(gvl :width)) 2))))

(s-value new-label :top

(o-formula (+ (gvl :parent :top)

(round (- (gvl :parent :height)

(gvl :height)) 2))))

new-label)

;; Give the item-prototype a bogus part

(create-instance NIL opal:null-object))))

(create-instance ’CIRCLE-LABEL opal:circle

(:width 30) (:height 30)

(:line-style NIL)

(:filling-style opal:black-fill))

(create-instance ’SQUARE-LABEL opal:rectangle

(:width 30) (:height 30)

(:line-style NIL)

(:filling-style opal:black-fill))

(create-instance ’PLUS-LABEL opal:aggregadget

(:width 30) (:height 30)

(:parts

‘((:rect1 ,opal:rectangle

(:left ,(o-formula (+ 10 (gvl :parent :left))))

(:top ,(o-formula (gvl :parent :top)))

(:width 10) (:height 30)

(:line-style NIL) (:filling-style ,opal:black-fill))

(:rect2 ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (+ 10 (gvl :parent :top))))

(:width 30) (:height 10)

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 355

(:line-style NIL) (:filling-style ,opal:black-fill)))))

(create-instance ’STAR-LABEL opal:polyline

(:width 30) (:height 30)

(:point-list (o-formula

(let* ((width (gvl :width)) (width/5 (round width 5))

(height (gvl :height)) (x1 (gvl :left))

(x2 (+ x1 width/5)) (x3 (+ x1 (round width 2)))

(x5 (+ x1 width)) (x4 (- x5 width/5))

(y1 (gvl :top)) (y2 (+ y1 (round height 3)))

(y3 (+ y1 height)))

(list x3 y1 x2 y3 x5 y2 x1 y2 x4 y3 x3 y1))))

(:line-style opal:line-2))

(create-instance ’ALIST opal:aggrelist

(:left 10) (:top 20)

(:items (list CIRCLE-LABEL SQUARE-LABEL "W" PLUS-LABEL STAR-LABEL))

(:direction :horizontal)

(:item-prototype

‘(,opal:aggregadget

(:item ,(o-formula (nth (gvl :rank) (gvl :parent :items))))

(:width 60) (:height 80)

(:parts

((:frame ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (gvl :parent :width)))

(:height ,(o-formula (gvl :parent :height))))

(:label ,#’Get-Label-In-Aggrelist))))))

The parts-generating function Get-Label-In-Aggrelist takes into account the aggregadget
that will be generated for the :item-prototype-object in ALIST. In this example, we
are concerned about reserving our label prototypes solely for use in the visible compo-
nents. We could ignore this case, but then one of our prototypes (like CIRCLE-LABEL)
would become a component of the :item-prototype-object which never appears in the
window. (Additionally, problems could arise if we destroyed the aggrelist along with its
:item-prototype-object and still expected to use the label as a prototype). Instead, we
specifically check if we are generating a part for the :item-prototype-object and return
a bogus object, saving our real labels for the visible instances.

The gadgets that use aggrelists (like the button panels and menus) all use this feature, so
you can have Garnet objects in the :items list of a gadget. See the Gadgets chapter for
further details.

7.7.10 Non-Itemized Aggrelists

Non-itemized aggrelists may be specified with the :parts slot, just as in aggregadgets,
except aggrelists will automatically set the :left and :top slots (among others). Figure
[parts-list-fig], page 356, creates an aggrelist with three components, and a picture of this
aggrelist is shown in figure [agglist-expl-ref], page 365.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 356

(create-instance ’MY-AGG opal:aggrelist

(:left 10) (:top 10)

(:parts

‘((:obj1 ,opal:rectangle (:width 60) (:height 30))

(:obj2 ,opal:oval (:width 60) (:height 30))

(:obj3 ,opal:roundtangle (:width 60) (:height 30)))))

Figure 7.25: Example of an aggrelist with a parts slot.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 357

Figure 7.26: The picture of an aggrelist with three components.

Instances of aggrelists are similar to instances of aggregadgets except for the handling of
default components and the :item-prototype-object slot. Unlike aggregadgets, compo-
nents that were generated by a :parts list are not automatically inherited, so an aggrelist
with an empty :parts slot will not inherit the parts of its prototype. The only way to

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 358

inherit these components is to name them in the prototype and to list each name as one
of the instance’s :parts. For example, the following instance of MY-AGG (defined above)
will inherit the parts defined in the prototype:

(create-instance ’MY-INST MY-AGG

(:left 100)

(:parts ’(:obj1 :obj2 :obj3)))

Note that this syntax is consistent with the rules for customizing the parts of aggregadgets
described in section [agg-insts], page 334.

Like aggregadgets, aggrelists created with a :parts slot have constant :components by
default. To cause the :left and :top slots of the components to become constant after the
aggrelist is laid out, all of the layout parameters listed in section [constants-in-aggrelists],
page 347, (including the :items slot) must be declared constant.

7.8 Instances of Aggrelists

When an instance is made of an itemized aggrelist, components are automatically created
as instances of the item prototype object according to the local or inherited :items slot.

A consequence of these rules for making instances is that a default instance of a non-itemized
aggrelist will typically have no components, while a default instance of an itemized aggrelist
will typically have the same component structure as its prototype due to the inherited
:items slot.

7.8.1 Overriding the Item Prototype Object

For itemized aggrelists, an instance of the item prototype object is made automatically and
stored in the :item-prototype-object slot of the instance aggrelist. The same syntax
used in the :parts slot can be used to override slots of the item prototype object. For
example, figure [modify-item-fig], page 359, illustrates a variation on the text list in figure
[framed-text-list], page 350. Here, the :frame component is inherited and modified to be
gray and relatively wider than its prototype, a new component, :white-box is added, and
the :text component is inherited and modified to be centered in the new larger surrounding
:frame. The text interactor is inherited without modification by default.

Note: The :items list, if left unspecified, would be shared with FRAMED-TEXT-LIST. It
is generally a good idea to specify the :items to avoid sharing.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 359

An aggrelist

using an

aggregate

as an

item-prototype

(create-instance ’BOXED-TEXT-LIST FRAMED-TEXT-LIST

(:items ’("An aggrelist" "using an" "inherited"

"but modified" "item-prototype"))

(:left 120)

(:top 0)

(:item-prototype

‘(:modify

(:parts

((:frame :modify

; make the frame gray

(:filling-style ,opal:gray-fill)

; make the frame wider

(:width ,(o-formula (+ (gvl-sibling :text :width) 16)))

; make the frame taller

(:height ,(o-formula (+ (gvl-sibling :text :height) 16))))

(:white-box ,opal:rectangle

(:filling-style ,opal:white-fill)

(:left ,(o-formula (+ (gvl :parent :left) 4)))

(:top ,(o-formula (+ (gvl :parent :top) 4)))

(:width ,(o-formula (+ (gvl-sibling :text :width) 8)))

(:height ,(o-formula (+ (gvl-sibling :text :height) 8))))

(:text :modify ; move the text to allow for the border

(:left ,(o-formula (+ (gvl :parent :left) 8)))

(:top ,(o-formula (+ (gvl :parent :top) 8)))))))))

Figure 7.27: An aggrelist that overrides parts of an inherited :item-prototype. The
prototype FRAMED-TEXT-LIST was defined in figure [framed-text-list], page 350.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 360

7.9 Manipulating Gadgets Procedurally

A collection of functions is available to alter aggregadget and aggrelist prototypes. When the
prototype is altered, the changes propagate down to instances of the prototype. Inheritance
of slots is a standard feature of KR, but inheritance of structural changes is unique to
aggregadgets and aggrelists and is implemented by the functions and methods described in
this chapter.

The philosophy behind structural inheritance is simply stated: changing a prototype and
then making an instance should be equivalent to making an instance and then changing the
prototype. In practice, this equivalence is difficult to achieve completely; exceptions will be
noted.

7.9.1 Copying Gadgets

opal:Copy-Gadget gadget [function], page 90,

This function copies an aggregadget, aggrelist, aggregate, or Opal graphical object. The
copy will have the same structure as the original. This is different from (and more expensive
than) creating an instance because nothing will be inherited from the original.

When copying an itemized aggrelist, components are not copied, because they inherit from
the local items-prototype-object. Instead, the :items slot and the item-prototype-object
are copied, and new components are generated accordingly.

7.9.2 Aggregadget Manipulation

7.9.3 Add-Component

opal:Add-Component gadget element [[:where] position [locator]]〈undefined〉 [method],
page 〈undefined〉,

This function behaves just like the add-component method for aggregates (see the Opal
Reference Chapter) except that,

if gadget is a prototype, then instances of element are also added to instances of gadget.
This is recursive so that instances of instances, etc., are also affected;

if element has slot :known-as with value name, then the name slot of gadget is set
to be element. This creates the standard link from gadget to element (see Section
[known-as-sec], page 317). Ordinarily, the :known-as slot of element should be set
before calling add-component.

Note: Names of components and interactors must be unique within their parent. For
example, there must not be two components named :box.

The position and locator arguments can be used to adjust the placement of graphical-object
with respect to the rest of the components of gadget.

position can be any of these five values:

:front :back :behind :in-front :at or any of the following aliases:

:tail :head :before :after :at

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 361

The keyword :where is optional; for example,

(add-component aggrelist new-component :where :head)

(add-component aggrelist new-component :head)

are valid and equivalent calls to add-component. The default value for :where is :tail

(add to the end of the list, which is graphically on top or at the front).

If position is either :before/:behind or :after/:in-front then the value of locator should
be a graphical object already in the component list of the aggregate, in which case graphical-
object is placed with respect to locator.

If position is :at, graphical-object is placed at the locatorth position in the component list,
where the zeroth position is the head of the list.

Note: The add-component method will always add the component at the most reasonable
position if the specified location does not exist. For example, if add-component is asked to
add a component after another one that does not exist, the new component will be added
at the tail.

Instances of element are created and added to instances of gadget using recursive calls to
add-component. Since instances of gadget may not have the same structure as gadget, it
is not always obvious where to add a component. In particular, a given locator object will
never exist in instances, so a new instance locator must be inferred from the prototype
locator as follows:

If the instance gadget has a component that is an instance of the prototype locator,
then that component is the instance locator.

Otherwise, if the instance gadget has a component with the same name (:known-as)
as the prototype locator, then that component is the instance locator.

Otherwise, a warning is printed, and there is no locator.

Given this procedure for finding an instance locator, the insert point is determined as follows:

The default position is :front.

If the position is specified as :front or :tail, always insert the component at the
:front.

If the position is specified as :back or :head, always insert the component at the :back.

If the position is :behind or :before locator, and an instance locator is found, then
insert :behind the instance locator, otherwise insert at the :front (the rationale here
is to err toward the front, making errors immediately visible).

If the position is :in-front or :after locator, and an instance locator is found, then
insert :in-front of the instance locator, otherwise insert at the :front.

If the position is :at, then locator is an index. Use the same index to insert an element
instance in each gadget instance.

7.9.4 Remove Component

opal:Remove-Component gadget element [destroy?][No value for “Method”]

The remove-component method removes the element from gadget. If gadget is connected
to a window, then element will be erased when the window next has an update message
sent to it.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 362

Because aggregadgets allow even the prototype of a component to be overridden in an
instance, determining what components to remove is not always straightforward. First,
remove-component removes all instances of component from their parents if the parent
is-a-p the gadget argument. (This avoids breaking up aggregates that use instances of
components but which are not instances of gadget.) Then, remove-component removes all
parts of instances of gadget that have a :known-as slot that matches that of the component.
Components are removed with recursive calls to remove-component to affect the entire
instance tree.

If destroy? is not nil (the default is nil), then the removed objects are destroyed.

7.9.5 Add-Interactor

Interactors can be added by calling

opal:Add-Interactor gadget interactor〈undefined〉 [method], page 〈undefined〉,
where gadget is an aggregadget or aggrelist. If the interactor has a :known-as slot, then
this becomes the name of the interactor. The :operates-on slot in the interactor is set to
the gadget.

An instance of interactor is added to each instance of gadget using a recursive call to
add-interactor.

Note: gadget should not have an interactor or component with the same name (:known-as
slot) already. Otherwise, an inconsistent gadget will result.

7.9.6 Remove-Interactor

opal:Remove-Interactor gadget interactor [destroy?]〈undefined〉 [method], page 〈unde-
fined〉,
is used to remove an interactor. The interactor :operates-on slot is destroyed, as is the link
from gadget to the interactor (determined by the value of the interactor ’s :known-as slot).
In addition, the interactor ’s :active slot is set to nil. The interactor is also destroyed if
the optional destroy? parameter is not nil.

Instances of interactor that belong to instances of gadget (as determined by the
:operates-on slot) are recursively removed. As with remove-component, interactors
that have the same name as interactor are removed from instances of gadget. (This will
only have an effect if, in an instance of gadget, the default inherited interactor has been
overridden or replaced by a different one.)

Note: Since a call to remove-interactor will deactivate the interactor, be sure to set the
:active slot appropriately if the interactor is subsequently added to a gadget.

7.9.7 Take-Default-Component

opal:Take-Default-Component gadget name [destroy?]〈undefined〉 [method], page 〈unde-
fined〉,
This function removes a local component named by name, e.g. :box, and replaces it with an
instance of the corresponding component in gadget ’s prototype. The removed component
is destroyed if and only if the optional destroy argument is not nil.

The placement of the new component is inherited as well as the component itself. As with
add-component, “inherited position” is not well defined when the structure of gadget does

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 363

not match the structure of its prototype. The algorithm for choosing the position is as
follows: If the prototype component is the first one, then the instance becomes the first
component of gadget. Otherwise, a locator (see add-component) is found in the prototype
such that the locator is “:in-front” of the prototype component. If this locator has an
instance in gadget, the instance is used as a locator in a call to add-component, with the
position parameter being :in-front. If the locator does not exist in gadget, then the
position used is :front, so at least any error should become visibly apparent.

Changes are propagated to instances of gadget.

7.9.8 Itemized Aggrelist Manipulation

7.9.9 Add-Item

opal:Add-Item aggrelist [item] [[:where] position [locator] [:key function-name]] 〈unde-
fined〉 [method], page 〈undefined〉,
If supplied, item will be added to the :items slot of aggrelist, and a new instance of
:item-prototype-object will be added to the components of aggrelist. The add-item

method will perform the necessary bookkeeping to maintain the appearance of the list.

It is an error (actually, a continuable break condition) to add an item to an aggrelist
whose :items slot is constant. To work around this error, consult section [constants-and-
aggregadgets], page 316.

The position, locator and function-name arguments can be used to adjust the placement of
item with respect to the rest of the items of aggrelist.

position can be any of these five values:

:front :back :behind :in-front :at or any of the following aliases:

:tail :head :before :after :at

Note: the graphically front object is at the tail of the components list, etc. If position is
either :before/:behind or :after/:in-front then the value of locator should be an item
already in the :items slot of the aggrelist, in which case item is placed with respect to
locator.

For example, the following line will add a new item to the aggrelist defined in section
[aggitem-expl-ref], page 348:

(opal:add-item MY-AGG "really" :after "is")

The string "really" will be added to my-agg with the resulting aggrelist appearing as "This
is really an example".

Furthermore, if the :items slot holds a nested list, :key function-name can be used to
match locator only with the result of function-name applied to each element of :items. For
example, if the :items slot of an-aggrelist is (("foo" 4) ("bar" 2) ("foo" 7)),

(add-item an-aggrelist ’("foobar" 3) :after "foo" :key #’car)

compare "foo" only to the cars of the list, and therefore will add the new item as the second
element of the list. The line

(add-item an-aggrelist ’("barfoo" 5) :before 7 :key #’cadr)

will add the new item just before the last one.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 364

Note: add-item will add the item at the most reasonable position if the specified position
does not exist. For example, if add-item is asked to add a component after another one
that does not exist, the new component will be added at the tail.

7.9.10 Remove-Item

opal:Remove-Item aggrelist [item [:key function-name]] 〈undefined〉 [Method], page 〈un-
defined〉,
The method remove-item removes item from the :items list and the :components list of
aggrelist.

It is an error (actually, a continuable break condition) to add an item to an aggrelist
whose :items slot is constant. To work around this error, consult section [constants-and-
aggregadgets], page 316.

If the :items slot holds a nested list, :key function-name can be used to specify to try to
match item only with the result of function-name applied to each element of :items. For
example, if the :items slot of an-aggrelist is (("foo" 4) ("bar" 2) ("foo" 7)),

(remove-item AN-AGGRELIST "foo" :key #’car)

removes the first item, while

(remove-item AN-AGGRELIST ’("foo" 7))

removes the last one.

7.9.11 Remove-Nth-Item

opal:Remove-Nth-Item aggrelist n〈undefined〉 [method], page 〈undefined〉,
To remove an item by position rather than by content, use remove-nth-item. The n(th)
item is removed from the :items slot of aggrelist, and the component corresponding to that
item will be removed during the next call to opal:update.

It is an error to add an item to an aggrelist whose :items slot is constant. To work around
this error, consult section [constants-and-aggregadgets], page 316.

7.9.12 Change-Item

To change just one item in the :items list, call

opal:Change-Item aggrelist item n〈undefined〉 [method], page 〈undefined〉,
where aggrelist is the aggrelist to be modified, item is a new value for the :items list, and
n is the index of the item to be changed (the index of the first item is zero).

This function is potentially more efficient than calling add-item and remove-item, because
it ensures that the component corresponding to the changed item will be reused if possible,
instead of destroying and reallocating a new component.

7.9.13 Replace-Item-Prototype-Object

opal:Replace-Item-Prototype-Object aggrelist item-proto〈undefined〉 [method],
page 〈undefined〉,
This function is used to replace the :item-prototype-object slot of an itemized aggrelist.
Any aggrelists which inherit the slot from this one will also be affected. The components
of affected aggrelists are replaced with instances of the new :item-prototype-object.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 365

For example, suppose an application uses a number of instances of radio buttons, an aggrelist
whose item prototype object determines the appearance of a single button. By calling
replace-item-prototype-object on the radio buttons prototype, all button throughout
the application will change to reflect the new style.

7.9.14 Ordinary Aggrelist Manipulation

7.9.15 Add-Component

The add-component, defined in section [add-component-sec], page 360, can also be used to
add components to an aggrelist. The system automatically adjusts the appearance of the
aggrelist to accommodate the changes in the list of components.

In addition to adding graphical-object to aggrelist, add-component will add some slots to
graphical-object, or modify existing slots. The slots created or modified by add-component

are:

:left, :top 〈undefined〉 [shortdash], page 〈undefined〉, Unless the :direction
slot of aggrelist is nil, the system will set these slots with integers that arrange
graphical-object neatly in the layout of the aggrelist components.

:rank 〈undefined〉 [shortdash], page 〈undefined〉, This slot is set with a number
that indicates the position of this component in the list (the head has rank 0).
If this component is not visible, then this value has no meaning.

:prev 〈undefined〉 [shortdash], page 〈undefined〉, This contains the previous
component in the list, regardless of what is visible.

:next 〈undefined〉 [shortdash], page 〈undefined〉, This contains the next com-
ponent in the list, regardless of what is visible.

Note: add-components (plural) can be used to add several components to an aggrelist.

An alternative implementation of figure [parts-list-fig], page 356, is shown in figure [agglist-
expl-ref], page 365. In each component of the aggrelist, the :left and :top slots have been
left undefined. The aggrelist will fill these slots with the appropriate values automatically.

(create-instance ’MY-AGG opal:aggrelist (:top 10) (:left 10))

(create-instance ’MY-RECT opal:rectangle

(:width 100) (:height 30))

(create-instance ’MY-OVAL opal:oval

(:width 100) (:height 30))

(create-instance ’MY-ROUND opal:roundtangle

(:width 100) (:height 30))

(add-components MY-AGG MY-RECT MY-OVAL MY-ROUND)

Figure 7.28: Example of an aggrelist built using add-component.

7.9.16 Remove-Component

See section [remove-component-sec], page 361, for a description of this method.

Useful hint: It is possible to make components of an aggrelist temporarily disappear by
simply setting their :visible slot to nil — the list will adjust itself so that there is no gap

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 366

where the item once was. If a gap is desired, then an opal:null-object may be inserted
into the list — this is an opal:view-object that has its :visible slot set to T, but has
no draw method.

7.9.17 Remove-Nth-Component

opal:Remove-Nth-Component aggrelist n〈undefined〉 [method], page 〈undefined〉,
The n(th) component of aggrelist is removed by invoking remove-local-component. In-
stances of aggrelist are not affected.

7.9.18 Local Modification

A number of functions exist to modify gadgets without changing their instances. Their
behavior is exactly like the corresponding recursive version described earlier, except that
changes are not propagated to instances.

opal:Add-Local-Component gadget element [[:where] position [locator]]〈undefined〉
[method], page 〈undefined〉,
opal:Remove-Local-Component gadget element [destroy?][No value for “Method”]

opal:Add-Local-Interactor gadget interactor〈undefined〉 [method], page 〈undefined〉,
opal:Remove-Local-Interactor gadget interactor [destroy?]〈undefined〉 [method],
page 〈undefined〉,
opal:Add-Local-Item aggrelist [item] [[:where] position [locator] [:key function-name]]
〈undefined〉 [method], page 〈undefined〉,
opal:Remove-Local-Item aggrelist [item [:key function-name]] 〈undefined〉 [Method],
page 〈undefined〉,

7.10 Reading and Writing Aggregadgets and Aggrelists

An aggregadget or aggrelist may be written to a file. This creates a compilable lisp program
that can be reloaded to recreate the object that was saved. To save an aggregadget, use
the opal:write-gadget function:

7.10.1 Write-Gadget

opal:Write-Gadget gadget file-name &optional initialize? [function], page 90,

where gadget is a graphical object, an aggregadget or an aggrelist (or a list of these), and
file-name is the file name (a string) to be written, or t to write to *standard-output*. If
several calls are made to write-gadget to output a sequence of gadgets to the same stream,
set the initialize? flag to nil after the first call. The default value of initialize? is T.

If the gadget has any references to gadgets that are not part of the standard set of Opal
objects or Interactors, then a warning is printed. Note: gadget must not be a symbol or
list of symbols:

(write-gadget (list BUTTON SLIDER) "misc.lisp") !; RIGHT!

(write-gadget ’(BUTTON SLIDER) "misc.lisp"); WRONG!

Slots that are ordinarily created automatically are not written by write-gadget. For
example, the :is-a-inv slot (maintained by KR) and the :update-slots-values slot

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 367

(maintained by Opal) are not written. The slots to ignore are found in the :do-not-dump-
slots slot, which is normally inherited. In some cases, it may be desirable to suppress
the output of certain slots, e.g. bookkeeping information, and this can be done by setting
:do-not-dump-slots as follows:

(s-value my-proto

:do-not-dump-slots

(append list-of-slots (gv my-proto :do-not-dump-slots)))

Do not destructively modify :do-not-dump-slots! Putting the slot name :do-not-dump-
slots on the list will prevent the :do-not-dump-slots slot from being written. This is
probably not a good idea, since if the object is written and reloaded, the local :do-not-
dump-slots information will be lost.

7.10.2 Avoiding Deeply Nested Parts Slots

One would expect an instance of a standard gadget (see the Garnet Gadgets Reference
chapter) to have a very concise output representation; however, once the instance is ma-
nipulated, various slots are set by interactors. Often, these slots are deeply nested in the
gadget structure, and the output has correspondingly deeply nested :parts slots. This
is a consequence of the fact that Garnet maintains little separation between the gadget
definition and local state information.

One solution is to carefully install slot names on the :do-not-dump-slots slot to suppress
the output of slots for which the default inherited value is acceptable. Another, more
drastic, solution is to set the :do-not-dump-objects slot in selected objects. This slot
may have one of three values:

NIL 〈undefined〉 [shortdash], page 〈undefined〉, The default; write out all slots and
parts that differ from the prototype.

:me interactors are inherited without modification, so there is no need to write :parts,
:interactors, or :item-prototype slots at this level. Other slots, such as :left and
:top should be written.

:children 〈undefined〉 [shortdash], page 〈undefined〉, Write out :parts, :interactors
and :item-prototype slots, but do not allow further nesting. This is equivalent to
setting the :do-not-dump-objects slot of each component, interactor, and the item-
prototype to :me.

7.10.3 More Details

The write-gadget function makes no attempt to write out objects that are needed as
prototypes or that are referenced by formulas. It is the user’s responsibility to make sure
these objects are loaded before loading a gadget; otherwise, an “unbound symbol” error is
likely to occur. If the gadget argument is a list, then each aggregadget or aggrelist of the
list is written in sequence to the file.

To load a gadget after it has been written, the standard lisp loader (load) should be used.

When an aggregadget is written that uses a function to create parts (see section [run-time],
page 326), the created parts are written explicitly and in full, as opposed to simply writing
out the original :parts slot. This guarantees that any modifications to the aggregadget
after it was created will be correctly written.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 368

opal:*verbose-write-gadget*〈undefined〉 [variable], page 〈undefined〉,
If *verbose-write-gadget* is non-NIL, objects will be printed to *error-output* as they
are visited by write-gadget. Indentation indicates the level of the object in the aggregate
hierarchy. Note: objects will be printed even if, due to inheritance, nothing needs to be
written.

7.10.4 Writing to Streams

The write-gadget function can be used as is for simple applications, but it is sometimes
desirable to write a header to a file and perhaps embed code written by write-gadget into
a function definition. This is done by temporarily re-binding *standard-output* as in the
following example:

(with-open-file (*standard-output* "my-file.lisp"

:direction :output :if-exists :supersede)

;; write header to standard output:

(format T "... file header info goes here ...")

;; write a gadget:

(write-gadget my-gadget t)

;; if there are more gadgets, call with initialize? set to NIL:

(write-gadget another-gadget T NIL))

7.10.5 References to External Objects

Gadgets may contain references to “external objects”, that is, objects that are not part of
the gadget. When an external object is written, A warning is ordinarily printed to notify
the user that the object must be present when the gadget code is loaded.

opal:*standard-names*〈undefined〉 [variable], page 〈undefined〉,
Many objects, including standard Opal objects, standard Interactors, and objects in the
Garnet Gadget library, are considered part of the Garnet environment, so no warning is
written for these references. The list *standard-names* tells write-gadget what object
symbols to assume will be defined when the gadget is loaded. This list can be extended
with new new names before calling write-gadget.

opal:*defined-names*〈undefined〉 [variable], page 〈undefined〉,
The global variable *defined-names* is initialized to *standard-names* when you call
write-gadget. As gadgets are written, their names are pushed onto *defined-names*, so
if a list of gadgets is written and the second references the first, no warning will be printed.
defined-names (not *standard-names*) is what write-gadgets actually searches to
see if a name is defined.

opal:*required-names*〈undefined〉 [variable], page 〈undefined〉,
The variable *required-names* is initialized to nil when you call write-gadget.
Whenever a name is written that is not on *defined-names*, it is pushed onto
required-names and a warning is printed. Inspecting the value of *required-names*
after calling write-gadget can give the caller information about what additional gadgets
should be saved.

The initialization of *defined-names* and *required-names* is suppressed when the ini-
tialize? argument to write-gadget is set to nil.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 369

7.10.6 References to Graphic Qualities

A reference to an opal:graphic-quality object is handled as a special case. Graphic
qualities include opal:filling-style, opal:line-style, opal:color, opal:font, and
opal:font-from-file. Although these are objects, they are treated more like record struc-
tures throughout the Garnet system. For example, changing a slot in a graphic quality will
not automatically cause an update; only replacing a graphic quality with a new one (or
faking it with a call to kr:mark-as-changed) will cause the update.

Because of the way graphic qualities are used, it is best to think of graphic qualities as
values rather than shared objects. Consequently, write-gadget writes out graphic qualities
by calling create-instance to construct an equivalent object rather than by writing an
external reference that is likely to be undefined when the file is loaded.

For example, here is a rectangle with a special color, and the output generated by
write-gadget:

(create-instance ’MY-RED RED

(:red 0.5))

(create-instance ’MY-RECT RECTANGLE

(:color my-red))

* (write-gadget MY-RECT T)

(create-instance ’MY-RECT RECTANGLE

(:COLOR (create-instance NIL COLOR

(:BLUE 0.0)

(:GREEN 0.0)

(:RED 0.5))))

7.10.7 Saving References From Within Formulas

Writing direct references from within o-formula’s to other objects is not possible (in a lisp
implementation-independent way) because o-formula builds a closure, and bindings within
the closure are not externally visible. For example, in

(let ((thermometer THERMOMETER-1))

(o-formula (gv thermometer :temperature)))

the variable thermometer is bound inside the let and is not accessible to any routine that
would write the formula. Even though the expression (gv thermometer :temperature) is
saved in the formula in the current KR implementation, this does not reveal the binding
needed to reconstruct the formula.

Fortunately, aggregadgets and aggrelists rarely make direct references to objects. Typically,
references to objects take the form of paths in formulas, for example, (gvl :parent :box

:left). However, there may be occasions when a direct reference is required, for example,
when an aggregadget depends upon the value of some separate application object.

There are several ways to avoid problems associated with direct references from formulas:

Use formula instead of o-formula. The formula function interprets its expression, so
expressions with embedded references can be constructed at run-time. For example,
the thermometer example could be written as:

(formula ‘(gv ’,thermometer :temperature))

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 370

embedding the actual reference directly into the expression. This expression can be
written and read back in without problems. However, since formula expressions are
interpreted, re-evaluation of the formula will be much slower than the corresponding
o-formula.

Put the object reference into a slot, avoiding direct references altogether. For example,
to create a dependency on the :temperature slot of object THERMOMETER-1, set
the :thermometer slot of the gadget to THERMOMETER-1, and reference the slot
from the formula:

(o-formula (gvl :thermometer :temperature))

Since the reference to THERMOMETER-1 is now a slot value rather than a hidden
binding in a closure, it can be written and read back in without problems. The only
performance penalty of this approach will be the extra slot access, which should not
add much overhead. There is, however, the added problem of choosing slot names so
as not to interfere with other formulas.

Use an @code{e-formula}, described below. This provides the functionality

and speed of @code{o-formula} as well as the ability to save to files

at the expense of a little more work for the programmer and some

extra function definitions.

@subsection The e-formula function

@node The e-formula function

@cindex{e-formula}

@code{e-formula} @emph{expression}@ref{function}

The argument to @code{e-formula} is an expression that, when evaluated,

will return a formula. The expression is retained so that the

original @code{e-formula} expression can be reconstructed when the

formula is written to a file. Returning once again to the thermometer

example, here is how the problem would be solved using @code{e-formula}:

@example

(defun temperature-formula (thermometer)

(o-formula (gv thermometer :temperature)))

(create-instance ’DISPLAY-1 DISPLAY

(:value (e-formula ‘(temperature-formula ’,THERMOMETER-1)))

@end example

The first expression defines

an auxiliary (compiled) function @code{temperature-formula}.

The second expression creates an instance of the prototype

@code{display} (not implemented here) whose @code{:value} slot holds

the desired formula.

When the @code{e-formula} expression is evaluated, the argument,

@example

(temperature-formula ’#k<THERMOMETER-1>)

@end example

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 371

is evaluated. The @code{temperature-formula} function in turn produces

an @code{o-formula} in which the reference to @code{#k<thermometer-1>} is

captured by a compiled closure. Because the @code{o-formula} is based

on a compiled closure, it will evaluate quickly. Note that the

Lisp interpreter is invoked only to @emph{create} the formula, not to evaluate

it.

When @code{display-1} is written to a file, @code{write-gadget} will

write

@example

(e-formula ‘(temperature-formula ’,THERMOMETER-1))

@end example

which is the same expression used to create the original formula.

A warning will be issued when the THERMOMETER-1 is written:

@example

Warning: non-standard schema written as THERMOMETER-1

@end example

to warn that a direct reference to THERMOMETER-1 was written

and must be defined when the schema is reloaded.

In order to reload this formula, the function @code{temperature-formula}

must be also be defined.

7.11 More Examples

7.11.1 A Customizable Check-Box

Figure [example-1], page 372, shows the definition of a check-box whose position and size
can be determined by the programmer when it is used as a prototype object.

The :parts slot defines the :box object as an instance of opal:rectangle with coordinates
dependent on the parent aggregadget. Similarly, the :mark object is an opal:aggregadget

itself, and its components are dependent on slots in the top-level aggregadget.

Two instances of CHECK-BOX are created — the first one using the default values for
the coordinates and the second one using both default and custom coordinates. Both are
pictured in figure [example-1-pic], page 373.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 372

(create-instance ’CHECK-BOX opal:aggregadget

(:left 20)

(:top 20)

(:width 50)

(:height 50)

(:parts

‘((:box ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (gvl :parent :width)))

(:height ,(o-formula (gvl :parent :height))))

(:mark ,opal:aggregadget

(:parts

((:left-line ,opal:line

(:x1 ,(o-formula (+ (gvl :parent :parent :left)

(floor (gvl :parent :parent :width) 10))))

(:y1 ,(o-formula (+ (gvl :parent :parent :top)

(floor (gvl :parent :parent :height) 2))))

(:x2 ,(o-formula (+ (gvl :parent :parent :left)

(floor (gvl :parent :parent :width) 2))))

(:y2 ,(o-formula (+ (gvl :parent :parent :top)

(floor (* (gvl :parent :parent :height) 9)

10))))

(:line-style ,opal:line-2))

(:right-line ,opal:line

(:x1 ,(o-formula

(opal:gvl-sibling :left-line :x2)))

(:y1 ,(o-formula

(opal:gvl-sibling :left-line :y2)))

(:x2 ,(o-formula (+ (gvl :parent :parent :left)

(floor (* (gvl :parent :parent :width) 9)

10))))

(:y2 ,(o-formula (+ (gvl :parent :parent :top)

(floor (gvl :parent :parent :height) 10))))

(:line-style ,opal:line-2))))))))

(create-instance ’CB1 CHECK-BOX)

(create-instance ’CB2 CHECK-BOX (:left 90) (:width 100) (:height 60))

Figure 7.29: The definition of a customizable check-box.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 373

Figure 7.30: Instances of the customizable check-box.

7.11.2 Hierarchical Implementation of a Customizable Check-Box

Figure [example-2], page 374, shows the definition of a customizable check-box as in figure
[example-1], page 372. However, this second CHECK-BOX definition exploits the hierar-

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 374

chical structure of the check box to modularize the definition of the schema. The modular
style allows for the reuse of previously defined code — the check-mark schema may now
be used for other applications as well.

(create-instance ’CHECK-MARK opal:aggregadget

(:parts

‘((:left-line ,opal:line

(:x1 ,(o-formula (+ (gvl :parent :parent :left)

(floor (gvl :parent :parent :width) 10))))

(:y1 ,(o-formula (+ (gvl :parent :parent :top)

(floor (gvl :parent :parent :height) 2))))

(:x2 ,(o-formula (+ (gvl :parent :parent :left)

(floor (gvl :parent :parent :width) 2))))

(:y2 ,(o-formula (+ (gvl :parent :parent :top)

(floor (* (gvl :parent :parent :height) 9) 10))))

(:line-style ,opal:line-2))

(:right-line ,opal:line

(:x1 ,(o-formula (opal:gvl-sibling :left-line :x2)))

(:y1 ,(o-formula (opal:gvl-sibling :left-line :y2)))

(:x2 ,(o-formula (+ (gvl :parent :parent :left)

(floor (* (gvl :parent :parent :width) 9) 10))))

(:y2 ,(o-formula (+ (gvl :parent :parent :top)

(floor (gvl :parent :parent :height) 10))))

(:line-style ,opal:line-2)))))

(create-instance ’CHECK-BOX opal:aggregadget

(:left 20)

(:top 20)

(:width 50)

(:height 50)

(:parts

‘((:box ,opal:rectangle

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (gvl :parent :width)))

(:height ,(o-formula (gvl :parent :height))))

(:mark ,check-mark))))

Figure 7.31: A hierarchical implementation of a customizable check-box.

7.11.3 Menu Aggregadget with built-in interactor, using
Aggrelists

The figure [menu-aggrelist-ref], page 377, shows how to create a menu aggregadget, by using
itemized aggrelist to create the items of the menu. This example also shows how to attach
an interactor to such an object. The menu is made of four parts: a frame, a shadow, a
feedback and an items-agg, which is an aggrelist containing the items of the menu. Each
item is an instance of the prototype menu-item. The items are created according to the

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 375

labels and notify-functions given in the :items slot of the menu. The menu also contains a
built-in interactor which, when activated, will call the functions associated to the selected
item.

The figure [menu-aggrelist2-ref], page 378, shows how to create an instance of the menu. A
picture of these menus (the prototype and its instance) is shown in figure [menu-aggitem-
pict], page 376.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 376

Cut

Copy

Paste

Undo

Read

Save

Cancel

Figure 7.32: The two menus (prototype and instance) made with itemized aggrelist.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 377

(defun my-cut () (format T "~%Function CUT called~%"))

(defun my-copy () (format T "~%Function COPY called~%"))

(defun my-paste () (format T "~%Function PASTE called~%"))

(defun my-undo () (format T "~%Function UNDO called~%"))

(create-instance ’MENU-ITEM opal:text

(:string (o-formula (car (nth (gvl :rank) (gvl :parent :items)))))

(:action (o-formula (cadr (nth (gvl :rank)

(gvl :parent :items))))))

(create-instance ’MENU opal:aggregadget

(:left 20) (:top 20)

(:items ’(("Cut" (my-cut)) ("Copy" (my-copy))

("Paste" (my-paste)) ("Undo" (my-undo))))

(:parts

‘((:shadow ,opal:rectangle

(:filling-style ,opal:gray-fill)

(:left ,(o-formula (+ (gvl :parent :frame :left) 8)))

(:top ,(o-formula (+ (gvl :parent :frame :top) 8)))

(:width ,(o-formula (gvl :parent :frame :width)))

(:height ,(o-formula (gvl :parent :frame :height))))

(:frame ,opal:rectangle

(:filling-style ,opal:white-fill)

(:left ,(o-formula (gvl :parent :left)))

(:top ,(o-formula (gvl :parent :top)))

(:width ,(o-formula (+ (gvl :parent :items-agg :width) 8)))

(:height ,(o-formula (+ (gvl :parent :items-agg :height) 8))))

(:feedback ,opal:rectangle

(:left ,(o-formula (- (gvl :obj-over :left) 2)))

(:top ,(o-formula (- (gvl :obj-over :top) 2)))

(:width ,(o-formula (+ (gvl :obj-over :width) 4)))

(:height ,(o-formula (+ (gvl :obj-over :height) 4)))

(:visible ,(o-formula (gvl :obj-over)))

(:draw-function :xor))

(:items-agg ,opal:aggrelist

(:fixed-width-p T)

(:h-align :center)

(:left ,(o-formula (+ (gvl :parent :left) 4)))

(:top ,(o-formula (+ (gvl :parent :top) 4)))

(:items ,(o-formula (gvl :parent :items)))

(:item-prototype ,menu-item))))

(:interactors

‘((:press ,inter:menu-interactor

(:window ,(o-formula (gv-local :self :operates-on :window)))

(:start-where ,(o-formula (list :element-of

(gvl :operates-on :items-agg))))

(:feedback-obj ,(o-formula (gvl :operates-on :feedback)))

(:final-function

,#’(lambda (interactor final-obj-over)

(eval (gv final-obj-over :action))))))))

Figure 7.33: Definition of a menu with built-in interactor and itemized aggrelist.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 378

(defun my-read () (format T "~%Function READ called~%"))

(defun my-save () (format T "~%Function SAVE called~%"))

(defun my-cancel () (format T "~%Function CANCEL called~%"))

(create-instance ’MY-MENU MENU

(:left 100) (:top 20)

(:items ’(("Read" (my-read)) ("Save" (my-save))

("Cancel" (my-cancel)))))

Figure 7.34: Creation of an instance of MENU.

7.12 Aggregraphs

The purpose of Aggregraphs is to allow the easy creation and manipulation of graph objects,
analogous to the creation and manipulation of lists by Aggrelists. In addition to the stan-
dard aggregraph, Opal provides the scalable-aggregraph which will fit inside dimensions
supplied by the programmer, and the scalable-aggregraph-image which changes appear-
ance in response to changes in the original graph.

7.13 Using Aggregraphs

In order to generate an aggregraph from a source graph, the source graph must be described
by defining its roots (a graph may have more than one root) and a function to generate
children from parent nodes. When the aggregraph is initialized, the generating function is
first called on the root(s), then on the children of the roots, and so on. For each source-node
in the original graph, a new graph-node is created and added to the aggregraph. Graphical
links are also created which connect the graph-nodes appropriately. The layout function
(which can be specified by the user) is then called to layout the graph in a pleasing manner.
The resulting aggregraph instance can then be displayed and manipulated like any other
Garnet object.

Although most programmers will be satisfied with the graphs generated by the default
layout function, section [layout-graph], page 388, contains a discussion of how to customize
the function used to compute the locations for the nodes in the graph.

See the file demo-graph.lisp for a complete interface that uses many features of aggre-
graphs.

7.13.1 Accessing Aggregraphs

The aggregraph files are not automatically loaded when the file garnet-loader.lisp is used
to load Garnet. There is a separate file called aggregraphs-loader.lisp that is used to
load all the aggregraphs files. This file is loaded when the line (load Garnet-Aggregraphs-

Loader) is executed after Garnet has been loaded with garnet-loader.lisp.

Aggregraphs reside in the Opal package. We recommend that programmers explicitly ref-
erence the Opal package when creating instances of aggregraphs, as in opal:aggregraph.
However, the package name may be dropped if the line (use-package ’opal) is executed
before referring to any object in that package.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 379

7.13.2 Overview

In general, programmers will be able to ignore most of the aggregraph slots described in the
following sections, since they are used to customize the layout function of the aggregraph.
However, three slots must be set before before any aggregraph can be initialized:

:children-function – This slot should contain a function that generates a list of child
nodes from a parent node. The function takes the parameters (lambda (source-node

depth)) where depth is a number maintained internally by aggregraphs that corre-
sponds to the distance of the current node from the root, and source-node is an object
in the source graph to be expanded. The function should return a list of the children
of source-node in the source graph, or nil to indicate the node either has no children
or should not be expanded (when depth > 1, for example).

:info-function – The function in this slot should take the parameter (lambda

(source-node)) where source-node is an object in the source graph. It should
return a string associated with the source-node so that a label can be placed on its
corresponding graph node in the aggregraph. (If the node-prototype is customized
by the programmer, then this function might return some other identifying object
instead of a string.) The value returned by the function is stored in the :info slot of
the graph node.

:source-roots – A list of roots in the source graph.

Caveats:

The source nodes must be distinguishable by one of the tests #’eq, #’eql, or #’equal.
The default is #’eql. (Refer to the :test-to-distinguish-source-nodes slot in section
[aggregraph-slots], page 384.)

Instances of aggregraphs can be used as prototypes for other aggregraphs without providing
values for all the required slots in the prototype.

7.13.3 Aggregraph Nodes

Each type of aggregraph has its own type of node and link prototypes. For the aggregraph,
the prototypes are aggregraph-node-prototype and aggregraph-link-prototype, which
are defined in the slots :node-prototype and :link-prototype. To change the look of
the nodes or the links in an aggregraph, the programmer will need to define new prototype
objects in these slots. Section [aggregraph-with-interactor], page 382, contains an example
aggregraph schema that modifies the node prototype.

The node and link prototypes for scalable-aggregraph are scalable-aggregraph-

node-prototype and scalable-aggregraph-link-prototype. The prototypes for
scalable-aggregraph-image are scalable-aggregraph-image-node-prototype and
scalable-aggregraph-image-link-prototype.

The actual nodes and links of the aggregraph are kept in "sub-aggregates" of the aggre-
graph. The aggregates in the :nodes and :links slots of the top-level aggregraph have the
nodes and links as their components. To access the individual links and nodes, look at the
:components slot of these aggregates. For example, the instruction

(opal:do-components (gv graph :nodes)

#’(lambda (node)

(format T "~A~%" (gv node :info))))

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 380

will print out the names of all the nodes in the graph.

As each graph-node is created, a pointer to the corresponding source-node is put in the
slot :source-node of the graph-node. This allows access to the source node from the
graph-node. If desired, a user can supply a function in the slot :add-back-pointer-to-
nodes-function. This function will be called on each source-node/graph-node pair, and
should put a pointer to the graph-node in the source-node data structure. This can be used
to establish back pointers in the programmer’s data structure.

The function in the slot :source-to-graph-node can be useful in finding a particular node
in the graph. When this method is given a source-node, it will return the corresponding
graph-node if one already exists in the graph.

Useful slots in the node objects include:

:left and :top – These slots must be set either directly by the layout function
or indirectly through formulas (probably dependent on other slots in the node
that are set by the layout function).

:width and :height – Dimensions of the node.

:links-to-me and :links-from-me – Each slot contains a list of links that
point to or from the given node. To get the nodes on the other side of the links,
reference the :from and :to slots of the links, respectively.

:source-node – A pointer to the corresponding node in the source graph
(i.e., the source-node of this graph-node). See :add-back-pointer-to-nodes-
function for back-pointers from the source-node to the graph-node.

:layout-info-... – Several slots that begin with ":layout-info-" are re-
served for bookkeeping by the layout function. Do not set these slots except as
part of a customized layout function.

7.13.4 A Simple Example
(create-instance ’SCHEMA-GRAPH opal:aggregraph

(:children-function #’(lambda (source-node depth)

(if (> depth 1)

NIL

(gv source-node :is-a-inv))))

(:info-function #’(lambda (source-node)

(string-capitalize

(kr:name-for-schema source-node))))

(:source-roots (list opal:view-object)))

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 381

View-Object

Aggregate

Window-Aggregate

Aggregate-4731

Aggregate-4730

Agg

Aggregate-3766

Aggregate-3765

Aggrelist

Aggregadget

Null-Object

Virtual-Invalid-Object

Window Interactor-Window

Graphical-Object

Line

Virtual-Aggregate

Bitmap

Text

Multipoint

Arc

Rectangle

Figure 7.35: Graph generated by SCHEMA-GRAPH

The graph pictured in figure [schema-graph-pix], page 381, is a result of the definition of
the SCHEMA-GRAPH object above. The aggregraph was given a description of the Garnet
inheritance hierarchy just by defining the root of the graph and a child-generating function.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 382

The generating function in the :children-function slot is defined to return the instances
of a given schema until the aggregraph reaches a certain depth in the graph. In this case,
if the function is given a node that is more than one link away from the root, then the
function will return nil.

The function in the :info-function slot returns the string name of a Garnet schema.

7.13.5 An Example With an Interactor

(create-instance ’SCHEMA-GRAPH-2 opal:aggregraph

(:children-function #’(lambda (source-node depth)

(when (< depth 1)

(gv source-node :is-a-inv))))

(:info-function #’(lambda (source-node)

(string-capitalize

(kr:name-for-schema source))))

(:source-roots (list opal:view-object))

; Change the node prototype so that it will go black

; when the interactor sets :interim-selected to T

(:node-prototype

(create-instance NIL opal:aggregraph-node-prototype

(:interim-selected NIL) ; Set by interactor

(:parts

‘((:box :modify

(:filling-style ,(o-formula (if (gvl :parent :interim-selected)

opal:black-fill

opal:white-fill)))

(:draw-function :xor) (:fast-redraw-p T))

:text-al))))

; Now define an interactor to work on all nodes of the graph

(:interactors

‘((:press ,inter:menu-interactor

(:window ,(o-formula (gv-local :self :operates-on :window)))

(:start-where ,(o-formula (list :element-of

(gvl :operates-on :nodes))))

(:final-function

,#’(lambda (inter node)

(let* ((graph (gv node :parent :parent))

(source-node (gv node :source-node)))

(format T "~%~% ***** Clicked on ~S *****~%" source-node)

(kr:ps source-node))))))))

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 383

View-Object

Aggregate

Null-Object

Virtual-Invalid-Object

Window

Graphical-Object

Figure 7.36: Graph generated by SCHEMA-GRAPH-2

The graph of figure [schema-graph-2-pix], page 383, comes from the definition of SCHEMA-
GRAPH-2. This aggregraph models the same Garnet hierarchy as in the previous example,
but it also modifies the node-prototype for the aggregraph and adds an interactor to operate
on the graph.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 384

The :node-prototype slot must contain a Garnet object that can be used to display the
nodes of the graph. In this case, the customized node-prototype is an instance of the default
node-prototype (which is an aggregadget) with some changes in the roundtangle part. The
formula for the :filling-style will make the node black when the user presses on it with
the mouse.

The interactor is defined as in aggregadgets and aggrelists. Note that the :start-where

slot looks at the components of the :nodes aggregate in the top-level aggregraph.

Aggregadget nodes can be moved easily with an inter:move-grow-interactor. By setting
the :slots-to-set slot of the interactor to (list T T nil nil), you can change the :left
and :top of the aggregraph nodes as you click and drag on them.

7.14 Aggregraph

Features and operation of an Aggregraph

Creates a graph in which each node determines its own size based on information to
be displayed in it. (The information is determined by the function :info-function.)

The user must supply a list of source-nodes to be the root of the graph, a children-
function which can be used to walk the user’s graph, and an info-function to determine
what will be displayed in each graph node.

It is an instance of aggregadget, and interactors can be defined as in aggregadgets.

Customizable slots

:left, :top – The position of the aggregraph. Default is 0,0.

:source-roots – List of source nodes to be used as the roots of the graph.

:children-function – A function which takes a source node and the depth
from the root and returns a list of children. The children are treated as un-
ordered by the default layout-function.

:info-function – A function which takes a source node and returns infor-
mation to be used in the display of the node prototype. The result is put in
the :info slot of the corresponding graph-node. The default node-prototype
expects a string to be returned.

:add-back-pointer-to-nodes-function – A function or nil. The function,
if present, will be called on every source-node graph-node pair. The result of
the function is ignored. This allows pointers to be put in the source-nodes for
corresponding graph-nodes.

:node-prototype – A Garnet object for node prototype, or list of prototypes
(in which case a :node-prototype-selector-function must be provided–
see below). In the instances, the :info slot is set with the result of the
info-function called on the corresponding source-node. The :source-node

slot is set to the corresponding source node. And, the :links-to-me and
:links-from-me slots are set to lists of graph links pointing to the node and
from the node respectively. The slots whose names begin with ":layout-info"

are reserved for use by the layout functions for internal bookkeeping and so
should not be set by the user (unless writing a new layout or associated meth-
ods). If any scalable-aggregraph-image graphs are made of this graph, the

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 385

:image-nodes slot is set to a list containing the nodes that correspond to this
node. The default prototype expects a string in the :info slot, and displays
the string with a white-filled roundtangle surrounding it.

:link-prototype – Garnet object for link prototype, or list of prototypes (in
which case a :link-prototype-selector-function must be provided–see be-
low). The :from and :to slots are set to the graph-nodes that this link connects.
The :image-links slot is set to a list of corresponding links to this one in as-
sociated scalable-aggregraph-image graphs. The default prototype is a line
between these two graph nodes. (It is connected to the center of the right side
of the :from node and to the center of the left side of the :to node. This
assumes a left to right layout of the graph for pleasing display. For other layout
strategies, a different prototype may be desired.) For directed graphs, a link
prototype with an arrowhead may be desired.

:node-prototype-selector-function – A function which takes a source node
and the list of prototypes provided in the :node-prototype slot and returns
one of the prototypes. Will only be used if the value in the :node-prototype

slot is a list.

:link-prototype-selector-function – A function which takes a "from"

graph-node, a "to" graph-node and the list of prototypes provided in the
:link-prototype slot and returns one of the prototypes. Will only be used if
the value in the :link-prototype slot is a list.

:h-spacing – The minimum distance in pixels between nodes horizontally if
using default layout-function. The default value is 20.

:v-spacing – The minimum distance in pixels between nodes vertically if using
default layout-function. The default value is 5.

:test-to-distinguish-source-nodes – Must be one of #’eq, #’eql, or
#’equal. The default is #’eql.

:interactors – Specified in the same format as aggregadgets.

:layout-info-... – Several slots that begin with ":layout-info-" are re-
served for bookkeeping by the layout function. Do not set these slots except as
part of a customized layout function.

Read-only slots

:nodes – The aggregate which contains all of the graph-node objects.

:links – The aggregate which contains all of the graph link objects.

:graph-roots – The list of graph nodes corresponding to the :source-roots.

:image-graphs – The list of scalable-aggregraph-image graphs that are
images of this graph.

[Methods] (can be overridden)

:layout-graph – a function which is called to determine the locations for all
of the nodes in the graph. Takes the graph object as input and sets appro-
priate slots in each node to position the node (usually :left and :top slots.)
Automatically called when graph is initially created.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 386

:delete-node – Takes the graph object and a graph node and deletes it and
all links attached to it. If a node is deleted that is a root of the graph, then it
is removed from :graph-roots and the corresponding source-node is removed
from :source-roots.

:add-node – The arguments are the graph object, a source-node, a list of parent
graph-nodes, and a list of children graph-nodes. It creates a new graph node
and places it in the graph positioning it appropriately. Returns nil.

:delete-link – Takes the graph object and a graph link and removes the link
from the graph.

:add-link – Takes the graph object and two graph nodes and creates a link
from the first node to the second.

:source-to-graph-node – Takes the graph object and a source node and re-
turns the corresponding graph-node.

:find-link – Takes the graph object and two graph-nodes and returns the list
of graph link-objects from the first to the second.

:make-root – Takes the graph object and a graph node of the graph and adds
the graph node to the root lists of the graph.

:remove-root – Takes the graph object and a graph node and removes the
node from the root lists of the graph.

Note that these eight methods depend on each other for intelligent layout. If one is changed
it will either have to keep certain bookkeeping information, or other functions will have to
be changed as well.

The functions which add and delete nodes and links all attempt to minimally change the
graph. The relayout function may dramatically change it.

7.15 Scalable Aggregraph

Features and operation of a Scalable Aggregraph

This object is similar to the normal aggregraph except that it can be scaled by the
user. Text will be displayed only if it will fit within the scaled size of the graph nodes
with the default prototypes. The scale factor is set by the :scale-factor slot.

The scalable aggregraph will automatically resize if the :scale-factor slot is changed.

It is an instance of aggregadget, and interactors can be defined as in aggregadgets.

[Customizable slots] (same as for aggregraphs except for the following):

:scale-factor – A multiplier of full size which determines the final size of the
graph (e.g. 1 causes the graph to be full size, 0.5 causes the graph to be half of
full size, etc.) The full size of the graph is determined by the size of the node
prototypes and layout of the nodes.

:node-prototype – Must be able to set the :width and :height, otherwise the
same as in aggregraph. These slots must have initial values which will be used
as their default value (i.e. the width and height of the nodes is :scale-factor
* the values in :height and :width slots respectively.

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 387

:link-prototype – Position and size must depend on the nodes it is attached
to (by the :from and :to slots) with formulas.

:h-spacing and :v-spacing are the default values. The actual values are
:scale-factor * these values.

Read-only slots

The same read-only slots are available as with aggregraph (see section [aggregraph-slots],
page 384).

Methods (can be overridden)

The same methods are available as with aggregraph (see section [aggregraph-slots],
page 384).

7.16 Scalable Aggregraph Image

Features and operation of Scalable Aggregraph Image

This is designed to show another view of an existing aggregraph. This image is created
with the same shape as the original, i.e. the size of nodes and relative positions are
in proportion to the original. The proportion is determined by the :scale-factor or
:desired-height and :desired-width slots.

The size and shape are determined by Garnet formulas. This has the effect of main-
taining the likeness to the original even as the original is manipulated and changed.

The default prototypes (in particular the node prototype), are designed for the image
to be used as an overview of a graph which perhaps doesn’t fit on the screen. This is
why no text is displayed in nodes, for example. This is not the only use of the gadget,
especially if the prototypes are changed.

Customizable slots

:left, :top – The position of the aggregraph. Default is 0,0.

:desired-width and :desired-height – Desired width and height of the entire
graph. The graph will be scaled to fit inside these maximums.

:source-aggregraph – The aggregraph to make an image of.

:scale-factor – A multiplier of full size which determines the final size of
the graph (e.g. 1 causes the graph to be the same size as the source aggre-
graph, 0.5 causes the graph to be half the size, etc.) Scale-factor overrides the
:desired-width and :desired-height slots if all are specified. The default
value is 1.

:node-prototype – Garnet object for node prototype, or a list of prototypes (in
which case a :node-prototype-selector-function must be provided–see be-
low). The :width, :height, :left and :top slots must all be settable, and the
node size and position must depend on these slots. They will all be overridden
with formulas in the created instances. The :corresponding-node slot is set to
the corresponding node in the source aggregraph. The default node-prototype
is a roundtangle proportional to the bounding box of the corresponding node
in the source aggregraph (because of the formulas).

Chapter 7: Aggregadgets, Aggrelists & Aggregraphs 388

:link-prototype – Same as in aggregraph, except the :corresponding-link
slot is set to the corresponding link in the source aggregraph and there is no
:from or :to slot. The :x1, :y1, :x2 and :y2 slots of the link must all be
settable, and the link endpoints must depend on their values. They will all be
overridden with formulas in the created instances. The default link-prototype
is a line.

:node-prototype-selector-function – A function which takes the
appropriate corresponding-node and the list of prototypes provided in the
:node-prototype slot and returns one of the prototypes. Will only be used if
the value in the :node-prototype slot is a list.

:link-prototype-selector-function – A function which takes the
corresponding-link and the list of prototypes provided in the :link-prototype
slot and returns one of the prototypes. Will only be used if the value in the
:link-prototype slot is a list.

:interactors – Specified in the same format as aggregadgets.

Read-only slots

The same read-only slots are available as with aggregraph except :graph-roots (see section
[aggregraph-slots], page 384).

Methods (probably shouldn’t be overridden)

The methods of a scalable-aggregraph-image call the methods of the source aggregraph,
and changes are reflected in the image. If the methods of the source graph are called directly,
the changes will also be reflected.

When this aggregraph image is created, pointers are created in the source aggregraph and
all of its nodes and links to the corresponding image graph, nodes and links. These point-
ers are added to a list in the slot :image-graphs, :image-nodes and :image-links of
the aggregraph, nodes and links. Pointers from the image to the source are in the slots
:source-aggregraph, :source-node and :source-link as indicated below. These links
are used by the methods (both in this gadget and in the two gadgets described above) to
maintain the image.

7.17 Customizing the :layout-graph Function

NOTE: Writing a customized layout function is a formidable task that few users will want
to try. This section is provided for programmers whose aggregraph application requires a
graph layout that is not suited to the default tree layout function.

The function stored in :layout-graph computes the locations for all of the nodes and links
of the graph. It takes the graph as its argument, and the returned value is ignored. All
nodes have been created with their height and width, and are connected to the appropriate
links and nodes, before the function is called.

The default layout function is layout-tree defined in Opal. This function can be called
repeatedly on the graph, but may drastically change the look of the graph (if a series of
adds and deletes were done before the relayout). Features of layout-tree are:

It works best for trees and DAGs which are tree-like (i.e. DAGs in which the width
becomes larger toward the leaves).

389

It takes linear time in the number of nodes.

Children are treated as unordered.

Add and delete (both nodes and links) attempt to minimally change the graph.

If a new layout function is written without regard to the bookkeeping slots or the various
methods associated with the aggregraph, the other methods will work with the new layout
function but will probably not keep the graph looking as nice as possible.

With the default link prototypes it is only necessary to place the nodes, because the links
attach to the nodes automatically with Garnet formulas. (Note that the default links are
designed for a left to right layout of the graph. If a different layout is desired another
prototype may be desired. Of course, formulas can still be used rather than explicitly
placing each link.)

In general, the other graph methods may need to maintain or use the same bookkeeping
information as the layout function. For example, add-node and delete-node both affect
the ":layout-info-" slots used by the default layout function. (Specifically they add or
delete rectangles respectively from the object stored in the :layout-info-rect-conflict-
object slot of the graph object. This object keeps track of all rectangles (nodes) placed
on the graph and when queried with a new rectangle returns any stored rectangles that
it overlaps.) When redefining the layout function, it may be necessary to redefine these
functions.

390

8 Garnet Gadgets

by Andrew Mickish, Brad A. Myers, Rajan Parthasarathy,

14 May 2020

8.1 Abstract

The Garnet Gadget Set contains common user interface objects which can be customized
for use in an interface. Because the objects are extremely versatile, they may be employed
in a wide range of applications with a minimum of modification. Examples of provided
gadgets include menus, buttons, scroll bars, sliders, and gauges.

8.2 Introduction

Many user interfaces that span a wide variety of applications usually have several elements
in common. Menus and scroll bars, for example, are used so frequently that an interface
designer would waste considerable time and effort recreating those objects each time they
were required in an application.

The intent of the Garnet Gadget Set is to supply several frequently used objects that can
be easily customized by the designer. By importing these pre-constructed objects into a
larger Garnet interface, the designer is able to specify in detail the desired appearance and
behavior of the interface, while avoiding the programming that this specification would
otherwise entail.

This document is a guide to using the Gadget Set. The objects were constructed using the
complete Garnet system, and their descriptions assume that the reader has some knowledge
of KR, Opal, Interactors, and Aggregadgets.

8.3 Current Gadgets

Most of the gadgets described in this chapter are pictured in figures [scroll-group], page 391,
through [db-group], page 397,

Chapter 8: Garnet Gadgets 391

0

2

0 2 4 6 8 10

25

6

0

2

4

6

8

10

10

8

64

2

0

Gauge

0

(a) (b)

(c)

(d)

(e)

(f)

3

10

8

64

2

0

Gauge

20

(j)

(g) (h)

(i)

(k)

Figure 8.1: The Garnet-style and Motif-style scroll bars, sliders, and gauges. [(a)]
v-scroll-bar,
[(b)] v-slider, [(c)] gauge, [(d)] trill-device, [(e)] h-scroll-bar, [(f)]
h-slider,
[(g)] motif-v-scroll-bar, [(h)] motif-slider, [(i)] motif-gauge, [(j)] motif-

trill-device, [(k)] motif-slider

Chapter 8: Garnet Gadgets 392

0

Gadgets used to choose a value from a range of values

v-scroll-bar - Vertical scroll bar (p. [scroll-bars], page 407)

v-slider - Vertical slider (same idea as a scroll bar, but with a tic-marked
shaft rather than a rectangular bounding box) (p. [sliders], page 410)

gauge - Semi-circular gauge (the needle on the gauge may be moved to
select a value) (p. [gauge], page 418)

trill-device - Number input box with increment/decrement trill boxes
(p. [trill-device], page 414)

h-scroll-bar - Horizontal scroll bar (p. [scroll-bars], page 407)

h-slider - Horizontal slider (p. [sliders], page 410)

motif-v-scroll-bar - Vertical scroll bar (p. [motif-scroll-bars], page 513)

motif-slider - Vertical slider (same idea as a scroll bar, but with text
beside the indicator showing the current value) (p. 〈undefined〉 [motif-
slider], page 〈undefined〉)

motif-gauge - Semi-circular gauge (p. [motif-gauge], page 520)

motif-trill-device - Number input with trill boxes (p. [motif-trill-
device], page 519)

motif-h-scroll-bar - Horizontal scroll bar (p. [motif-scroll-bars],
page 513)

Chapter 8: Garnet Gadgets 393

Title
Label1

Label2

Label3

Title
Label1

Label2

Label3

Label4

Label1 Label2 Label3

Label1

Label2

Label3

Label1

Label2

Label3

Color: Red

Family Face Size

(a)

(b)
(c) (d)

(e)

(f) (g)

(h)

Fixed

Serif

Sans-Serif

Label1

Label2

Label3

Label4

Label1

Label2

Label3

Label4

Label1

Label2

Label3

Label1 Label2 Label3

Label1 Label2 Label3

Color: Blue Color:

Family Face Size (i)

(j) (k) (l)

(m)

(n)

(o)

Red

Blue

Green

Figure 8.2: The Garnet-style and Motif-style buttons and menus. (a) menubar,
(b) popup-menu-button, (c) menu, (d) scrolling-menu, (e) text-button-panel,
(f) x-button-panel, (g) radio-button-panel, (h) option-button,
(i) motif-menubar, (j) motif-menu, (k) motif-scrolling-menu,
(l) motif-text-button-panel, (m) motif-check-button-panel,
(n) motif-radio-button-panel, (o) motif-option-button in its unselected and selected
state

Chapter 8: Garnet Gadgets 394

Gadgets used to choose items from a list of possible choices

menubar - A pull-down menu (p. [menubar], page 438)

popup-menu-button - A button which pops up a menu when pressed. The
appearance of the button does not change with the selection. (p. [popup-
menu-button], page 429)

menu - Vertical menu, single selection (p. [menu], page 432)

scrolling-menu - A menu with a scroll bar on one side, which allows a
subset of all items in the menu to be viewed. (single or multiple selection)
(p. [scrolling-menu], page 435)

text-buttons - A panel of rectangular buttons, each with a choice centered
inside the button. As an option, the currently selected choice may appear in
inverse video. (single selection) (p. [buttons], page 420, and [text-buttons],
page 422)

x-buttons - A panel of square buttons, each with a choice beside the
button. An "X" appears inside each currently selected button. (multiple
selection) (p. [buttons], page 420, and [x-buttons], page 423)

radio-buttons - A panel of circular buttons, each with a choice beside the
button. A black circle appears inside the currently selected button. (single
selection) (p. [buttons], page 420, and [radio-buttons], page 425)

option-button - A button which pops up a menu when pressed. Selection
of a choice from the menu causes that item to appear as the new label of
the button. (p. [option-button], page 426)

motif-menubar - A pull-down menu. (p. [motif-menubar], page 538)

motif-menu - Vertical menu, single selection (p. [motif-menu], page 531)

motif-scrolling-menu - A menu with an attached scroll bar. (p. [motif-
scrolling-menu], page 535)

motif-text-buttons - A panel of rectangular buttons, each with a
choice appearing inside the button. (single selection) (p. [motif-buttons],
page 524, and [motif-text-buttons], page 525)

motif-check-buttons - A panel of square buttons, each with a choice
beside the buttons. (multiple selection) (p. [motif-buttons], page 524, and
[motif-check-buttons], page 527)

motif-radio-buttons - A panel of diamond buttons, each with a choice
beside the button. (single selection) (p. [motif-buttons], page 524, and
[motif-radio-buttons], page 528)

motif-option-button - A button which pops up a menu when pressed.
Selection of a choice from the menu causes that item to appear as the new
label of the button. (p. [motif-option-button], page 529)

Chapter 8: Garnet Gadgets 395

Title: Labeled-box

Title: Scrolling-labele ...

Scrolling-input-str ...(a)

(b)

(c)

Label: otif-scrolling-l (d)

The multifont-gadget
combines the multifont
objects and interactors
in a gadget that allows
text editing with word-
wrap

(e)

Figure 8.3: Text gadgets. (a) labeled-box, (b) scrolling-labeled-box,
(c) scrolling-input-string, (d) motif-scrolling-labeled-box,
(e) multifont-gadget

Chapter 8: Garnet Gadgets 396

Gadgets used to handle text input

labeled-box - A framed text object that may be edited. As the string
gets longer, the frame expands. (p. [labeled-box], page 447)

scrolling-labeled-box - A scrolling input string in a box with a label.
The frame stays fixed, and the string scrolls. (p. [scrolling-labeled-box],
page 450)

scrolling-input-string - Input a text string, but using a fixed width
area and scroll the string horizontally if necessary. (p. [scrolling-input-
string], page 448)

motif-scrolling-labeled-box - A labeled box with text inside that may
be edited. (p. [motif-scrolling-labeled-box], page 546)

multifont-gadget - A text editing gadget that includes word wrap, text
selection, and many functions that allow manipulation of the text. This
gadget is discussed in the Opal chapter.

Chapter 8: Garnet Gadgets 397

(b)

(c)

OK Apply Cancel

FILLING-STYLE:
LINE-STYLE:

QUALITY: :GOOD :MEDIUM :BAD
TOP: 0
LEFT: 0

(d)

Is that OK?

OK CANCEL

There was an error

OK

Directory: /usr/amickish/

.Xdefaults~

.cshrc

.cshrc~

garnet

doc

.Xdefaults

Filename:

Save Cancel (a)

Figure 8.4: Garnet dialog boxes. (a) motif-save-gadget, (b) error-gadget,
(c) motif-query-gadget, (d) motif-prop-sheet-with-OK

Dialog boxes for reading and writing to files (the motif-save-gadget is pictured in
figure [db-group], page 397)

Chapter 8: Garnet Gadgets 398

save-gadget - Saves a file in a directory whose contents are displayed in
a scrolling menu. (p. [save-gadget], page 483)

load-gadget - Loads a file from a directory whose contents are displayed
in a scrolling menu. (p. [load-gadget], page 489)

motif-save-gadget - Saves a file in a directory whose contents are dis-
played in a Motif style scrolling menu. (p. [motif-save-gadget], page 550)

motif-load-gadget - Loads a file from a directory whose contents are
displayed in a Motif style scrolling menu. (p. [motif-load-gadget], page 551)

Dialog boxes for reporting errors to the user and asking for user input (the
error-gadget and motif-query-gadget are pictured in figure [db-group], page 397).

error-gadget - Used to display error messages in a window with an "OK"
button (p. [error-gadget], page 479)

query-gadget - A dialog box like the error-gadget, but with multiple
buttons and the ability to return values. (p. [query-gadget], page 483)

motif-error-gadget - A dialog box used to display error messages with
an "OK" button in the Motif style. (p. [motif-error-gadget], page 548)

motif-query-gadget - A Motif style dialog box with multiple buttons. (p.
[motif-query-gadget], page 549)

Property sheet gadgets (a Motif property sheet is pictured in figure [db-group],
page 397)

prop-sheet - Displays a set of labels and values and allows the values to
be edited. This gadget can be easily displayed in its own window. (p.
[propertysheets], page 490)

prop-sheet-for-obj - A property sheet designed to display the slots in a
Garnet object. (p. [propsheetforobj], page 494)

prop-sheet-with-OK - A property sheet with OK-Cancel buttons. (p.
[propsheetwithok], page 499)

prop-sheet-for-obj-with-OK - A property sheet designed to display
the slots in a Garnet object with attached OK-Cancel buttons. (p.
[propsheetforobjwithok], page 500)

motif-prop-sheet-with-OK - A property sheet with OK-Cancel buttons
in the Motif style. (p. [motif-prop-sheets], page 552)

motif-propt-sheet-for-obj-with-OK - A Motif style property sheet de-
signed to display the slots in a Garnet object with attached OK-Cancel
buttons. (p. [motif-prop-sheet-for-obj-with-ok], page 553)

Scrolling windows

scrolling-window - Supports a scrollable window (p. [scrolling-windows],
page 462)

scrolling-window-with-bars - Scrolling window complete with scroll
bars. (p. [scrolling-windows], page 462)

motif-scrolling-window-with-bars - Motif style scrolling window (p.
[motif-scrolling-window], page 557)

Chapter 8: Garnet Gadgets 399

Special gadgets

arrow-line - A line with an arrowhead at one end (p. [arrow-line],
page 469)

double-arrow-line - A line with arrowheads at both ends (p. [double-
arrow-line], page 469)

browser-gadget - Used to examine structures and hierarchies (p. [browser-
gadget], page 470)

graphics-selection - Bounding boxes and interactors to move and
change the size of other graphical objects. (p. [graphics-selection],
page 451)

multi-graphics-selection - Same as graphics-selection, but for mul-
tiple objects. (p. [multi-gs], page 455)

polyline-creator - For creating and editing polylines. (p. [polyline-
creator], page 476)

MouseLine and MouseLinePopup - A gadget that pops up a "help" string,
informing the user about the object that the mouse is held over.

standard-edit - A module of predefined "cut" and "paste" procedures,
and many other common editing functions. (p. [standardeditsec], page 505)

8.4 Customization

is the ability to create a variety of interface styles from a small collection of prototype
objects. Each gadget includes many parameters which may be customized by the designer,
providing a great deal of flexibility in the behavior of the gadgets. The designer may,
however, choose to leave many of the default values unchanged, while modifying only those
parameters that integrate the object into the larger user interface.

The location, size, functionality, etc., of a gadget is determined by the values in each of its
slots. When instances of gadgets are created, the instances inherit all of the slots and slot
values from the prototype object except those slots which are specifically assigned values
by the designer. The slot values in the prototype can thus be considered "default" values
for the instances, which may be overridden when instances are created.1 The designer may
also add new slots not defined in the gadget prototype for use by special applications in the
larger interface. Slot values may be changed after the instances are created by using the
KR function s-value.

8.5 Using Gadget Objects

The gadget objects reside in the GARNET-GADGETS package, which has the nickname "GG".
We recommend that programmers explicitly reference the name of the package when cre-
ating instances of the gadgets, as in garnet-gadgets:v-scroll-bar or gg:v-scroll-bar.
However, the package name may be dropped if the line (use-package "GARNET-GADGETS")

is executed before referring to gadget objects.

1 See the KR chapter for a more detailed discussion of inheritance.

Chapter 8: Garnet Gadgets 400

Before creating instances of gadget objects, a set of component modules must be loaded.
These modules are loaded in the correct order when the "-loader" files corresponding to the
desired gadgets are used (see Chapter [accessing], page 404).

Since each top-level object is exported from the GARNET-GADGETS package, creating instances
of gadget objects is as easy as instantiating any other Garnet objects. To use a gadget,
an instance of the prototype must be defined and added to an interactor window. The
following lines will display a vertical scroll bar in a window:

(create-instance ’MY-WIN inter:interactor-window

(:left 0) (:top 0) (:width 300) (:height 500))

(create-instance ’MY-AGG opal:aggregate)

(s-value my-win :aggregate my-agg)

(create-instance ’MY-SCROLL-BAR garnet-gadgets:v-scroll-bar)

(opal:add-component my-agg my-scroll-bar)

(opal:update my-win)

interactor window named my-win and an aggregate named my-agg. The third instruction
sets the :aggregate slot of my-win to my-agg, so that all graphical objects attached to
my-agg will be shown in my-win. The next two instructions create an instance of the
v-scroll-bar object named my-scroll-bar and add it as a component of my-agg. The
last instruction causes my-win to become visible with my-scroll-bar inside.

In most cases, the use of a gadget will follow the same form as the preceding example. The
important difference will be in the instantiation of the gadget object (the fifth instruction
above), where slots may be given values that override the default values defined in the
gadget prototype. The following example illustrates such a customization of the vertical
scroll bar.

Suppose that we would like to create a vertical scroll bar whose values span the interval
[0..30], with its upper-left coordinate at (25,50). This vertical scroll bar may be created by:

(create-instance ’CUSTOM-BAR garnet-gadgets:v-scroll-bar

(:left 25)

(:top 50)

(:val-1 0)

(:val-2 30))

CUSTOM-BAR which is an instance of v-scroll-bar. The vertical scroll bar CUSTOM-
BAR has inherited all of the slots that were declared in the v-scroll-bar prototype along
with their default values, except for the coordinate and range values which have been spec-
ified in this schema definition (see section [scroll-bars], page 407, for a list of customizable
slots in the scroll bar objects).

8.6 Application Interface

There are several ways that the gadgets can interface with your application. This section
describes several ways the you can get the gadgets to "do something" to your application.

8.6.1 The :value slot

In most gadgets, there is a top-level :value slot. This slot is updated automatically after
a user changes the value or position of some part of the gadget. This is therefore the main
slot through which the designer perceives action on the part of the user.

Chapter 8: Garnet Gadgets 401

The :value slot may be accessed directly (by the KR functions gv and gvl) order to make
other objects in the larger interface dependent on the actions of the user. The slot may
also be set directly by the KR function s-value to change the current value or selection
displayed by the gadget (except in the scrolling menu gadget, where the :selected-ranks
slot must be set).

An instance of a gadget can be given initial values by setting the :value slot after the
instance has been created. In most gadgets, this slot may not be given a value in the
create-instance call, since this would override the formula in the slot. Therefore, the
general procedure for selecting an initial value in a gadget is to create the instance, access
the :value slot using gv (to initialize the formula in the slot and establish dependencies),
and then use s-value to set the slot to the desired initial value.

See sections [use-value], page 560, and [sel-buttons], page 561, for examples of the :value

slot in use.

8.6.2 The :selection-function slot

In most gadgets there is a :selection-function slot which holds the name of a function to
be called whenever the :value slot changes due to action by the user (such as the pressing
of a button). The :selection-function is not automatically called when the designer’s
interface sets the :value slot directly.

This is probably the most important link between the gadgets and your application. By
supplying a gadget with a selection function, then the gadget can execute some application-
specific procedure when the user operates it.

In the scroll bars, sliders, trill device, and gauge, this function is called after the user
changes the value by moving the indicator or typing in a new value (the function is called
repeatedly while the user drags an indicator). In buttons and menus, it is called when
the user changes the currently selected item or set of items, and it precedes the function
attached locally to the item. In the labeled box, scrolling-input-string and scrolling-labeled-
box, it is called after the user has finished editing the text (i.e., after a carriage return).
In the :graphics-selection gadget, it is called whenever the user selects a new object or
deselects the current object.

In the scrolling menu gadget, there are two selection functions, named :scroll-selection-

function and :menu-selection-function which are called independently when the user
moves the scroll bar or selects a menu item, respectively.

The function must take two parameters: the top-level gadget itself and the value of the
top-level :value slot:

(lambda (gadget-object value))

In x-buttons, the parameter value will be a list of strings. The scrolling menu sends the
menu item (a Garnet schema) on which the user just clicked as its value. Other gadgets
will have only a single number or string as their value.

An example use of :selection-function is in section [use-selection], page 560.

8.6.3 The :items slot

The button and menu gadgets are built up from items supplied by the designer. These
items are supplied as a list in the :items slot of the gadgets. Note: Do not destructively

Chapter 8: Garnet Gadgets 402

modify the :items list; instead, create a new list using list or copy the old value with
copy-list and modify the copy.

8.6.4 Item functions

There are several ways to specify items:

List of strings - This is the obvious case, such as ’("Open" "Close" "Erase").

List of atoms - In Garnet, the values of slots are often specified by atoms – symbols
preceded by a colon (e.g., :center). If a formula in the larger interface depends upon
the :value slot of the button panel, then the designer may wish the items to be actual
atoms rather than strings, so that the value is immediately used without being coerced.
Such a list would look like ’(:left :center :right). The items will appear to the
user as capitalized strings without colons.

List of objects - In addition to string labels, the gadgets can have labels that are
objects (like circles and rectangles). Such a list might look like ‘(,MY-CIRCLE ,MY-

SQUARE ,OBJ3). Objects, strings, and atoms can be mixed together in any :items list.
Most of the demo functions for the gadgets use at least one object in the example.

List of label/function pairs - This mode is useful when the designer wishes to exe-
cute a specific function upon selection of a button. If the :items slot contained the
list ’(("Cut" My-Cut) ("Paste" My-Paste)), then the function My-Cut would be ex-
ecuted when the button labeled "Cut" becomes selected. The designer must define
these functions with two parameters:

(lambda (gadget-object item-string))

The gadget-object is the top-level gadget (such as a text-button-panel) and the item-
string is the string (or atom) of the item that was just selected.

The item functions are executed along with the selection function whenever the user operates
the gadget. These functions are different, however, because the selection function is executed
when any item is selected, and the item functions are only executed when the item associated
with them is selected.

The gadgets always assume that if an element of the :items list is a list, then the first
element in the item is a label and the second element is a function. If you intend to use
the :items list for storing application-specific data, you should avoid storing data in these
reserved positions of the item elements. It is fine to store arbitrary data in the third and
subsequent elements of an item list.

Section [use-item-fn], page 561, shows an example implementation of item functions.

8.6.5 Adding and removing items

There are two ways to add and remove items from a button or menu gadget: use add-item
and remove-item to change the :items list, or set the :items slot by hand using s-value.
Both ways to change items are shown in the example below.

The various methods for changing items are

opal:Add-Item gadget item [[:where] position[locator] [:key function-name]]〈un
defined〉 [method], page 〈undefined〉

Chapter 8: Garnet Gadgets 403

opal:Remove-Item gadget [item [:key function-name]]〈undefined〉 [method],

page 〈undefined〉

opal:Remove-Nth-Item gadget n〈undefined〉 [method], page 〈undefined〉

opal:Change-Item gadget item n〈undefined〉 [method], page 〈undefined〉
These methods are described in the Aggregadgets chapter. Add-item will add item to the
:items list of gadget, and will place it in the list according to the position, locator, and key
parameters.

All gadgets that have an :items slot support add-item and the other methods (except for
the browser-gadget, which has other item maintenance functions). The documentation
for the menubar and motif-menu describes special features supported by those gadgets.

For example, consider adding an item to the X-BUTTONS-OBJ in the x-button-panel

demo.

; Use opal:add-item in one step

(opal:add-item gg:X-BUTTONS-OBJ "newitem-1")

; Use s-value (directly or indirectly)

(push "newitem-2" (gv gg:X-BUTTONS-OBJ :items))

The push function uses s-value indirectly. S-value may also be used explicitly. After
changing the :items list with s-value, the components of the gadget (like the individual
buttons in a button panel) will be adjusted during the next call to opal:update. If infor-
mation about the gadget (like its new dimensions) is required before the next update, the
components can be adjusted chapterly with a call to opal:notice-items-changed with
the gadget as a parameter. See the Aggregadgets Chapter for more information about
opal:notice-items-changed.

Because of internal references to the :items slot, destructive modification of the :items

list is not allowed. If you change the list in the :items slot, you should create a new list
(e.g., with list), or use copy-list on the original, and destructively modify the copy.

8.7 Constants with the Gadgets

At the top of most gadget definitions, there is a slot called :maybe-constant with a list
of slots as its value. These are the slots that will be declared constant in an instance of a
gadget, if the instance was created with its :constant slot set to T. By declaring a slot
constant, the user promises that the value of that slot will never change, and all formulas
that depend on it can be thrown away and replaced by absolute values.

Removing formulas that depend on constant slots can free up a large amount of storage
space. Therefore, users who have finished designing part of an interface may want to go
back through their gadget instances and delclare constant as many slots as possible.

In addition to using the special T value in a :constant list, you can selectively declare slots
constant by listing them explicitly (e.g., (:constant ’(:left :top))). You can also use
the :except keyword, as in the following schema:

(create-instance NIL gg:motif-radio-button-panel

(:constant ’(T :except :active-p))

Chapter 8: Garnet Gadgets 404

(:left 10)(:top 30)

(:items ’("Start" "Pause" "Quit")))

In this example, the user declares constant all of the slots in the :maybe-constant list, with
the exception of :active-p. This allows the value of the :active-p slot to change, and
retains all the formulas that depend on it (so that the gadget will update its appearance
correctly when the value is toggled).

Constants are discussed in detail in the KR chapter.

8.8 Accessing the Gadgets

8.9 Gadgets Modules

package are modularized so that one schema may be used by several objects. For example,
trill boxes with arrows pointing to the left and right are used in the horizontal scroll bar,
the horizontal slider, and the trill device. As a result, all of the code for the gadget objects
has a consistent style, and the gadgets themselves have a uniform look and feel.

8.10 Loading the Gadgets

Since much of the gadget code is shared by the top-level objects, a set of "parts" modules
must be loaded before some of the top-level gadgets. The required modules are loaded in
the proper order when the loader files corresponding to the desired gadgets are used. The
standard gadgets and their associated loader files are listed in figure [loader-files-figure],
page 405. The motif gadgets and loader files appear in figure [motif-loader-files-figure],
page 406. It is safe to load the "xxx-loader" files multiple times, they will not re-load the
objects the second time.

Chapter 8: Garnet Gadgets 405

arrow-line - "arrow-line-loader"

browser-gadget - "browser-gadget-loader"

double-arrow-line - "arrow-line-loader"

error-gadget - "error-gadget-loader"

gauge - "gauge-loader"

graphics-selection - "graphics-loader"

h-scroll-bar - "h-scroll-loader"

h-slider - "h-slider-loader"

labeled-box - "labeled-box-loader"

load-gadget - "save-gadget-loader"

menu - "menu-loader"

menubar - "menubar-loader"

MouseLine and MouseLinePopup - "mouseline-loader"

multifont-gadget - "multifont-loader"

multi-graphics-selection - "multi-selection-loader"

option-button - "option-button-loader"

popup-menu-button - "popup-menu-button-loader"

prop-sheet - "prop-sheet-loader"

prop-sheet-for-obj - "prop-sheet-loader"

prop-sheet-for-obj-with-OK - "prop-sheet-win-loader"

prop-sheet-with-OK - "prop-sheet-win-loader"

query-gadget - "error-gadget-loader"

radio-button - "radio-buttons-loader"

radio-button-panel - "radio-buttons-loader"

save-gadget - "save-gadget-loader"

scrolling-input-string - "scrolling-input-string-loader"

scrolling-labeled-box - "scrolling-labeled-box-loader".

scrolling-menu - "scrolling-menu-loader"

scrolling-window - "scrolling-window-loader"

scrolling-window-with-bars - "scrolling-window-loader"

standard-edit - "standard-edit-loader"

text-button - "text-buttons-loader"

text-button-panel - "text-buttons-loader"

trill-device - "trill-device-loader"

v-scroll-bar - "v-scroll-loader"

v-slider - "v-slider-loader"

x-button - "x-buttons-loader"

x-button-panel - "x-buttons-loader"

Figure 8.5: Loader files for Garnet Gadgets

Chapter 8: Garnet Gadgets 406

motif-check-button - "motif-check-buttons-loader"

motif-check-button-panel - "motif-check-buttons-loader"

motif-error-gadget - "motif-error-gadget-loader"

motif-gauge - "motif-gauge-loader"

motif-h-scroll-bar - "motif-h-scroll-loader"

motif-load-gadget - "motif-save-gadget-loader")

motif-menu - "motif-menu-loader"

motif-menubar - "motif-menubar-loader"

motif-option-button - "motif-option-button-loader"

motif-prop-sheet-... - "motif-prop-sheet-win-loader"

motif-query-gadget - "motif-error-gadget-loader"

motif-radio-button - "motif-radio-buttons-loader"

motif-radio-button-panel - "motif-radio-buttons-loader"

motif-save-gadget - "motif-save-gadget-loader"

motif-scrolling-labeled-box - "motif-scrolling-labeled-box-loader"

motif-scrolling-menu - "motif-scrolling-menu-loader"

motif-scrolling-window-with-bars - "motif-scrolling-window-loader"

motif-slider - "motif-slider"

motif-text-button - "motif-text-buttons-loader"

motif-text-button-panel - "motif-text-buttons-loader"

motif-trill-device - "motif-trill-device-loader"

motif-v-scroll-bar - "motif-v-scroll-loader"

Figure 8.6: Loader files for Motif Gadgets

To load the entire Gadget Set, execute (load Garnet-Gadgets-Loader) after loading the
Garnet-Loader. This is not recommended, since there are so many gadgets, and you will
only need a few of them! To load particular objects, such as the v-slider and menu gadgets,
load the specific loader files:

(garnet-load "gadgets:v-slider-loader")

(garnet-load "gadgets:menu-loader")

For a discussion of the garnet-load function, see the Overview at the beginning of this
reference chapter.

8.11 Gadget Files

There are several gadgets files that normally have names that are longer than 31 characters.
Since the Mac restricts the length of filenames to 31 characters, some gadget files have their
names truncated on the Mac. Mac users may continue to specify the full-length names of
these files by using user::garnet-load, described in the Overview section of this chapter,
which translates the regular names of the gadgets into their truncated 31-character names
so they can be loaded. It is recommended that garnet-load be used whenever any Garnet

Chapter 8: Garnet Gadgets 407

file is loaded, so that typically long and cumbersome pathnames can be abbreviated by a
short prefix.

8.12 Gadget Demos

Most gadgets have small demo functions that are loaded along with their schema defini-
tions.2 For example, after loading the "v-slider-loader", you can do gg:v-slider-go

to see a demo of the vertical slider.

A complete list of all gadget demos is included in the Demonstration Programs section of
this reference chapter. The names of all gadget demos are also mentioned at the top of each
section in this Gadget chapter.

8.13 The Standard Gadget Objects

Each of the objects in the Gadget Set is an interface mechanism through which the designer
obtains chosen values from the user. The scroll bars, sliders, gauge, and trill device all
have a "continuous" flavor, and are used to obtain values between maximum and minimum
allowed values. The buttons and menus are more "discrete", and allow the selection of a
single choice from several alternatives.

The sections of this chapter describe the gadgets in detail. Each object contains many
customizable slots, but the designer may choose to ignore most of them in any given appli-
cation. If slot values are not specified when instances are created, then the default values
will be used.

Each description begins with a list of the customizable slots and default values for the
gadget object.

8.14 Scroll Bars

(create-instance ’gg:V-Scroll-Bar opal:aggregadget

(:maybe-constant ’(:left :top :height :min-width :val-1 :val-2 :scr-trill-p

:page-trill-p :indicator-text-p :page-incr :scr-incr

:int-feedback-p :scroll-p :format-string :indicator-font

:visible))

(:left 0)

(:top 0)

(:height 250)

(:min-width 20)

(:val-1 0)

(:val-2 100)

(:scr-incr 1)

(:page-incr 5)

(:scr-trill-p T)

(:page-trill-p T)

(:indicator-text-p T)

(:int-feedback-p T)

2 Unless the :garnet-debug key was removed from from the *features* list when the Garnet software was
compiled or loaded (see the Hints chapter).

Chapter 8: Garnet Gadgets 408

(:scroll-p T)

(:indicator-font (opal:get-standard-font :fixed :roman :small))

(:value (o-formula ...))

(:format-string "~a")

(:selection-function NIL) ; (lambda (gadget value))

)

(create-instance ’gg:H-Scroll-Bar opal:aggregadget

(:maybe-constant ’(:left :top :width :min-height :val-1 :val-2 :scr-trill-p

:page-trill-p :indicator-text-p :page-incr :scr-incr

:int-feedback-p :scroll-p :format-string :indicator-font :visible))

(:left 0)

(:top 0)

(:width 250)

(:min-height 20)

(:val-1 0)

(:val-2 100)

(:scr-incr 1)

(:page-incr 5)

(:scr-trill-p T)

(:page-trill-p T)

(:indicator-text-p T)

(:int-feedback-p T)

(:scroll-p T)

(:indicator-font (create-instance NIL opal:font (:size :small)))

(:value (o-formula ...))

(:format-string "~a")

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 409

42

24

Figure 8.7: Vertical and horizontal scroll bars

The loader file for the v-scroll-bar is "v-scroll-loader". The loader file for the h-scroll-
bar is "h-scroll-loader".

Chapter 8: Garnet Gadgets 410

The scroll bar is a common interface object used to specify a desired position somewhere
in a range of possible values. The distance of the indicator from the top and bottom of
its bounding box is a graphical representation of the currently chosen value, relative to the
minimum and maximum allowed values.

The scroll bars in the Gadget Set, v-scroll-bar and h-scroll-bar, allow the interface
designer to specify the minimum and maximum values of a range, while the :value slot
is a report of the currently chosen value in the range. The interval is determined by the
values in :val-1 and :val-2, and either slot may be the minimum or maximum of the
range. The value in :val-1 will correspond to the top of the vertical scroll bar and the left
of the horizontal scroll bar. The :value slot may be accessed directly by some function in
the larger interface, and other formulas in the interface may depend on it. If the :value

slot is set directly, then the appearance of the scroll bar will be updated accordingly.

The trill boxes at each end of the scroll bar allow the user to increment and decrement
:value by precise amounts. The intent of the two sets of boxes is to give the user a choice
between increment values – either a conventional scroll of :scr-incr in the single arrow
box or :page-incr in the double arrow box. There is no restriction on whether one value
must be larger or smaller than the other.

In fact, the designer may choose to leave the trill boxes out completely. The slots
:scr-trill-p and :page-trill-p may be set to nil in order to prevent the appearance
of the scroll boxes or page boxes, respectively.

The indicator may also be moved directly by mouse movements. Dragging the indicator
while the left mouse button is pressed will cause a thick lined box to follow the mouse.
The indicator then moves to the position of this feedback box when the mouse button is
released. If :int-feedback-p is set to nil, the thick lined box will not appear, and the
indicator itself will follow the mouse. A click of the left mouse button in the background of
the scroll bar will cause the indicator to jump to the position of the mouse.

With each change of the indicator position, the :value slot is updated automatically to
reflect the new position. The current value is reported as a text string inside the indicator
unless the slot :indicator-text-p is set to nil.

Since the scroll bar must be wide enough to accommodate the widest text string in its range
of values, the width of the vertical scroll bar (and similarly the height of the horizontal
scroll bar) is the maximum of the width of the widest value and the :min-width. The
:min-width will be used if there is no indicator text (i.e., :indicator-text-p is nil), or
if the :min-width is greater than the width of the widest value.

The slot :scroll-p is used to enable and disable the scrolling feature of the scroll bar.
When :scroll-p is set to nil, the trill boxes of the scroll bar become inactive and the
background turns white. This ability to disable scrolling is useful in applications where the
range of the scroll bar is not fixed. For example, in the scrolling-menu gadget, the scroll
bar is disabled there are not enough items to fill the entire menu.

The font in which :value is reported in the indicator may be set in the slot
:indicator-font.

8.15 Sliders

(create-instance ’gg:V-Slider opal:aggregadget

Chapter 8: Garnet Gadgets 411

(:maybe-constant ’(:left :top :height :shaft-width :scr-incr :page-incr :val-1 :val-2

:num-marks :scr-trill-p :page-trill-p :tic-marks-p :enumerate-p

:value-feedback-p :scroll-p :value-feedback-font :enum-font

:format-string :enum-format-string :visible))

(:left 0)

(:top 0)

(:height 250)

(:shaft-width 20)

(:scr-incr 1)

(:page-incr 5)

(:val-1 0)

(:val-2 100)

(:num-marks 11)

(:scr-trill-p T)

(:page-trill-p T)

(:tic-marks-p T)

(:enumerate-p T)

(:value-feedback-p T)

(:scroll-p T)

(:value-feedback-font opal:default-font)

(:enum-font (create-instance NIL opal:font (:size :small)))

(:format-string "~a")

(:enum-format-string "~a")

(:value (o-formula ...))

(:selection-function NIL) ; (lambda (gadget value))

)

(create-instance ’gg:H-Slider opal:aggregadget

(:maybe-constant ’(:left :top :width :shaft-height :scr-incr :page-incr :val-1 :val-2

:num-marks :tic-marks-p :enumerate-p :scr-trill-p :page-trill-p

:scroll-p :value-feedback-p :value-feedback-font :enum-font

:format-string :enum-format-string :visible))

(:left 0)

(:top 0)

(:width 300)

(:shaft-height 20)

(:scr-incr 1)

(:page-incr 5)

(:val-1 0)

(:val-2 100)

(:num-marks 11)

(:tic-marks-p T)

(:enumerate-p T)

(:scr-trill-p T)

(:page-trill-p T)

(:value-feedback-p T)

(:scroll-p T)

Chapter 8: Garnet Gadgets 412

(:value-feedback-font opal:default-font)

(:enum-font (create-instance NIL opal:font (:size :small)))

(:format-string "~a")

(:enum-format-string "~a")

(:value (o-formula ...))

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 413

15

0

10

20

30

40

50
60

70

80

90

100

15

0 10 20 30 40 50

The loader file for the v-slider is "v-slider-loader". The loader file for the h-slider is
"h-slider-loader".

The v-slider and h-slider gadgets have the same functionality as scroll bars, but they
are used when the context requires a different style. The slider is comprised of a shaft with
perpendicular tic-marks and an indicator which points to the current chosen value. Optional
trill boxes appear at each end of the slider, and the indicator can be moved with the same
mouse commands as the scroll bar. The vertical slider has an optional feedback box above

Chapter 8: Garnet Gadgets 414

the shaft where the current value is displayed (this box is to the left of the horizontal slider).
The value that appears in the feedback box may be edited directly by the user by pressing
in the text box with the left mouse button and entering a new number.3

The slots :value, :val-1, :val-2, :scr-incr, :page-incr, :scr-trill-p, and
:page-trill-p all have the same functionality as in scroll bars (see section [scroll-bars],
page 407).

The designer may specify the number of tic-marks to appear on the shaft in the slot
:num-marks. This number includes the tic-marks at each end of the shaft in addition
to the internal tic-marks. Tic-marks may be left out by setting the :tic-marks-p slot
to NIL. If the slot :enumerate-p is set to T, then each tic-mark will be identified by its
position in the range of allowed values. Also, numbers may appear without tic-marks marks
by setting :enumerate-p to T and :tic-marks-p to nil. The slot in which to specify the
font for the tic-mark numbers is :enum-font.

The slot :shaft-width in the vertical slider (analogously, :shaft-height in the horizontal
slider) is used to specify the width of the trill boxes at the end of the shaft. This determines
the dimensions of the (invisible) bounding box for the interactors which manipulate the
indicator.

The slot :scroll-p is used to enable and disable the scrolling feature of the sliders, just
as in the scroll bars. When :scroll-p is set to nil, the trill boxes of the slider become
inactive, and the indicator ceases to move.

The font for the feedback of the current value (which appears at the end of the shaft) may
be specified in :value-feedback-font. The value feedback may be left out completely by
setting :value-feedback-p to nil.

The :format-string and :enum-format-string slots allow you to control the formatting
of the text strings, in case the standard formatting is not appropriate. This is mainly useful
for floating point numbers. The slots should each contain a string that can be passed to
the lisp function format. The default string is "~a".

8.16 Trill Device

(create-instance ’gg:Trill-Device opal:aggregadget

(:maybe-constant ’(:left :top :min-frame-width :min-height :scr-incr :page-incr

:val-1 :val-2 :scr-trill-p :page-trill-p :scroll-p

:value-feedback-p :format-string :value-feedback-font :visible))

(:left 0)

(:top 0)

(:min-frame-width 20)

(:min-height 20)

(:scr-incr 1)

(:page-incr 5)

(:val-1 0) (:val-2 100)

(:scr-trill-p T)

(:page-trill-p T)

3 Backspace and several editing commands are provided through Interactors. See "Text-Interactor" in the
Interactors chapter.

Chapter 8: Garnet Gadgets 415

(:scroll-p T)

(:value-feedback-p T)

(:value-feedback-font opal:default-font)

(:value 20)

(:format-string "~a")

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 416

20

The loader file for the trill-device is "trill-device-loader".

The trill-device is a compact gadget which allows a value to be incremented and decre-
mented over a range as in the scroll bars and sliders, but with only the numerical value
as feedback. All slots function exactly as in horizontal sliders, but without the shaft and
tic-mark features. As with sliders, the feedback value may be edited by the user.

A unique feature of the trill box is that either or both :val-1 or :val-2 may be nil,
implying no lower or upper bound on the input value, respectively. If numerical values for
both slots are supplied, then clipping of the input value into the specified range occurs as

Chapter 8: Garnet Gadgets 417

usual. Otherwise, :val-1 is assumed to be the minimum value, and clipping will not occur
at the nil endpoints of the interval.

The width of the trill device may be either static or dynamic. If both :val-1 and :val-2

are specified, then the width of the value frame is the maximum of the widest allowed value
and the :min-frame-width. Otherwise, the value frame will expand with the width of the
value, while never falling below :min-frame-width.

The height of the trill device is the maximum of the greatest string height of all values in
the range and the value of the slot :min-height. The :min-height will be used if there is
no indicator text or if the :min-height is greater than the height of the tallest value.

The :format-string slot allows you to control the formatting of the text string, in case the
standard formatting is not appropriate. This is mainly useful for floating point numbers.
This slot takes a string that can be passed to the lisp function format. The default string
is "~a". For example:

(create-instance ’TRILL garnet-gadgets:trill-device

(:left 35)(:top 70)(:val-1 0.0)(:val-2 1.0)(:scr-incr 0.01)

(:page-incr 0.1)(:format-string "~4,2F"))

Chapter 8: Garnet Gadgets 418

8.17 Gauge

0

20

40

60

80100

120

140

160

180

Pressure

60.000

0

10

20

30
4050

60

70

80

90

Temperature

30.000

(create-instance ’gg:Gauge opal:aggregadget

(:maybe-constant ’(:left :top :width :polygon-needle-p :int-feedback-p

:title :title-font :value-font :enum-font :num-marks

:tic-marks-p :enumerate-p :value-feedback-p :text-offset

Chapter 8: Garnet Gadgets 419

:val-1 :val-2 :visible))

(:left 0)

(:top 0)

(:width 230)

(:val-1 0)

(:val-2 180)

(:num-marks 10)

(:tic-marks-p T)

(:enumerate-p T)

(:value-feedback-p T)

(:polygon-needle-p T)

(:int-feedback-p T)

(:text-offset 5)

(:title "Gauge")

(:title-font opal:default-font)

(:value-font opal:default-font)

(:enum-font (create-instance NIL opal:font (:size :small)))

(:value (o-formula ...))

(:format-string "~a") ; How to print the feedback value

(:enum-format-string "~a") ; How to print the tic-mark values

(:selection-function NIL) ; (lambda (gadget value))

)

The loader file for the gauge is "gauge-loader".

The gauge object is a semi-circular meter with tic-marks around the perimeter. As with
scroll bars and sliders, this object allows the user to specify a value between minimum and
maximum values. A needle points to the currently chosen value, and may either be a bare
arrow or a thick, arrow-shaped polygon with a gray filling. The needle may be rotated by
dragging it with the left mouse button pressed. Text below the gauge reports the current
value to which the needle is pointing.

If the slot :polygon-needle-p is T, then the needle will be thick with a gray filling. If nil,
then the needle will be a bare arrow.

If :int-feedback-p is T, then the needle will not follow the mouse directly, but instead a
short line will appear and be rotated. When the mouse button is released, the large needle
will swing over to rest at the new location. The needle will follow the mouse directly if
:int-feedback-p is set to nil.

The slots :num-marks, :tic-marks-p, :enumerate-p, :val-1, :val-2, and :enum-font

are implemented as in the sliders (see section [sliders], page 410). The value in :val-1

corresponds to the right side of the gauge.

The title of the gauge is specified in :title. No title will appear if :title is nil. The
fonts for the title of the gauge and the current chosen value are specified in :title-font

and :value-font, respectively.

If :value-feedback-p is T, then numerical text will appear below the gauge indicating the
currently chosen value. The value in :text-offset determines the distance between the
gauge and the title string, and between the title string and the value feedback.

Chapter 8: Garnet Gadgets 420

The :format-string and :enum-format-string slots allow you to control the formatting
of the text strings, in case the standard formatting is not appropriate. This is mainly useful
for floating point numbers. The slots should each contain a string that can be passed to
the lisp function format. The default string is "~a".

8.18 Buttons

The button objects in the Garnet Gadgets can be either a single stand-alone button, or a
panel of buttons. Each button in the set is related to the others by common interactors and
constraints on both the sizes of the buttons and the text beside (or inside) the buttons.

The button objects all have several common features.

When used as a panel, the buttons are implemented with aggrelists, so all slots that
can be customized in an aggrelist can be customized in the button panels.4 These slots
are:

:direction — :vertical or :horizontal (default :vertical)

:v-spacing — distance between buttons, if vertical orientation (default 5)

:h-spacing — same, if horizontal orientation

:fixed-width-p — whether all the buttons should have the width of the
value in :fixed-width-size, or the width of each button should be de-
termined by the width of the string associated with that button (default
T)

:fixed-height-p — same, but with heights

:fixed-width-size — width of all components (default is the width of
the widest button, as determined by the widest string)

:fixed-height-size — same, but with heights

:h-align — How to align buttons, if vertical orientation. Allowed values
are :left, :center, or :right. (default :right for radio-buttons and
x-buttons, :center for text-buttons)

:rank-margin — after this many buttons, a new row (or column) will be
started (default nil)

:pixel-margin — absolute position in pixels after which a new row (or
column) will be started (default nil)

:indent — amount to indent the new row (or column) in pixels (default
0)

In the button and menu objects, the :value slot contains to the string or atom of the
currently selected item (in the x-button-panel this value is a list of selected items).
The currently selected object is named in the :value-obj slot. In order to set an
item to be selected, either the :value slot of the button panel must be set with the
desired string or atom from the :items list, or the :value-obj slot must be set with
the desired button object (see section [sel-buttons], page 561, for examples of selecting
buttons).

4 See the Aggregadgets chapter for greater detail.

Chapter 8: Garnet Gadgets 421

The :width of the buttons is determined by the width of the longest item, and therefore
cannot be specified by the designer. However, the :width is computed internally and
may be accessed after the object is instantiated. (The :height is computed similarly.)

The shadow below each button has the effect of simulating a floating three-dimensional
button. When the left mouse button is clicked on one of the gadget buttons, the button
frame moves onto the shadow and appears to be depressed. The slot :shadow-offset
specifies the amount of shadow that appears under the button when it is not pressed.
A value of zero implies that no shadow will appear (i.e., no floating effect).

There is a gray border in the frame of each of the buttons, the width of which may be
specified in the slot :gray-width.

The strings or atoms associated with each button are specified in the :items slot. See
section [items-slot], page 401, for a discussion of specifying items and item functions.

The font in which the button labels appear may be specified in the :font slot.

Most of the buttons and button panels have a :toggle-p slot. When the value of
this slot is T, then the button will become deselected if it is clicked a second time.
Otherwise, after the button is selected the first time, it is always selected (though its
:selection-function and associated item functions will continue to be executed each
time it is pressed.

Chapter 8: Garnet Gadgets 422

Bach

Beethoven

Mozart

Strauss

Bold

Italic

Underline

Helvetica Geneva Courier

Roman Times Symbol

Figure 8.8: Text buttons, radio buttons, and x-buttons

8.18.1 Text Buttons

(create-instance ’gg:Text-Button opal:aggregadget

(:maybe-constant ’(:left :top :shadow-offset :text-offset :gray-width

Chapter 8: Garnet Gadgets 423

:string :toggle-p :font :final-feedback-p :visible))

(:left 0)

(:top 0)

(:shadow-offset 10)

(:text-offset 5)

(:gray-width 5)

(:string "Text Button")

(:toggle-p T)

(:font opal:default-font)

(:final-feedback-p T)

(:value (o-formula (if (gvl :selected) (gvl :string))))

(:selected (o-formula (gvl :value))) ; This slot is set by the interactor

(:selection-function NIL) ; (lambda (gadget value))

)

(create-instance ’gg:Text-Button-Panel opal:aggregadget

(:maybe-constant ’(:left :top :direction :v-spacing :h-spacing :h-align

:fixed-width-p :fixed-width-size :fixed-height-p

:fixed-height-size :indent :rank-margin :pixel-margin

:shadow-offset :text-offset :gray-width :final-feedback-p

:toggle-p :font :items :visible))

(:left 0)

(:top 0)

(:shadow-offset 10)

(:text-offset 5)

(:gray-width 5)

(:final-feedback-p T)

(:toggle-p NIL)

(:font opal:default-font)

(:items ’("Text 1" "Text 2" "Text 3" "Text 4"))

(:value-obj NIL)

(:value (o-formula (gvl :value-obj :string)))

(:selection-function NIL) ; (lambda (gadget value))

<All customizable slots of an aggrelist>)

The loader file for the text-button and text-button-panel is "text-buttons-loader".

The text-button-panel object is a set of rectangular buttons, with the string or atom
associated with each button centered inside. When a button is pressed, the text of the
button will appear in inverse video if :final-feedback-p is T. The text-button is just a
single button.

The distance from the beginning of the longest label to the inside edge of the button frame
is specified in :text-offset. The value in :text-offset will affect the height and width
of every button when specified.

8.18.2 X Buttons

(create-instance ’gg:X-Button opal:aggregadget

Chapter 8: Garnet Gadgets 424

(:maybe-constant ’(:left :top :button-width :button-height

:shadow-offset :text-offset :gray-width

:text-on-left-p :toggle-p :string :font :visible))

(:left 0)

(:top 0)

(:button-width 20)

(:button-height 20)

(:shadow-offset 5)

(:text-offset 5)

(:gray-width 3)

(:text-on-left-p T)

(:string "X Button")

(:toggle-p T)

(:font opal:default-font)

(:value (o-formula (if (gvl :selected) (gvl :string))))

(:selected (o-formula (gvl :value))) ; Set by interactor

(:selection-function NIL) ; (lambda (gadget value))

)

(create-instance ’gg:X-Button-Panel opal:aggregadget

(:maybe-constant ’(:left :top :direction :v-spacing :h-spacing :h-align

:fixed-width-p :fixed-width-size :fixed-height-p :fixed-height-size

:indent :rank-margin :pixel-margin :button-width :button-height

:shadow-offset :text-offset :gray-width :text-on-left-p

:font :items :visible))

(:left 0)

(:top 0)

(:button-width 20)

(:button-height 20)

(:shadow-offset 5)

(:text-offset 5)

(:gray-width 3)

(:text-on-left-p T)

(:font opal:default-font)

(:items ’("X-label 1" "X-label 2" "X-label 3"))

(:value-obj NIL)

(:value (o-formula (mapcar #’(lambda (object)

(gv object :string))

(gvl :value-obj))))

(:selection-function NIL) ; (lambda (gadget value))

<All customizable slots of an aggrelist>)

The loader file for the x-button and x-button-panel is "x-buttons-loader".

The x-button-panel object is also a set of rectangular buttons, but the item associated
with each button appears either to the left or to the right of the button. Any number
of buttons may be selected at one time, and clicking on a selected button de-selects it.

Chapter 8: Garnet Gadgets 425

Currently selected buttons are graphically indicated by the presence of a large "X" in the
button frames. The x-button is just a single button.

Since the x-button-panel allows selection of several items at once, the :value slot is a list
of strings (or atoms), rather than a single string. Similarly, :value-obj is a list of objects.

The slot :text-on-left-p specifies whether the text will appear on the right or left of the
x-buttons. A nil value indicates the text should appear on the right. When text appears on
the right, the designer will probably want to set :h-align to :left in order to left-justify
the text against the buttons.

The distance from the labels to the buttons is specified in :text-offset.

The slots :button-width and :button-height specify the width and height of the x-
buttons. The "X" will stretch to accommodate these dimensions.

8.18.3 Radio Buttons

(create-instance ’gg:Radio-Button opal:aggregadget

(:maybe-constant ’(:left :top :button-diameter :shadow-offset :text-offset

:gray-width :string :text-on-left-p :toggle-p :font :visible))

(:left 0) (:top 0)

(:button-diameter 23)

(:shadow-offset 5) (:text-offset 5) (:gray-width 3)

(:string "Radio button")

(:toggle-p T)

(:text-on-left-p T)

(:font opal:default-font)

(:value (o-formula (if (gvl :selected) (gvl :string))))

(:selected (o-formula (gvl :value))) ; Set by interactor

(:selection-function NIL) ; (lambda (gadget value))

)

(create-instance ’gg:Radio-Button-Panel opal:aggregadget

(:maybe-constant ’(:left :top :direction :v-spacing :h-spacing :h-align

:fixed-width-p :fixed-width-size :fixed-height-p :fixed-height-size

:indent :rank-margin :pixel-margin :button-diameter :shadow-offset

:text-offset :gray-width :text-on-left-p :toggle-p :font

:items :visible))

(:left 0)

(:top 0)

(:button-diameter 23)

(:shadow-offset 5)

(:text-offset 5)

(:gray-width 3)

(:text-on-left-p T)

(:toggle-p T)

(:font opal:default-font)

(:items ’("Radio-text 1" "Radio-text 2" "Radio-text 3" "Radio-text 4"))

(:value-obj NIL)

(:value (o-formula (gvl :value-obj :string)))

Chapter 8: Garnet Gadgets 426

(:selection-function NIL) ; (lambda (gadget value))

<All customizable slots of an aggrelist>)

The loader file for the radio-button and radio-button-panel is "radio-buttons-loader".

The radio-button-panel is a set of circular buttons with items appearing to either the left
or right of the buttons (implementation of :text-on-left-p and :text-offset is identical
to x-buttons). Only one button may be selected at a time, with an inverse circle indicating
the currently selected button. A radio-button is a single button.

8.19 Option Button

(create-instance ’gg:Option-Button opal:aggregadget

(:maybe-constant ’(:left :top :text-offset :label :button-offset :button-shadow-offset

:items :initial-item :button-font :label-font :button-fixed-width-p

:v-spacing :keep-menu-in-screen-p :menu-h-align))

(:left 40) (:top 40)

(:text-offset 4)

(:label "Option button:")

(:button-offset 10)

(:button-shadow-offset 5)

(:items ’("Item 1" "Item 2" "Item 3" "Item 4"))

(:initial-item (o-formula (first (gvl :items))))

(:button-font opal:default-font)

(:label-font (opal:get-standard-font NIL :bold NIL))

(:value (o-formula (gvl :option-text-button :string)))

(:button-fixed-width-p T)

(:v-spacing 0)

(:menu-h-align :left)

(:keep-menu-in-screen-p T)

(:selection-function NIL) ; (lambda (gadget value))

...)

Chapter 8: Garnet Gadgets 427

Color: Blue

Color:

Red

Blue

Green

Yellow

Aquamarine

Cyan

Fluorescent

Figure 8.9: An option button in its normal state (left), and showing the available options
after the button is pressed (right).

Chapter 8: Garnet Gadgets 428

The loader file for the option-button is "option-button-loader".

When the left mouse button is clicked and held on an option button, a menu will pop up,
from which items can be selected by moving the pointer to the desired item and releasing
the mouse button. Figure [option-button-tag], page 427, shows an option button in its
normal state (on the left) and when the button is pressed.

The :items slot is a list of strings or Garnet objects, which will appear in the menu. The
:initial-item slot contains the initial item that will appear in the button. This slot
MUST be non-NIL, and should contain either an element of the :items list, or a formula
to calculate the same.

The :text-offset slot specifies how far from the frame the text should begin. The
slot :button-offset specifies how far from the label the button should begin. The
:button-shadow-offset contains the size of the button’s shadow.

The :label slot contains a string that appears before the option button. If no label is
desired, this slot can be set to the empty string, "".

The :button-font and :label-font slots specify the fonts to use in the button and the
label. The font of the items in the menu is the same as the font in the :button-font slot.

The :value slot contains the currently selected item, which is the same as the value in the
:string slot of the button.

The :button-fixed-width-p slot specifies whether to keep the button’s width constant
or not. If it is set to T, the button’s width will be the width of the longest string in the
:items slot. If it is set to NIL, the width of the button will be the width of the currently
selected item.

The value in :v-spacing specifies the amount of space between each menu item.

The :menu-h-align slot should be either :left, :center, or :right, and specifies the
justification of the menu items.

If the :keep-menu-in-screen-p slot is T, then the menu will never pop out of the screen,
i.e., the top of the menu will never be less than the screen’s top, and the bottom of the
menu will never be greater than the screen’s bottom. If this slot is set to nil, the menu
may pop out of the top or out of the bottom of the screen. NOTE: If the number of items
in the menu makes it so that both the top of the menu and the bottom of the menu are out
of the screen, this slot will be disregarded.

Chapter 8: Garnet Gadgets 429

8.20 Popup-Menu-Button

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

"Blue"Selected:

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Red
Blue
Green
Yellow
Aquamarine
Cyan
Fluorescent

(create-instance ’gg:Popup-Menu-Button gg:text-button

(:left 0)

(:top 0)

(:string gg:lines-bitmap)

Chapter 8: Garnet Gadgets 430

(:items ’("Item 1" "Item 2" "Item 3" "Item 4"))

(:v-spacing 0)

(:h-align :LEFT)

(:item-font opal:default-font)

(:item-to-string-function

#’(lambda (item)

(if item

(if (or (stringp item) (schema-p item))

item

(string-capitalize (string-trim ":" item)))

"")))

(:min-menu-width 0)

(:shadow-offset 2)

(:text-offset 3)

(:gray-width 2)

(:selection-function NIL) ; (lambda (gadget value))

(:value (o-formula ...))

(:position :below)

(:keep-menu-in-screen-p T)

The loader file for the popup-menu-button is popup-menu-button-loader, and you can
see a demo by executing (gg:popup-menu-button-go). (Sorry, there isn’t a Motif version
yet.)

This is a combination of a button and a popup menu. When you press on the button,
the menu is shown, and then you can select something from the menu, and then the menu
disappears. If you release outside of the menu, the menu just goes away and keeps its
current value. The button itself can show a string or an arbitrary Garnet object (e.g., a
bitmap, as shown here).

The :left and :top determine when the button goes.

The :string slot determines what is shown in the button. It can be a regular string (e.g.,
"Value") or an arbitrary Garnet object. The default value is the gg:lines-bitmap shown
above. Another bitmap provided is gg:downarrow-bitmap which looks like

Chapter 8: Garnet Gadgets 431

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

The :items slot holds the items that are shown in the popup menu. It can have the standard
format for items (e.g., a list of strings, objects, pairs of strings and functions, etc.). See
section [items-slot], page 401, for more information.

The :v-spacing, :h-align, and :item-font control the display of the menu items. See
the Gadgets chapter for menus for more information.

The :min-menu-width slot can contain a minimum width for the popup menu. You might
use this to make the menu line up with a text entry field.

Chapter 8: Garnet Gadgets 432

The :item-to-string-function can be used to convert the values in the :items list into
strings.

The :shadow-offset, :text-offset and :gray-width parameters control the appearance
of the button itself.

When the user selects a menu item, the :selection-function is called with parameters:
(lambda (gadget value)), where the gadget is the popup-menu-button and the value is
the appropriate item from :items. The :value slot will also be set with the appropriate
item.

The position of the menu with respect to the button is controlled by the :position param-
eter. Legal options are:

:below - the menu is below and left justified with the button (the default).

:left - the menu will be centered vertically at the left of the button.

:right - the menu will be centered vertically at the right of the button.

a list of two numbers (x y) - the menu will be at this location. The :position
slot can contain a formula that calculates these numbers.

If :keep-menu-in-screen-p is non-NIL, then the position computed based on the
:position argument will be adjusted so the menu always stays in the screen. Otherwise,
the menu might extend off the screen edges.

8.21 Menu

(create-instance ’gg:Menu opal:aggregadget

(:maybe-constant ’(:left :top :v-spacing :h-align :shadow-offset

:text-offset :title :title-font :items :item-font

:item-to-string-function :visible))

(:left 0)

(:top 0)

(:v-spacing 0)

(:h-align :left)

(:shadow-offset 5)

(:text-offset 4)

(:min-menu-width 0)

(:title NIL)

(:title-font (create-instance NIL opal:font

(:family :serif)

(:size :large)

(:face :roman)))

(:items ’("Item 1" "Item 2" "Item 3" "Item 4"))

(:item-font opal:default-font)

(:item-to-string-function #’(lambda (item)

(if item

(if (or (stringp item) (schema-p item))

item

(string-capitalize (string-trim ":" item)))

"")))

Chapter 8: Garnet Gadgets 433

(:selection-function NIL) ; (lambda (gadget value))

(:value-obj NIL)

(:value (o-formula (gvl :value-obj :string))))

Menu
Cut

Copy

Paste

Undo

The loader file for the menu is "menu-loader".

Chapter 8: Garnet Gadgets 434

The menu object is a set of text items surrounded by a rectangular frame, with an optional
title above the items in inverse video. When an item is selected, a box is momentarily
drawn around the item and associated item functions and global functions are executed.

The :items slot may be a list of strings, atoms, string/function pairs or atom/function
pairs, as with buttons (see section [buttons], page 420). If this slot is s-value’d with a new
list of items, the components of the gadget will be adjusted automatically during the next
call to opal:update.

The amount of shadow that appears below the menu frame (the menu frame is stationary)
is specified in :shadow-offset. A value of zero implies that no shadow will appear.

The slot :h-align determines how the menu items are justified in the frame. Allowed
values are :left, :center and :right.

The slot :text-offset is the margin spacing – the distance from the frame to the longest
string.

The slot :item-font determines the font in which the items will appear.

A title for the menu may be specified as a string in the :title slot. If :title is nil, then
no title will appear. The font in which the title should appear is specified in :title-font.

any objects, including strings, atoms, schemas, string/function pairs, etc. The default
scrolling menu assumes that :items contains a list as described in section [buttons],
page 420, but this can be easily changed by the designer. A function defined in
:item-to-string-function takes an item (or the first element of an item pair) and
returns a string corresponding to that item for display in the menu. The default function
for this slot is

(lambda (item)

(if item

(if (stringp item)

item

(string-capitalize (string-trim ":" item)))

""))

This function takes an item and returns it if it is a string, or coerces it into a string if it was
an atom. See section [sm-ex], page 562, for an example where the :items list is composed
of Garnet schemas.

Chapter 8: Garnet Gadgets 435

8.22 Scrolling Menu

Menu
Geneva

Times

Roman

Courier

Helvetica

Scrolling Menu

Item 8

Item 9

Item 10

Item 11

Item 12

(create-instance ’gg:Scrolling-Menu opal:aggregadget

(:maybe-constant ’(:left :top :scroll-on-left-p :min-scroll-bar-width :scr-trill-p

:page-trill-p :indicator-text-p :scr-incr :page-incr

Chapter 8: Garnet Gadgets 436

:int-scroll-feedback-p :indicator-font :min-frame-width :v-spacing

:h-align :multiple-p :items :item-to-string-function :item-font

:num-visible :int-menu-feedback-p :final-feedback-p :text-offset

:title :title-font :visible))

(:left 0) (:top 0)

;; Scroll bar slots

(:scroll-on-left-p T)

(:min-scroll-bar-width 20)

(:scr-trill-p T)

(:page-trill-p T)

(:indicator-text-p NIL)

(:scr-incr 1)

(:page-incr 5)

(:int-scroll-feedback-p NIL)

(:indicator-font (create-instance NIL opal:font (:size :small)))

(:scroll-selection-function NIL)

;; Menu slots

(:min-frame-width 0)

(:v-spacing 6)

(:h-align :left)

(:multiple-p T)

(:toggle-p T)

(:items ’("Item 1" "Item 2" "Item 3" ... "Item 20"))

(:item-to-string-function

#’(lambda (item)

(if item

(if (stringp item)

item

(string-capitalize (string-trim ":" item)))

"")))

(:item-font opal:default-font)

(:num-visible 5)

(:int-menu-feedback-p T)

(:final-feedback-p T)

(:text-offset 4)

(:title NIL)

(:title-font (create-instance NIL opal:font

(:family :serif)

(:size :large)

(:face :roman)))

(:menu-selection-function NIL)

(:selected-ranks NIL)

(:value (o-formula ...)))

The loader file for the scrolling-menu gadget is "scrolling-menu-loader".

Chapter 8: Garnet Gadgets 437

The scrolling-menu object is a combination of a vertical scroll bar and a menu which
allows the user to only see a subset of the available choices in a menu at one time. The set
of visible choices is changed by moving the scroll bar, which causes the choices to scroll up
or down in the menu.

8.22.1 Scroll Bar Control

T, then the scroll bar will appear on the left side of the menu. Otherwise, the scroll bar
will be on the right.

The slot :min-scroll-bar-width determines the minimum width of the scroll bar. The
scroll bar will be wider than this width only if the indicator text is too wide to fit into this
width.

The interim feedback of the scroll bar is controlled by the slot :int-scroll-feedback-p.
If this slot is set to T, then a thick-lined box will follow the mouse when the user drags the
indicator. Otherwise, the indicator will follow the mouse directly.

A function may be specified in :scroll-selection-function to be executed whenever the
user changes the scroll bar, either by clicking on the trill boxes or by dragging the indicator.
The function takes the same parameters as the usual selection function described in section
[sel-fn], page 401.

The slots :scr-trill-p, :page-trill-p, :scr-incr, :page-incr, :indicator-text-p,
and :indicator-font are all used for the scroll bar in the scrolling menu in the same way
as the vertical scroll bar described in section [scroll-bars], page 407.

8.22.2 Menu Control

frame is determined by :min-frame-width. The scrolling menu will appear wider than this
value only if the title or the longest item string will not fit in a menu of this width.

The :v-spacing slot determines the distance between each item in the menu.

The justification of the items in the menu is determined by the slot :h-align which may
be either :left, :center, or :right.

If the value of :multiple-p is T, then the user may make multiple selections in the menu
by clicking on items while holding down the shift key. If this slot is nil, then only single
selections are permitted.

The :toggle-p slot specifies whether to toggle the current selection when it is clicked on
again. If :toggle-p is nil, then a selected item can be clicked upon for any number of
times and it will stay selected. If the :toggle-p slot is set to T (the default), clicking on
an already selected item will cause the item to become unselected. NOTE: Clicking on a
selected item while doing multiple selections will always toggle the selection, regardless of
the value of the :toggle-p slot.

The :item-to-string-function slot is identical in operation to the one described for the
gg:menu in section [menu], page 432. If the :items slot does not contain a list of the usual
items or item/function pairs, then this function should return the conversion of each element
into a valid item. The default :item-to-string-function assumes that the :items list is
composed of the usual items or item/function pairs.

The slot :num-visible determines how many items should be visible in the menu at one
time.

Chapter 8: Garnet Gadgets 438

A box will appear around the item being selected while the mouse button is held down if
the slot :int-menu-feedback-p is T.

Selected items will appear in inverse video if the slot :final-feedback-p is set to T.

The slot :text-offset determines the distance from each string to the menu frame.

A title will appear above the menu if a title string is specified in :title. If :title is nil,
then no title will appear. The font of the title is in :title-font.

The font of the items is in :item-font.

The :selected-ranks slot is used by the designer to select items in the menu. The slot
contains a list of indices which correspond to the ranks of the selected items in the :items
list. The ranks are zero-based. For example, if the :selected-ranks slot contained ’(0

3), then the first and fourth items (not necessarily visible) in the scrolling menu will be
selected.

A function defined in :menu-selection-function will be executed whenever the user se-
lects an item from the menu. This function takes two parameters,

(lambda (gadget scrolling-menu-item))

where gadget is the programmer’s instance of the scrolling-menu and scrolling-menu-item
is the object just selected by the user. The item associated with the user’s selection can be
obtained through the :item slot of the scrolling-menu-item:

(gv scrolling-menu-item :item) --> The item just selected

8.23 Menubar

(create-instance ’gg:Menubar opal:aggrelist

(:left 0)(:top 0)

(:items NIL)

(:title-font (create-instance NIL opal:font (:size :large)))

(:item-font (create-instance NIL opal:font (:face :italic)))

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 439

Family Face Size

Roman

Bold

Italic

Bold-Italic

Figure 8.10: Picture of a pull-down menu (an instance of menubar)

The menubar gadget is a set of pull down menus that is similar to the Macintosh design.
When the user clicks on an inverse bar item, a submenu pops up and the user can then
choose one of the displayed items.

Chapter 8: Garnet Gadgets 440

NOTE: There is no :value slot in this gadget. The designer should define functions in the
:selection-function or :items slots to propagate the user’s selections to the rest of the
interface (see below).

The complete menubar gadget is a collection of three objects. In addition to the top-level
menubar object, there are bar-item and submenu-item objects. The menubar is an aggrelist
of bar-item objects, which are the inverse-video text objects that appear horizontally at
the top of the window. The submenu-item objects are vertically arranged in an aggrelist
within each bar-item.

The programmer may approach the menubar from two perspectives: the traditional Garnet
way which involves setting the :items slot and allowing the gadget to maintain its own
components, or from a bottom-up approach which involves creating the sub-objects and
chapterly adding (and removing) them from the menubar instance.

Programmers who choose the Garnet approach can ignore most of the functions described
below, since interaction with the menubar will almost exclusively involve setting the :items
slot. The other approach requires creating instances of bar-item and submenu-item gadgets
and adding them as components to a menubar using the support functions.

8.23.1 Item Selection Functions

There are three levels of functions in the menubar gadget that may be called when the user
makes a selection. Functions can be attached to individual submenu-items, whole submenus,
or the top-level menubar. All three types of functions take the parameters (lambda (gadget

menu-item submenu-item))

When a function is supplied in the :selection-function slot of the menubar, it will be
executed whenever any item is selected from any of the submenus. If a function is attached
to a submenu (e.g., it is the value for m1func in the :items syntax of section [garnet-
menubar-programming], page 440), then it is executed when any item is chosen from that
submenu. If a function is attached to a submenu-item (e.g., mX,Yfunc), then it is executed
only when that submenu-item is selected.

The order for calling these functions is: first, the submenu function is called, then the
submenu-item function is called, and finally the :selection-function is called.

8.23.2 Programming the Menubar in the Traditional Garnet Way

The :items slot of the menubar is a complicated list with the following format:

(:items ’(("m1" m1func (("m1,1" [m1,1func])...("m1,N" [m1,Nfunc])))

("m2" m2func (("m2,1" [m2,1func])...("m2,N" [m2,Nfunc])))

...))

where "mN" is a string or atom that is the title of a menu (atoms appear as capitalized
strings in the submenu titles), "mX,Y" is a string or atom in menu X, row Y, mNfunc
is executed when any item in menu N is selected, and mX,Yfunc is executed when item
"mX,Y" is selected. See section [item-selection-functions], page 440, for the parameters of
these functions. NOTE: the syntax above requires that the submenu-items be described
with lists, even when no submenu-item functions are supplied (i.e., the list ("m1,1") is
required instead of just the string "m1,1").

In order to maintain the syntax of the sublists, the submenu functions (m1func and m2func
above) must always be supplied. Thus, nil should be placed in this position if no function

Chapter 8: Garnet Gadgets 441

is to be executed for the submenu. The submenu-item functions (m1,1func etc. above) are
optional and may be omitted.

The :title-font is the font for the bar-item objects which appear in inverse video, and
the :item-font is the font for the submenu-item objects arranged vertically in the pop-up
menus.

8.23.3 An example

(create-instance ’WIN inter:interactor-window

(:left 750)(:top 80)(:width 200)(:height 200)

(:title "Menubar Example"))

(s-value WIN :aggregate (create-instance ’TOP-AGG opal:aggregate))

(opal:update win)

(defun Fixed-Fn (gadget menu-item submenu-item)

(format t "Calling Fixed-Fn with ~S ~S ~S.~%" gadget menu-item submenu-item))

(defun Face-Fn (gadget menu-item submenu-item)

(format t "Calling Face-Fn with ~S ~S ~S.~%" gadget menu-item submenu-item))

(create-instance ’DEMO-MENUBAR garnet-gadgets:menubar

(:items

’(("family" NIL

(("fixed" Fixed-Fn)("serif")("sans-serif")))

("face" Face-Fn

(("roman")("bold")("italic")("bold-italic")))

("size" NIL

(("small")("medium")("large")("very-large"))))))

(opal:add-component TOP-AGG DEMO-MENUBAR)

(opal:update win)

Figure 8.11: The code to generate the picture in Figure [menubar-pix-1], page 439

The code in Figure [menubar-code-1], page 441, creates the menubar picture shown in Figure
[menubar-pix-1], page 439. It illustrates the Garnet method for handling the menubar

gadget.

8.23.4 Adding items to the menubar

There are two types of items that can be added to a menubar: an entire submenu can be
added to the top-level menubar, or single submenu-item can be added to a submenu.

The add-item method for the menubar can be used to add submenus – opal:Add-Item

menubar submenu [[:where] position [locator] [:key index-function]]〈undefined〉
[method], page 〈undefined〉 Using the standard Garnet method, the submenu parameter
should be a sublist of a top-level items list,
(e.g., ’("underline" NIL (("none") ("single") ("double"))). The remaining optional

Chapter 8: Garnet Gadgets 442

parameters follow the standard add-item definition described in the Aggregadgets chapter,
and refer to the placement of the new submenu among the existing submenus. Locator
should be some element of the current :items list, or may be the title of a submenu when
the index-function is #’car (see examples below).

For example, each of the following lines will add a new submenu to DEMO-MENUBAR in
Figure [menubar-code-1], page 441:

(opal:add-item DEMO-MENUBAR ’("font-name" NIL (("courier") ("times") ("geneva"))))

(opal:add-item DEMO-MENUBAR

’("other-fonts" NIL (("helvetica") ("chicago")))

:after ’("family" NIL (("fixed" Fixed-Fn)("serif")("sans-serif"))))

(opal:add-item DEMO-MENUBAR

’("symbols" NIL (("mathematical") ("greek")))

:before "face" :key #’car)

Individual submenu-items can be added to a menubar with the following function:

add-submenu-item menubar submenu-title submenu-item [[:where] position [lo-

cator] [:key index-function]])

This function adds the new submenu-item to the menubar, and places it in the submenu
named by submenu-title. The new submenu-item description should be a list containing a
string (or atom) and an optional function (e.g., ’("italic") or ’("italic" italic-fn)).

For example, the following lines will add new submenu-items to the DEMO-MENUBAR in
Figure [menubar-code-1], page 441:

(garnet-gadgets:add-submenu-item DEMO-MENUBAR "face" ’("outline"))

(garnet-gadgets:add-submenu-item DEMO-MENUBAR "size" ’("very small")

:before "small" :key #’car)

As shown in the second example, the position and locator parameters should correspond to
existing submenu items.

8.23.5 Removing items from the menubar

Just as submenus and submenu-items can be added to the menubar, these two types of
items can be removed.

opal:Remove-Item menubar submenu〈undefined〉 [method], page 〈undefined〉 This
function removes the submenu from menubar. For traditional Garnet programming, the
submenu should be a sublist of the top-level :items list, or just the title of a submenu (a
string or atom).

For example, the following lines will remove an item from the DEMO-MENUBAR in Figure
[menubar-code-1], page 441:

(opal:remove-item DEMO-MENUBAR

’("face" Face-Fn (("roman")("bold")("italic")("bold-italic"))))

(opal:remove-item DEMO-MENUBAR "size")

The following function is used to remove submenu-items from a menubar:

gg:Remove-Submenu-Item menubar submenu-title submenu-item[function], page 90

Submenu-item may either be the list description of the submenu-item (i.e., ("italic"))
or just the string (or atom) of the submenu-item (i.e., "italic").

For example, (garnet-gadgets:remove-submenu-item DEMO-MENUBAR "size" "small")

Chapter 8: Garnet Gadgets 443

8.23.6 Programming the Menubar with Components

In the bottom-up approach to programming the menubar, the user must create components
of the menubar (i.e., instances of bar-item and submenu-item gadgets) and attach them
piece-by-piece. This design is loosely based on the interface to the Macintosh menubar
in Macintosh Common Lisp. The functions for creating the components are described in
section [creating-menubar-components], page 444. Section [adding-menubar-components],
page 444, explains how to attach these components to the menubar.

8.23.7 An example

(create-instance ’WIN inter:interactor-window

(:left 750)(:top 80)(:width 200)(:height 200)

(:title "Menubar Example"))

(s-value WIN :aggregate (create-instance ’TOP-AGG opal:aggregate))

(opal:update win)

; Create the menubar and the bar-item

(setf demo-menubar (garnet-gadgets:make-menubar))

(setf mac-bar (garnet-gadgets:make-bar-item :title "Mac Fonts"))

; Create submenu-items

(setf sub-1 (garnet-gadgets:make-submenu-item :desc ’("Gothic")))

(setf sub-2 (garnet-gadgets:make-submenu-item :desc ’("Venice")))

(setf sub-3 (garnet-gadgets:make-submenu-item :desc ’("Old English")))

; Add the submenu-items to the bar-item

(opal:add-item mac-bar sub-1)

(opal:add-item mac-bar sub-2 :before sub-1)

(opal:add-item mac-bar sub-3 :after "Venice" :key #’car)

; Add the menubar to the top-level aggregate

(opal:add-component TOP-AGG demo-menubar)

; Add the bar-item to the menubar and update the window

(opal:add-item demo-menubar mac-bar)

(opal:update win)

Figure 8.12: The creation of a menubar and its components

The code in Figure [menubar-code-2], page 443, creates a menubar and several component
pieces, and then attaches the components to the menubar. This illustrates the bottom-up
approach to programming the menubar.

Notice that the menubar instance must be added to the top-level aggregate before any bar-
items are attached. This ensures that the menubar will be initialized with the proper main
window before new submenu windows are added.

Chapter 8: Garnet Gadgets 444

8.23.8 Creating components of the menubar

The functions in this section are used to create the three types of components that comprise
a pull-down menu – the menubar (the top-level part), the bar-item (which contains a
submenu), and the submenu-item. Once the parts of the pull-down menu are created, they
are attached using the functions of section [adding-menubar-components], page 444. Please
see section [adding-menubar-components], page 444, for examples of the creation functions
and attachment functions together.

[Function]gg:make-menubar
Returns an instance of menubar.

[Function]gg:make-bar-item &key desc font title
this function returns an instance of bar-item. If any of the keys are supplied,
then the corresponding slots of the bar-item instance are set with those values.
The desc parameter is the description of a submenu (e.g., ’("underline" NIL

(("none")("single")("double")))). The font is the font of the submenu-items
within the submenu, and title is a string or atom that will be the heading of the
submenu. If the title was already specified in the desc parameter, then no title
parameter should be supplied.

[Function]gg:make-submenu-item &key desc enabled
this function returns an instance of submenu-item. If any of the keys are supplied,
then the corresponding slots of the submenu-item instance are set with those val-
ues. The desc parameter is the description of a submenu-item (e.g., ’("italic") or
’("italic" italic-fn)). The default for enabled is T.

8.23.9 Adding components to the menubar

Just as with the traditional Garnet approach, the two types of components that can be
added to the menubar gadget are instances of the bar-item gadget and instances of the
submenu-item gadget. The add-item method can be used to add new bar-items to a
menubar, or to add new submenu-items to existing bar-items. Also, the following Set-...

functions can be used to install a collection of components all at once.

[Function]gg:set-menubar menubar new-bar-items
Removes all current bar-items from menubar and installs the new-bar-items. The
new-bar-items should be a list of bar-item instances.

[Function]gg:Set-Submenu bar-item submenu-items
Sets bar-item to have submenu-items in its submenu. Submenu-items is a list of
submenu-item instances.

[Method on opal:add-item]menubar bar-item [[:where] position [locator] [:key
index-function]]

[Method on opal:add-item]bar-item submenu-item [[:where] position [locator]
[:key index-function]]

The menubar, bar-item, and submenu-item parameters above should be supplied with
objects created by the functions in section [creating-menubar-components], page 444.
The optional parameters follow the standard add-item definition described in the

Chapter 8: Garnet Gadgets 445

Aggregadgets chapter, and refer to the placement of the new bar-item among the
existing bar-items. Locator may be either an existing menubar component, or some
element of the :items list (like a submenu-title) used together with the index-function
(see below).

After creating three bar-item instances, the example below shows how the bar-items
can be attached as components to a menubar.

(setf bar1 (garnet-gadgets:make-bar-item

:desc ’("font-name" NIL (("courier") ("times") ("geneva")))))

(setf bar2 (garnet-gadgets:make-bar-item

:desc ’("other-fonts" NIL (("helvetica") ("chicago")))))

(setf bar3 (garnet-gadgets:make-bar-item

:desc ’("symbols" NIL (("mathematical") ("greek")))))

(opal:add-item DEMO-MENUBAR bar1)

(opal:add-item DEMO-MENUBAR bar2 :after "family" :key #’car)

(opal:add-item DEMO-MENUBAR bar3 :after bar2)

The following instructions show how submenu-items can be attached to oa bar-item.
A bar-item object is first created, and then several submenu-items are attached to
it using add-item:

(setf mac-bar (garnet-gadgets:make-bar-item :title "Mac Fonts"))

(setf sub-1 (garnet-gadgets:make-submenu-item :desc ’("Gothic")))

(setf sub-2 (garnet-gadgets:make-submenu-item :desc ’("Venice")))

(setf sub-3 (garnet-gadgets:make-submenu-item :desc ’("Old English")))

(opal:add-item mac-bar sub-1)

(opal:add-item mac-bar sub-2 :before sub-1)

(opal:add-item mac-bar sub-3 :after "Venice" :key #’car)

8.23.10 Removing components from the menubar

The bar-item and submenu-item components can be removed from the menubar with the
remove-item method:

[Method on opal:remove-item]menubar bar-item
[Method on opal:remove-item]bar-item submenu-item

For example, if we have already created a bar-item called BAR-1 and added
it to DEMO-MENUBAR, then the following line will remove that item:
(opal:remove-item DEMO-MENUBAR bar1)

The remove-item method can also be used to remove submenu-items from bar-items.
In order to remove a submenu item from the bar-item instance MAC-BAR, the
following line can be used (provided SUB-1 is an existing submenu-item that was
added to MAC-BAR): (opal:remove-item mac-bar sub-1)

8.23.11 Finding Components of the Menubar

[Function]gg:Menubar-Components menubar
[Function]gg:submenu-components bar-item

returns a list of submenu-item instances that are installed in bar-item’s submenu.

Chapter 8: Garnet Gadgets 446

[Function]gg:get-bar-component menubar item
returns the first bar-item object in menubar that corresponds to item. The item
parameter may be a string or an atom, or one of the sublists of the menubar ’s :items
list.

[Function]gg:get-submenu-component bar-item item
returns the first submenu-item object in bar-item that corresponds to item. The item
parameter may be a string or an atom, or a string/function pair that describes a
submenu-item.

[Function]gg:find-submenu-component menubar submenu-title submenu-item
similar to get-submenu-component, except that find-submenu-component finds the
appropriate bar-item instance in the given menubar. Returns the submenu-item

object that corresponds to submenu-item. The parameter submenu-title should be the
string or atom that is the title of some submenu. Submenu-item should be a string
or atom, or a string/function pair that describes a submenu-item already installed in
submenu-title.

8.23.12 Enabling and Disabling Components

[Function]gg:menubar-disable-component menubar-component
disables menubar-component ’s interactors and makes its label grayed-out. The user
will not be able to selectmenubar-component while it is disabled. Menubar-component
is an instance of bar-item or submenu-item.

[Function]gg:menubar-enable-component menubar-component
enables menubar-component ’s interactors and returns its label to solid text. Menubar-
component is an instance of bar-item or submenu-item.

[Function]gg:menubar-enabled-p menubar-component
Returns T if the menubar-component is enabled. Menubar-component is an instance
of bar-item or submenu-item.

8.23.13 Other Menubar Functions

[Function]gg:menubar-get-title menubar-component
returns the string or atom associated with menubar-component. The
menubar-component must be an instance of a bar-item or submenu-item gadget.

[Function]gg:menubar-set-title menubar-component string
changes the title of menubar-component to string and, if menubar-component is in-
stalled in a menubar, sets the :items slot of the menubar appropriately. Menubar-
component can be either an instance of bar-item or submenu-item. String is a string
or an atom, suitable for putting in the :items slot. Returns string.

[Function]gg:menubar-installed-p menubar-component
Returns nil if menubar-component is not attached to a menubar; otherwise returns
the object it is installed in (either a menubar or a bar-item.

Chapter 8: Garnet Gadgets 447

8.24 Labeled Box

Label: Field

(create-instance ’gg:Labeled-Box opal:aggregadget

(:maybe-constant ’(:left :top :label-offset :field-offset :min-frame-width

:label-string :field-font :label-font :visible))

(:left 0)

(:top 0)

Chapter 8: Garnet Gadgets 448

(:min-frame-width 10)

(:label-offset 5)

(:field-offset 6)

(:label-string "Label:")

(:value "Field")

(:field-font opal:default-font)

(:label-font (create-instance NIL opal:font (:face :bold)))

(:selection-function NIL) ; (lambda (gadget value))

)

The loader file for the labeled-box is "labeled-box-loader".

The labeled-box gadget is comprised of a dynamic box with text both inside and to the
left of the box. The text to the left of the box is a permanent label and may not be changed
by the user. The text inside the box may be edited, however, and the width of the box
will grow with the width of the string. As always, the current string inside the box may be
accessed by the top level :value slot.

The width of the text frame will not fall below :min-frame-width.

The label to appear beside the box is in :label-string. The distance from the label
to the left side of the box is specified in :label-offset, and the font of the label is in
:label-font.

The distance from the box to the inner text is in :field-offset, and the font of the inner
text is in :field-font.

8.25 Scrolling-Input-String

(create-instance ’gg:Scrolling-Input-String opal:aggregadget

(:maybe-constant ’(:left :top :width :font :line-style :visible))

(:left 0)

(:top 0)

(:width 100) ; The width of the string area in pixels.

(:value "Type here") ; The string that will originally appear in the

; box and that will be changed.

(:selection-function NIL) ; Function to be executed after editing text

(:font opal:default-font) ; **Must be fixed width**

(:line-style opal:default-line-style)) ; line style can be used to set the color of the string

Chapter 8: Garnet Gadgets 449

ing that won... ...

The loader file for the scrolling-input-string gadget is "scrolling-input-string-loader".

This allows the user to enter a one-line edited string of arbitrary length, but only requires
a fixed area on the screen since if the string gets too long, it is automatically scrolled left
and right as needed. Three little dots (an ellipsis) are displayed on either side of the string
if any text is not visible on that side.

The user interface is as follows: To start editing, click with the left mouse button on the
string. To stop, hit return. To abort, hit ^g. If the string gets to be too large to fit into

Chapter 8: Garnet Gadgets 450

the specified width, then the string inside is scrolled left and right so the cursor is always
visible. The cursor can be moved and text deleted with the usual editing commands (see
the Interactors chapter, page 170).

The top level :value slot is set with the final value of the string appearing inside the box.
This slot may be set directly to change the initial value, and formulas may depend on it. A
function may be specified in the :selection-function slot to be executed after the field
text has changed (i.e., after the carriage return). Room is left on both sides of the string
for a "..." symbol which shows whether the string has been scrolled or not. Therefore, the
string will not appear exactly at the :left or extend the full :width (since room is left for
the ...’s even when they are not needed).

8.26 Scrolling-Labeled-Box

(create-instance ’gg:Scrolling-Labeled-Box opal:aggregadget

(:maybe-constant ’(:left :top :width :label-offset :field-offset

:label-string :field-font :label-font :visible))

(:left 0) (:top 0)

(:width 130) ; The width of the entire area in pixels. This must be big enough

; for the label and at least a few characters of the string!

(:value "Field") ; The string that will originally appear in the

; box and that will be changed.

(:selection-function NIL) ; Function to be executed after editing text

(:field-font opal:default-font) ; **Must be fixed width**

(:label-string "Label:") ; The string that will appear beside the box

(:label-offset 5) ; The distance between the label and the box

(:field-offset 2) ; The distance between the field text and the box

(:label-font (create-instance NIL opal:default-font (:face :bold))))

; The font of the string beside the box, can be variable-width

Chapter 8: Garnet Gadgets 451

The loader file for the scrolling-labeled-box gadget is "scrolling-labeled-box-loader".

This is a combination of the scrolling-input gadget and the labeled-box gadget. It has
a label and a box around the text. It operates just like the scrolling-input-string.

8.27 Graphics-Selection

(create-instance ’gg:Graphics-Selection opal:aggregadget

(:start-where NIL)

Chapter 8: Garnet Gadgets 452

(:start-event :leftdown)

(:running-where T)

(:modify-function NIL)

(:check-line T)

(:movegrow-boxes-p T)

(:movegrow-lines-p T)

(:value NIL)

(:active-p T)

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 453

Figure 8.13: Selection of a rectangle and a line with graphics-selection

Chapter 8: Garnet Gadgets 454

The loader file for graphics-selection is "graphics-loader".

The graphics-selection object is used to move and change the size of other graphical
objects. (The multi-graphics-selection can select and move multiple objects – see
section [multi-gs], page 455.) When the user clicks on a graphical object (from a set of
objects chosen by the designer), the object becomes selected and small selection squares
appear around the perimeter of the object. The user can then drag the white squares to
move the object or drag the black boxes to change the size of the object. Pressing in the
background (i.e., on no object) causes the currently selected object to become unselected.
Clicking on an object also causes the previously selected object to become unselected since
only one object may be selected at a time. While moving and growing, if the mouse goes
outside of :running-where or if the ^g key is pressed, the operation aborts.

The graphics-selection gadget should be added as a component to some aggregate or
aggregadget of the larger interface, just like any other gadget. The objects in the inter-
face that will be affected by the graphics-selection gadget are determined by the slots
:start-where and :running-where.

The graphics-selection gadget sets the :box slot of the object being moved or grown.
This is consistent with the behavior of the move-grow-interactor, discussed in the Inter-
actors chapter. Therefore, you should create your objects with :left, :top, :width, and
:height formulas that reference the :box slot.

The :start-where slot must be given a value to pass to an interactor to determine which
items may be selected. The value must be one of the valid ...-or-none forms for the
interactors :start-where slot (see the Interactors chapter for a list of allowable values).

The :start-event slot specifies the event that will cause an object to be selected. The de-
fault is :leftdown, so if the left mouse button is clicked over an object in the :start-where,
that object will become selected.

The :running-where slot is the area in which the objects can move and grow (see the
Interactors chapter for allowable values).

If the :check-line slot is non-NIL, then the graphics-selection gadget will check the
:line-p slot in the selected object, and if it is non-NIL then the interactor will select and
change the object as a line. Instances of opal:line and gg:arrow-line already have their
:line-p slots set to T. For other objects that should be selected as lines, the designer must
set the :line-p slots explicitly (e.g., a composite object like an arrow-line is not really a
line, though it should be treated like one).

If :movegrow-lines-p is nil, then the graphics-selection object will not allow a user to
drag the selection squares of a line, and a beep will be issued if the user clicks on a selection
square of a line.

If :movegrow-boxes-p is nil, then the graphics-selection object will not allow a user
to drag the selection squares of a non-line, and a beep will be issued if the user clicks on a
selection square of a non-line.

The graphics-selection gadget will be active when the value of its :active-p slot is T.
To turn off the gadget, set this slot to nil.

The :selection-function slot specifies a function to be executed upon the selection of
any object by the user. This function must take the parameters:

(lambda (gadget-object new-selection))

Chapter 8: Garnet Gadgets 455

The new-selection parameter may be nil if no objects are selected (i.e., the user clicks
in the background).

The designer can supply a :modify-function that will be called after an object is modified.
It takes these parameters:

(lambda (gadget-object selected-object new-points))

The new-points will be a list of 4 numbers, either left,top,width,height or
x1,y1,x2,y2.

8.28 Multi-Graphics-Selection

(create-instance ’gg:Multi-Graphics-Selection opal:aggregadget

;; programmer-settable slots

(:active-p T) ;; whether objects can be selected with the gadget

(:start-where NIL) ;; supply a valid start-where here

(:running-where T) ;; if supplied, then this is the area in which the

;; objects can move and grow

(:selection-function NIL) ;; this is called when the selection changes

(:modify-function NIL) ;; called when an object is changed size or position

(:check-line T) ;; whether to check for :line-p in objects

(:check-polygon T) ;; whether to check for :polygon-p in objects

(:check-group T) ;; whether to check for :group-p in objects

(:check-grow-p NIL) ;; whether to check for :grow-p in objects

(:check-move-p NIL) ;; whether to check for :move-p in objects

(:move-multiple-p T) ;; whether to move multiple objects as a group

(:grow-multiple-p T) ;; whether to grow multiple objects as a group

(:input-filter NIL) ;; used by the move-grow-interactor for grid-

ding, etc.

(:want-undo NIL) ;; whether to save information to allow undo

(:multiple-select-p T) ;; if T, then multiple objects can be selected.

(:other-multi-graphics-selection NIL] ;; Used when several multi-selection gad-

gets in

;; different windows are work-

ing in conjunction.

(:allow-component-select NIL) ;; if T, then pressing with control will select

;; the component under the selected object.

(:down-to-component-function gg::Point-To-Comp) ;; a function that gets the

;; appropriate com-

ponent out

;; of the object un-

der the mouse.

;; slots the programmer can access

(:current-selected-object NIL) ;; set with new selection or object to be moved

;; or grown before other slots are set.

(:value NIL)) ;; current object or objects selected **DO NOT SET**

Chapter 8: Garnet Gadgets 456

Chapter 8: Garnet Gadgets 457

Chapter 8: Garnet Gadgets 458

The loader file for multi-graphics-selection is "multi-selection-loader".

The multi-selection gadget is somewhat like the graphics-selection. The major dif-
ference is that multiple objects can be selected and manipulated by the user, and that the
programmer must use a function to set the :value slot. Another difference is the way that
the gadget checks whether move and grow is allowed.

This gadget exhibits the following features:

Chapter 8: Garnet Gadgets 459

Given a list of graphical objects, the multi-graphics-selection aggregadget will
cause selection squares to appear on the bounding box of selected objects.

One or more objects may be selected at a time, even when the objects are in different
windows.

A built-in interactor displays the selection squares around an object at the time of a
specified event (such as clicking a mouse button on the object).

Each selection square allows the user to move or grow the object by dragging the
selection square.

The user can move and grow several objects simultaneously.

All of the objects inside a region (drawn by dragging the mouse) can be selected.

8.28.1 Programming Interface

Create an instance of the gg:multi-graphics-selection gadget and supply the
:start-where slot with a valid list that can be passed to an interactor. This
:start-where must return the items to be selected. It should be an ...-or-none form,
such as :element-of-or-none. An example of the parameter to :start-where is: (list
:element-of-or-none MYAGG)

The :value slot of the multi-graphics-selection object supplies the object(s) the user
selects. If :multiple-select-p is nil (the default), then it is a single object or nil. If
:multiple-select-p is T, then will always be a list or nil (even if only one object is
selected). Also, a :selection-function can be supplied and will be called each time the
selection changes. It takes the parameters

(lambda (gadget new-selection) where new-selection is the new value of :value.

When your interface contains selectable objects in several windows, you can put a multi-
selection gadget in each window and coordinate them all. Each gadget’s :other-multi-

graphics-selection slot should contain a list of ALL the multi-selection gadgets. Then,
each gadget’s :value will reflect selections in all windows. A known bug is that the selection
order is NOT preserved across multiple windows (you can’t tell which object was selected
first or last). Also, you cannot drag objects from one window to another.

The user can change the size and/or position of the objects by pressing on the selection
handles (see below). If the :check-line slot is non-NIL, then the :line-p slot in the
object returned by :start-where will be gvd, and if it is non-NIL then the interactor
will change the object as a line. Note that instances of opal:line and gg:arrow-line

have their :line-p slot set to T by default. For other objects, the programmer must set
the :line-p slots explicitly. There is analogous interaction between the :check-group and
:check-polygon slots of the gadget and the :group-p and :polygon-p slots of the selected
objects.

The programmer can supply a :modify-function that will be called after an object is
modified. It takes these parameters: (gadget selected-object new-points) The new-
points will be a list of 4 numbers, either left,top,width,height or x1,y1,x2,y2.

Programmer-settable slots:

In summary, public slots of the multi-graphics-selection gadget are:

:active-p - If T, then the gadget will operate. If NIL, then none of the
interactors will work. Setting to NIL does not clear the selection, however.

Chapter 8: Garnet Gadgets 460

:start-where - Supply a valid start-where here.

:running-where - If supplied, then this is the area in which the objects can
move and grow.

:selection-function - This is called when the selection changes.

:modify-function - This is called when an object is changed size or position.

:check-line - If T, the objects are checked for their :line-p slot and if that
is non-NIL, then move or grown as a line.

:check-polygon - If T, the objects are checked for their :polygon-p slot and
if that is non-NIL, then they are moved or grown as a polygon (by changing
their :point-list slot).

:check-group - If T, the objects are checked for their :group-p slot and if that
is non-NIL, then the individual components of the group are modified.

:check-grow-p - If T, then checks in each object to see if :grow-p is T, and if
so, then will grow, else won’t. If nil, then everything can grow. Default nil.

:check-move-p - If T, then checks in each object to see if :move-p is T, and if
so, then will move, else won’t. If nil, then everything can move. Default nil.

:move-multiple-p - If T, then if multiple items are selected and you press on
a move box, then moves all of the objects. If nil, then just moves the object
you point to. Default=T.

:grow-multiple-p - If T, then when multiple items are selected, grow boxes
appear at the corners of the whole selection, and pressing there will grow all
the objects. If nil, then those handles don’t appear.

:input-filter - This is used by the move-grow-interactor for gridding. Con-
sult the Interactors chapter for a list of allowed values.

:want-undo - If T, then saves information (conses) so that you can call
undo-last-move-grow.

:allow-component-select - Whether to allow selection of components (see
below). Default=NIL.

:down-to-component-function - A function that determines which component
of an object has just been selected (see below). Default=NIL.

:multiple-select-p - If T, then multiple objects can be selected.
Default=NIL.

Slots that can be accessed:

:value - set with list of the current selections, in reverse order the user selected
the objects (first selected object is last in the list). Do not set this slot. Instead,
use the function Set-Selection (see below).

:current-selected-object - set with new selection before other slots are set.

Selecting components of the currently selected object:

You can enable the selecting of the components of the selected objects by setting
:allow-component-select to T. For example, if the :start-where lists a set of objects,
this feature can allow the selection of the parts of those objects. When component selection
is enabled, then by pressing the control-left mouse button over a selected object, that

Chapter 8: Garnet Gadgets 461

object will be deselected, and its component will be selected instead. Similarly, if the
control-middle mouse button or the control-shift-left mouse button is hit over a
selected object, then that object is de-selected, and the object underneath is added to
the selection set. The slot :down-to-component-function should contain a function to
get the appropriate component out of the object under the mouse. This function might
call a method in the selected object. Parameters are (lambda obj x y). It should return
the object to be selected, or NIL. The default function calls opal:point-to-component

directly.

Slots of the objects that can be selected are:

:line-p - this should be T if the object should be moved as a line, and nil if
as a rectangle

:group-p - this should be T if the object is some instance of opal:aggregate
and all its components should be moved as a group

:polygon-p - this should be T if the object is a polyline and it should be moved
by changing its :point-list slot

:points - if :line-p is T, then the :points slot of the object is changed as
the object is moved or grown.

:box - if :line-p is nil, then the :box slot of the object is changed as the
object is moved or grown.

:grow-p - if this object can be changed size

:move-p - if this object can be moved

Useful Functions:

[Function]gg:set-selection gadget new-selection
Gadget should be a multi-graphics-selection gadget, and new-selection is a list
of objects that should be selected, or a single object to be selected, or nil to turn off
all selections. The list passed in is not damaged.

[Function]gg:undo-last-move-grow multi-graphics-selection-gadget
When :want-undo is non-NIL (default is nil), then calling this function will undo the
last move or grow and the selection will return to whatever it was when the objects
were moved or grown. If you call undo-last-move-grow again, it undoes the undo
(one-level undo). It is your responsibility to make sure that no objects were deleted
or whatever between the grow and the call to undo.

Garnet does not yet have a general mechanism for Undo, so you should use this feature
with care. It is currently your responsibility to keep track of what the last operation
was and undo it.

8.28.2 End User Operation

The user can press on any object with the left button, and it will become selected. Pressing
on the background, causes no object to be selected (the current object becomes de-selected).
Selecting an object with the left button causes the previous object to be de-selected. If the
application allows multiple selection, then clicking with shift-left or middle on an object
toggles it in the selection set.

Chapter 8: Garnet Gadgets 462

Once an object is selected, it can be grown by pressing with the left button on one of the
black boxes or moved by pressing on a white box. While moving and growing, if the mouse
goes outside of :running-where or if ^g is pressed, the operation aborts.

The gadget also allows the user to change the size of several objects at once. When multiple
objects are selected, outline handles appear around each object, and the whole set can be
moved by pressing on any of these handles. Additionally, when :grow-multiple-p is non-
NIL, black handles appear at the four corners of the collection of objects, and these can be
used to scale the entire group.

The gadget also allows objects to be selected in a region. If you press down and drag before
releasing, then only the objects fully inside the dragged rectangle will become selected. If
you do this with the left button, then they will be selected. If you do this with shift-left or
the middle button, then all objects inside the rectangle will be toggled in the selection set
(added if not there, removed if there).

8.29 Scrolling-Windows

There are two scrolling-window gadgets which have the standard Garnet look and feel, and
two other scrolling-window gadgets that have the Motif look and feel (see section [motif-
scrolling-window], page 557). These windows are based on the design from Roderick J.
Williams at the University of Leeds for the Garnet contest. The scrolling-window gadget
allows you to do your own scrolling. The scrolling-window-with-bars gadget comes with
a horizontal and vertical scroll bar, which you can have on either side (and can turn off
explicitly). Each scroll bar will go blank if the entire area to be scrolled in is visible in the
window.

Chapter 8: Garnet Gadgets 463

(create-instance ’gg:Scrolling-Window opal:aggregadget

(:maybe-constant ’(:title :parent-window))

(:left 0) ; left, top, width and height of window

(:top 0)

(:position-by-hand NIL) ; if T, then left,top ignored and user asked for win-

dow position

(:width 150) ; width and height of inside of outer window

(:height 150)

Chapter 8: Garnet Gadgets 464

(:border-width 2) ; of window

(:parent-window NIL) ; window this scrolling-window is inside of, or NIL if top level

(:double-buffered-p NIL)

(:omit-title-bar-p NIL)

(:title "Scrolling-Window")

(:icon-title (o-formula (gvl :title))) ; Default is the same as the title

(:total-width 200) ; total size of the scrollable area inside

(:total-height 200)

(:X-Offset 0) ; offset in of the scrollable area

(:Y-Offset 0)

(:visible T) ; whether the entire window is visible (mapped)

;; Read-Only slots

(:Inner-Window NIL) ; these are created by the update method

(:inner-aggregate NIL) ; add your objects to this aggregate (but have to up-

date first)

(:outer-window NIL) ; call Opal:Update on this window (or on gadget itself)

(create-instance ’gg:Scrolling-Window-With-Bars opal:aggregadget

(:maybe-constant ’(:left :top :width :height :border-width :title

:total-width :total-height :h-scroll-bar-p :v-scroll-bar-p

:h-scroll-on-top-p :v-scroll-on-left-p :min-scroll-bar-width

:scr-trill-p :page-trill-p :indicator-text-p :h-scr-incr

:h-page-incr :v-scr-incr :v-page-incr :int-feedback-p

:indicator-font :parent-window :icon-title :visible))

;; Window slots

(:left 0) ; left, top, width and height of outermost window

(:top 0)

(:position-by-hand NIL) ; if T, then left,top ignored and user asked for win-

dow position

(:width 150) ; width and height of inside of outer window

(:height 150)

(:border-width 2) ; of outer window

(:parent-window NIL) ; window this scrolling-window is inside of, or NIL if top level

(:double-buffered-p NIL)

(:omit-title-bar-p NIL)

(:title "Scrolling-Window")

(:icon-title (o-formula (gvl :title))) ; Default is the same as the title

(:total-width 200) ; total size of the scrollable area inside

(:total-height 200)

(:X-Offset 0) ; x offset in of the scrollable area. CANNOT BE A FORMULA

(:Y-Offset 0) ; CANNOT BE A FORMULA

(:visible T) ; whether the window and bars are visible (mapped)

(:h-scroll-bar-p T) ; Is there a horizontal scroll bar?

(:v-scroll-bar-p T) ; Is there a vertical scroll bar?

Chapter 8: Garnet Gadgets 465

;; Scroll Bar slots

(:h-scroll-on-top-p NIL) ; whether horiz scroll bar is on top or bottom

(:v-scroll-on-left-p T) ; whether vert scroll bar is on left or right

(:min-scroll-bar-width 20) ; these control both scroll bars

(:scr-trill-p T) ; single-line increment arrow buttons visible?

(:page-trill-p T) ; page jump arrow buttons visible?

(:h-scr-incr 10) ; in pixels

(:h-page-incr (o-formula (- (gvl :width) 10))) ; default jumps one page mi-

nus 10 pixels

(:v-scr-incr 10) ; in pixels

(:v-page-incr (o-formula (- (gvl :height) 10))) ; default jumps one page mi-

nus 10 pixels

(:int-feedback-p T) ; use NIL to have contents move continuously

(:indicator-text-p NIL) ; Whether the pixel position is shown in the bars

(:indicator-font (create-instance NIL opal:font (:size :small)))

;; Read-Only slots

(:Inner-Window NIL) ; these are created by the update method

(:inner-aggregate NIL) ; add your objects to this aggregate (but have to up-

date first)

(:outer-window NIL) ; call Opal:Update on this window (or on gadget itself)

(:clip-window NIL)

The loader file for both scrolling-window gadgets is "scrolling-window-loader".

Caveats:

If the scrolling-window has a :parent-window, update the parent window before in-
stantiating the scrolling-window.

Update the scrolling-window gadget before referring to its inner/outer windows and
aggregates.

The instance of the scrolling-window should not be added to an aggregate.

These gadgets supply a scrollable region using the X window manager’s ability to have
subwindows bigger than the parent window. Garnet moves the subwindow around inside the
parent window and X handles the clipping. All the objects in the window are instantiated
(and therefore take up memory), but they will not be drawn if outside. You must specify the
total area to be scrolled in using the :total-width and :total-height fields. (Therefore,
the scrolling window gadgets do not support semi-infinite planes–you must pick a size for
the user to scroll around in.) Often, you can compute the size based on the contents to
be displayed in the window. There can be a formula in the :total-* fields, but it should
have an initial value. Note: It is illegal to have windows with a zero or negative width and
height, so the :total-width and :total-height should always be greater than zero.

The width and height specified for the window is the inside of the outer window, not
counting the scroll bars. For scrolling-windows, this will usually be the same as the size
of the visible region. For Scrolling-Window-With-Bars, the visible portion is smaller by
the size of the scroll bars, which is usually the value of the :min-scroll-bar-width slot
(unless you turn on indicator text).

Chapter 8: Garnet Gadgets 466

Each of these gadgets is special in that they add themselves to the windows that they create.
Since windows are not like other Gadgets, you need to follow special rules with scrolling
windows.

First, do not add scrolling-window or scrolling-window-with-bars gadgets to any aggregates
or include them in aggregadgets. If you want a scrolling window to be inside another window,
you must use the :parent-window slot instead.

Second, you must call opal:update on a scrolling window gadget immediately after creating
it, and before adding anything to the windows. The update method causes the windows to
be created. If you want to create a prototype of a scrolling window (and specify special
values for some of the fields), you can skip the update call, but then you cannot add any
contents to the window.

The aggregate to add the contents to is provided in the slot :inner-aggregate of the gadget
after the update call. To make the scrolling-window a subwindow of another window, specify
the :parent-window of the scrolling-window. If you want to put a sub-window inside a
scrolling-window, use the window in the :inner-window slot of the scrolling window as the
:parent of the newly created window.

As an example:

(create-instance ’MYSCROLL garnet-gadgets:scrolling-window-with-bars

(:left 650)(:top 10)(:width 300)(:height 400)

;;note that the next two formulas must have initial values

(:total-width (o-formula (gvl :inner-aggregate :width) 200))

(:total-height (o-formula (gvl :inner-aggregate :height) 200)))

(opal:update MYSCROLL) ; Must update scrolling windows before using them.

(opal:add-components (gv MYSCROLL :inner-aggregate)

all the objects to be added to the scrolling window

)

;;; create a scrolling window inside the other scrolling window, just for fun

(create-instance ’SUB-SCROLLING-WINDOW garnet-gadgets:scrolling-window-with-bars

(:left 15)(:top 15)(:width 150)(:height 150)

(:parent-window (gv MYSCROLL :inner-window)))

With Scrolling-Windows, but not Scrolling-windows-with-Bars, you can explicitly set
the :X-offset and :Y-Offset fields using s-value to adjust the position of the con-
tents. For Scrolling-windows-with-Bars, you must use the following procedures to have
your application program scroll the window. This is necessary to get the scroll bars to
be updated correctly to show the window position. These procedures also work with
Scrolling-Windows.

Useful functions:

[Function]gg:scroll-win-inc scroll-win-gadget xinc yinc
This function scrolls a window by adding the specified values, which can be negative.
Note that xinc and yinc are usually zero or negative numbers, since they are the offset
top-left corner of the inner window from the top-left of the clipping window, so to see
down in the document, the inner window must be moved up.

[Function]gg:scroll-win-to scroll-win-gadget x y
This function scrolls a window by putting the specified coordinate at the upper left
corner of the clip window.

Chapter 8: Garnet Gadgets 467

[Function]gg:show-box scroll-win left top right bottom
This function causes the scrolling-window scroll-win to scroll so that the region spec-
ified by left, top, right and bottom is visible. If the box is already visible, it will not
cause the window to scroll. This can be used to cause the cursor in a text window, for
example, or a "current item" to be visible. It is also used by the focus-multifont

interactor.

If the box is larger than the visible region of the scrolling-window, the bottom and/or
the rightmost parts of the box may remain hidden.

Chapter 8: Garnet Gadgets 468

8.30 Arrow-line and Double-Arrow-Line

The arrow-line and double-arrow-line objects are comprised of a line and one or more
arrowheads, effectively forming a single- or double-headed arrow. These objects are provided
since the standard opal:arrowhead does not have an attached line.

Chapter 8: Garnet Gadgets 469

8.30.1 Arrow-Line

(create-instance ’gg:Arrow-Line opal:aggregadget

(:maybe-constant ’(:x1 :y1 :x2 :y2 :line-style :open-p :filling-style :visible))

(:X1 0) (:Y1 0)

(:X2 20) (:Y2 20)

(:line-style opal:default-line-style)

(:filling-style NIL)

(:open-p T))

The loader file for the arrow-line is "arrow-line-loader".

The origin (or tail) of the arrow-line is the point (:x1,y1), and the tip is at (:x2,y2).
The values for these slots may be formulas that depend on the value of slots in other Garnet
objects. For example, if :x2 and :y2 depended on the :left and :top coordinates of some
rectangle, then the arrow would point to the top, left corner of the rectangle regardless of
the movement of the rectangle.5

The appearance of the arrowheads themselves may also be customized. The :line-style

slot contains a value indicating the thickness of all lines in the arrow-line object. Opal
exports a set of pre-defined line styles, which must be preceded by the Opal package name,
as in opal:line-0. Available line style classes are: no-line, thin-line, line-0, line-

1, line-2, line-4, line-8, dotted-line and dashed-line. Other line style classes may
also be defined (see the Opal Chapter).

The slot :filling-style determines the shade of gray that will appear inside the ar-
rowheads. Pre-defined filling styles are exported from Opal, and must again be preceded
by the Opal package name. Available filling styles are no-fill, black-fill, white-

fill, gray-fill, light-gray-fill, dark-gray-fill, and diamond-fill. The Opal
function halftone may also be used to generate a filling style, as in (:filling-style

(opal:halftone 50)), which is half-way between black and white fill.

The slot :open-p determines whether a line is drawn across the base of the arrowhead.

Additional features of the arrowhead may be customized by accessing the slot :arrowhead
of the arrow-line. For example, the following instruction would set the :diameter of an
arrow-line arrowhead to 20:

(s-value (gv MY-ARROW-LINE :arrowhead) :diameter 20)

The same customization may also be implemented when the instance is created:

(create-instance ’MY-ARROW-LINE garnet-gadgets:arrow-line

(:parts ‘(:line (:arrowhead :modify

(:diameter 20)))))

8.30.2 Double-Arrow-Line

(create-instance ’gg:Double-Arrow-Line opal:aggregadget

(:maybe-constant ’(:x1 :y1 :x2 :y2 :line-style :open-p :filling-style

:arrowhead-p :visible))

(:X1 0) (:Y1 0)

(:X2 40) (:Y2 40)

5 See the KR chapter for a detailed discussion of constraints and formulas.

Chapter 8: Garnet Gadgets 470

(:line-style opal:default-line-style)

(:filling-style NIL)

(:open-p T)

(:arrowhead-p :both))

The loader file for the double-arrow-line is "arrow-line-loader".

The endpoints of the double-arrow-line are at points (:x1,:y1) and (:x2,:y2). The
slots :line-style, :filling-style, and :open-p are used exactly as in the arrow-line,
with both arrowheads taking identical properties.

The additional slot :arrowhead-p designates which end(s) of the line will have arrowheads.
Allowed values are:

0 or NIL - No arrowheads

1 - Arrowhead at coordinate (:x1,:y1)

2 - Arrowhead at coordinate (:x2,:y2)

3 or :both - Arrowheads at both ends

The arrowheads may be further customized as in the arrow-line object. The arrowheads
are available in the slots :arrowhead1 and :arrowhead2.

8.31 Browser Gadget

(create-instance ’gg:Browser-Gadget opal:aggregadget

(:maybe-constant ’(:left :top :num-menus :num-rows :menu-items-generating-function

:menu-function :item-to-string-function :additional-selection-p

:item-font :title-font :visible))

;; Browser parameters

(:left 0)

(:top 0)

(:num-menus 3)

(:num-rows 5)

(:menu-items-generating-function NIL)

(:item-to-string-function #’(lambda (item) item)) ;; assume item is a string

;; Additional-selection parameters

(:additional-selection-p T)

(:additional-selection (o-formula ...))

(:additional-selection-function NIL)

(:additional-selection-coordinate NIL)

;; Scrolling-Menu parameters

(:item-font opal:default-font)

(:title-font (create-instance NIL opal:font (:face :italic)))

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 471

The loader file for the browser-gadget is "browser-gadget-loader".

The browser-gadget is a sophisticated interface device which may be used to examine
hierarchical structures, such as Garnet object networks and directory trees. The gadget is
composed of a set of scrolling menus, where the selections in each scrolling menu correspond
to the children of the item appearing in the title. Clicking on one of the menu selections
causes that selection to appear as the title of the next scrolling menu, with all of its children
appearing as choices in the new menu. Additionally, clicking the middle mouse button over
a menu selection causes a gray feedback box to appear, indicating a secondary selection.

Chapter 8: Garnet Gadgets 472

"demo-file-browser", are included in the Garnet demos sub-directory as examples of how the
browser-gadget is used in an interface. With the schema browser, the user may examine
the inheritance and aggregate hierarchies of Garnet, while the file browser can be used to
examine the file hierarchy of Unix directories.

8.31.1 User Interface

initially appear in a window with an item already displayed in the first menu. (Alternatively,
the designer may provide a mechanism such as a labeled-box gadget through which the
user initializes a fresh browser with the first item.) The selections in the first menu are
derived from the item in the title through a specified function. When the user clicks the
left mouse button on one of the menu choices, that selection will appear in the title of the
next menu, with all of that item’s "children" appearing as choices. If the item that the user
selects does not generate any children, then a new menu is not generated.

The user may also click on a menu selection with the middle mouse button, causing the se-
lection to be bordered by a gray rectangle. This selection is called the "additional selection",
and there is only one for all of the menus in the browser-gadget.

The choices that are visible in each menu are controlled by the scroll bars appearing on
the sides of the menus. If there are more menu selections derived from the title item than
can be shown in a menu, then the background of the scroll bar will be gray and a white
indicator box will appear. Clicking the left mouse button on the trill boxes at the top and
bottom of the scroll bars will "scroll" more selections into the menu. Clicking on the single
arrow trill boxes causes the visible selections to scroll one at a time, and clicking on the
double arrow trill boxes will cause an entire "page" of new selections to appear (one page
is equal to the number of items visible in the menu). The user may also drag the indicator
of a scrolling menu scroll bar to adjust the visible selections.

Analogously, the horizontal scroll bar appearing below the menus may be adjusted to change
which menus are displayed. When there are more menus to show than are allowed at one
time, then the trill boxes can be clicked to scroll either one menu at a time or a whole
"screen" of menus. Dragging the indicator in this scroll bar will cause a black rectangle
to follow the mouse, rather than the indicator box itself. When the user releases the black
rectangle, the indicator will jump to the position where it was released.

8.31.2 Programming Interface

8.31.3 Overview

It is important to note that the programming interface to the browser-gadget is different
than in other Garnet gadgets. Due to the complexity of the gadget, this section is provided
as a guide to the essential elements of the browser-gadget so that the designer can create
and use an instance immediately. Subsequent sections describe in greater detail the slots
and functions mentioned in this section.

When creating an instance of the browser-gadget, there is one slot that must be set. The
slot :menu-items-generating-function must be provided with a function that generates
children from the items that are to be shown in the titles of the menus. This function takes
an item and returns a list of items that correspond to menu selections. These items can
be of any type, but if they are not strings, then the slot :item-to-string-function must

Chapter 8: Garnet Gadgets 473

also be set with a function to derive strings from the items (its default value is the identity
function). These functions are discussed further in section [gen-fns], page 474.

The :items slot adheres to the convention that if an element of this list is a list, then the
second element is an item-function. The :item-to-string-function (described below) is
applied to the first element of the item list to get a label for a menu selection. If data is to
be stored in the elements of the :items list, it should be included as the third or greater
elements in the item lists (see section [items-slot], page 401).

To install an item in a browser-gadget instance, the function set-first-item should
be called with the parameters of the name of the browser instance and the new item. A
subsequent update of the window containing the instance will show the item appearing in the
first menu with all of its children. Other functions used to manipulate the browser-gadget
are discussed in section [manipulating], page 475.

8.31.4 An example

Suppose that we want to define an instance of the browser-gadget to look at the inher-
itance hierarchy of Garnet schemas. First, create an instance called BROWSER-1 with
the appropriate generating functions (these particular lambda-expressions are analyzed in
[gen-fns], page 474).

(create-instance ’BROWSER-1 garnet-gadgets:browser-gadget

(:menu-items-generating-function #’(lambda (item)

(gv item :is-a-inv)))

(:item-to-string-function #’(lambda (item)

(if item

(string-capitalize (kr:name-for-schema item))

""))))

The BROWSER-1 schema can be added to a Garnet window in the usual way:

(create-instance ’WIN inter:interactor-window

(:width 600) (:height 200)

(:aggregate (create-instance ’AGG opal:aggregate)))

(opal:add-component AGG BROWSER-1)

(opal:update win)

Now, we can initialize the BROWSER-1 object with a Garnet schema, such as the
opal:rectangle schema:

(garnet-gadgets:set-first-item BROWSER-1 opal:rectangle)

(opal:update win)

All instances of opal:rectangle that currently exist will be shown in the first menu.
Clicking on one of the selections in this menu will cause that selection to appear in the title
of the second menu, with all of its instances as selections.

Since opal:rectangle is an instance of the opal:graphical-object schema, we can use
the push-first-item (described in section [manipulating], page 475) to show all of the
objects that are instances of opal:graphical-object. If we call

(garnet-gadgets:push-first-item BROWSER-1 opal:graphical-object)

then the "Rectangle" title will be moved into the second menu along with all of its selections,
and the "Graphical-Object" item will be displayed in the first menu with all of its instances.

Chapter 8: Garnet Gadgets 474

The "Rectangle" selection under the "Graphical-Object" title will be highlighted, since it
was matched with the title of the second menu.

8.31.5 Generating Functions for Items and Strings

:menu-items-generating-function contains a function which generates menu selections
from each item in the scrolling menu titles. The function takes an item as a parameter,
and returns a list of menu items which correspond to the selections in the scrolling menus.
For example, if a browser-gadget instance is to be initialized with a Garnet schema,
and the menus should display all of the instances of each item, then the :menu-items-

generating-function appearing in the example of section [browser1-example], page 473,
is appropriate. It should be noted that this function does not need to return a list of strings,
but that eventually strings will be generated from the items that it returns (via the function
in :item-to-string-function).

:item-to-string-function is used to generate strings from arbitrary items obtained from
the :menu-items-generating-function. If the generated items are strings themselves,
then the :item-to-string-function may retain its default value. The strings returned
by the :item-to-string-function will be displayed as the titles and selections of the
scrolling menus. In the example of section [browser1-example], page 473, the :menu-items-
generating-function returns a list of Garnet schemas. So the supplied :item-to-string-

function takes a schema as a parameter and returns the string name of the schema. Notice
that when there are fewer items than there are menus, this function will generate empty
strings for the titles of the blank menus.

8.31.6 Other Browser-Gadget Slots

The number of menus to be displayed horizontally in the browser-gadget is determined by
the slot :num-menus. Since the set of menus in the gadget is implemented with an aggrelist,
the menu objects will be adjusted automatically to correspond with the new value during
the next call to opal:update. Analogously, the slot :num-rows determines the number of
vertical selections to appear at one time in each scrolling menu.

The slots :title-font and :item-font control the fonts for the titles of the menus and
the menu selections, respectively.

The function specified in :selection-function is executed when the user selects an item
from one of the scrolling menus. The parameters of this function are

(lambda (browser-instance item))

where the item is an object generated by the function specified in :menu-items-

generating-function. This function is executed after some internal bookkeeping is
performed to update the browser-gadget.

8.31.7 The Additional Selection

button over one of the scrolling menu selections, the outline of a gray rectangle will appear
over the selection. The item chosen in this manner is called an "additional selection".

Whether this feature is active is determined by the value of the slot
:additional-selection-p.

The item identified by the additional selection may be accessed through the slot
:additional-selection. The value in this slot will correspond to some item returned by

Chapter 8: Garnet Gadgets 475

the function specified in :menu-items-generating-function. Note: this slot cannot be set
directly to move the gray feedback box. Instead, the :additional-selection-coordinate
slot must be set.

Since items may frequently be scrolled off to the side of the browser, it may not be
possible to name explicitly the item which the gray feedback object should appear over.
However, the "coordinate" of the additional selection can always be named in the slot
:additional-selection-coordinate. This slot is set when the user selects the additional
selection, and it may be set directly by the programmer. The :additional-selection-

coordinate slot contains a list of two values – the first is the rank of the menu which the
selection appears in, and the second is the rank of the selection within the menu. Both
ranks are zero-based, and are relative to the full lengths of the two item lists, not just the
items currently visible.

The function specified in the slot :additional-selection-function will be executed when
the user chooses the additional selection. The parameters are

(lambda (browser-instance item))

where item was just selected by the user. If the user presses over the previous additional
selection, it will become deselected, and the :additional-selection-function will be
called with nil as the item parameter.

8.31.8 Manipulating the browser-gadget

been created, an item can be installed in the instance as starting object by calling
set-first-item with the parameters

[Function]gg:Set-First-Item browser-instance new-item
The effect of calling this function is to install the new-item in the :items slot of the
instance, and to initialize the bookkeeping slots of the instance.

to add an item to the front of a browser-gadget instance. It takes the parameters

[Function]gg:push-first-item browser-instance new-item
and adds the new-item to the front of the browser-instance’s :items list and adjusts
the bookkeeping slots of the instance appropriately. A selection in the first menu is
highlighted only if a match is found with the title of the second menu (which causes
the browser to appear as though the second menu was actually generated from clicking
on the selection in the first menu).

install a new first item in an instance when the desired item already appears as a
selection in one of the scrolling menus. The function is given the parameters

[Function]gg:promote-item browser-instance coordinate
where coordinate is a list of two numbers corresponding to the location of the desired
item in the browser-instance. The syntax of the coordinate list is defined in section
[additional], page 474. If the item whose coordinate is passed is highlighted, then all
of the menus to the right of the selection are retained; otherwise, the item becomes
the only item in the instance.

Chapter 8: Garnet Gadgets 476

8.32 Polyline-Creator

(create-instance ’gg:Polyline-Creator opal:aggregadget

(:selection-function NIL) ; called when have full poly-line

(:start-event :leftdown) ; the event to start the whole process on

Chapter 8: Garnet Gadgets 477

(:start-where NIL) ; where the mouse should be when the start-

event happens

(:running-where T)

(:close-enough-value 3) ; how close a point should be to the first point to stop the interaction

(:input-filter NIL)

; Editing parameters

(:mover-start-event :leftdown) ; event to start moving a point

(:mover-stop-event :leftup) ; event to stop moving a point

(:adder-start-event :leftdown) ; event to add a point

(:deleter-start-event :middledown) ; event to delete a point

(:threshold 3) ; how close to line to add a point

(:polyline-being-edited NIL) ; read-only slot

; Return value

(:value NIL) ; set with final point list

The loader file for the polyline-creator gadget is "polyline-creator-loader".
Examples of creating and editing polylines are in the GarnetDraw demo and the small
(gg:polyline-creator-demo-go) which is loaded by default with the polyline-creator.

This gadget allows the user to enter new polylines (lists of points), while providing feedback.
It also supports polyline editing, meaning that you can add, remove, and move points of a
polyline with the mouse.

8.32.1 Creating New Polylines

The user interface for creating polylines is as follows: The user presses a button (specified
in the :start-event slot) to start the interaction. Each subsequent button press causes a
new segment to be added to the line. Feedback is provided to the user. The Polyline stops
when:

the new point is close enough (within :close-enough-value pixels) to the first point
of the polyline (in which case the polyline is closed).

a button pressed is different from the start event (in which case the polyline is open).

the application calls the function Stop-Polyline-Creator (see below).

The gadget can also be aborted if the user types ^g or the application calls abort-polyline-
creator.

The function in the :selection-function is called to create the new polyline. This func-
tion should not destructively modify the point-list, but should instead copy the point-list if
it will be changed. This functions is called with the parameters

(lambda (gadget new-point-list)

where new-point-list is of the form: (x1 y1 x2 y2 x3 y3 ...).

The :input-filter slot is used just as in the move-grow-interactor and the two-point-
interactor, described in the Interactors chapter.

The :value slot is also set by the gadget with the final point-list. Applications are not
allowed to set this directly (there can be no default value for this gadget).

Chapter 8: Garnet Gadgets 478

8.32.2 Editing Existing Polylines

gg:Toggle-Polyline-Handles polyline-creator-gadget polyline [function],

page 90

This function is used to display square "selection handles" on each point in the polyline to
enable editing. The polyline-creator-gadget is passed as an argument to this function, since
the selection handles to be displayed are components of the gadget.

To move a point, click the left mouse button over the point, move it to a new position,
and release the left mouse button. Hitting control-g while moving a point will abort the
move. Clicking the left mouse button in the middle of a line will add a point, after which
the point can be dragged to a different location. Clicking on the background while editing
a polyline will turn off the handles for the polyline.

There are several ways to delete points: either hit the middle mouse button over the point,
double-click on the point, or hit the DELETE key while moving the point.

When the toggle-polyline-handles function is called, it first checks to see if the polyline
is already being edited. If it is, it turns off the handles for the polyline. Otherwise, it turns
on the handles for the polyline. Note that only one polyline can be edited at a time. If you
call this function while a polyline is already being edited, it will turn off the handles for
that polyline before turning on the handles for the polyline to be edited.

There are five slots in the polyline gadget which specify what actions cause editing. The
slots and their default values are:

:mover-start-event - Default = :leftdown. The event to start moving a
point.

:mover-stop-event - Default = :leftup. The event to stop moving a point.

:adder-start-event - Default = :leftdown. The event to add a point.

:deleter-start-event - Default = :middledown. The event to delete a point.

:threshold - Default = 3. How close you have to click next to a line to add a
point.

There is a slot in the gadget called :polyline-being-edited. This slot will contain the
polyline that is currently being edited, or nil if no polyline is being edited.

8.32.3 Some Useful Functions

[Function]gg:stop-polyline-creator gadget
This causes the gadget to create the current object. It ignores the current mouse
position. This is useful if some other gadget (such as a palette changing the drawing
mode) wants to stop the gadget. You can call this even if the gadget is not operating.

[Function]gg:abort-polyline-creator gadget
This aborts the gadget without creating the polyline.

Chapter 8: Garnet Gadgets 479

8.33 Error-Gadget

Error: Invalid input from user.
Press OK to continue.

OK

(create-instance ’gg:Error-Gadget opal:aggregadget

(:parent-window NIL)

(:font opal:default-font)

(:justification :center)

Chapter 8: Garnet Gadgets 480

(:modal-p T)

(:beep-p T)

(:button-name "OK")

(:window NIL) ; Automatically initialized

(:selection-function NIL) ; (lambda (gadget value))

...)

The loader file for the error-gadget is "error-gadget-loader".

The error-gadget is a dialog box used to tell the user that an error has occurred. When
activated, the user sees a window appear with a multi-line text message and an "OK"
button centered in the window. If specified by the designer, all activities in the rest of the
interface will be suspended until the user clicks on the "OK" button to cause the error
window to disappear.

There is also a motif-error-gadget, which is described in section [motif-error-gadget],
page 548.

Some utility functions in section [top-careful-eval], page 481, allow you to easily raise an
error-gadget in the context of checking user input for errors.

Caveats:

Update the parent window before instantiating the error-gadget.

The instance of the error-gadget should not be added to an aggregate.

8.33.1 Programming Interface

In order to associate an error window with an application, an instance of the error-gadget
should be created with the :parent-window slot set to the window of the application. The
error window is activated by calling one of the functions

[Function]gg:display-error error-gadget &optional message
[Function]gg:display-error-and-wait error-gadget &optional message

where the parameter error-gadget is the instance created by the user and message is a
string to be displayed in the window. If message is not supplied, then the value in the
:string slot of the gadget is used. The message may have multiple lines, indicated
by carriage returns within the text string. While the display-error routine returns
immediately when the dialog box appears, display-error-and-wait does not return
until the user hits the OK button. The return value of both functions is always T.

When the error-gadget is associated with a parent window, the error window will
appear centered inside of this window. If :parent-window is nil, then the error
window will appear at coordinates (200,200), relative to the upper left corner of the
screen.

The font of the message is specified in the :font slot. The :justification slot
is used to specify whether to align the text against the left or right margin of the
window or whether each line should be centered in the window (allowed values are
:left, :right, and :center).

If the value of the :modal-p slot is T, then all interactors in the rest of the interface
will be suspended, and the user will not be able to continue working until the "OK"
button has been pressed. If :modal-p is nil, then the interface will continue to
function with the error window visible.

Chapter 8: Garnet Gadgets 481

If the :beep-p slot is T, then Garnet will sound a beep when the gadget becomes
visible. To turn off the beep, set :beep-p to nil.

The :button-name slot determines the label of the button. Since the display-error
routines do not take this as a parameter, it must be set in the gadget itself.

After the instance of the error-gadget has been created, the window which will
contain the text and the button may be accessed through the :window slot of the
instance. Note: When the error-gadget instance has a parent-window, the :left

and :top coordinates of this window will be relative to the parent-window. Otherwise,
they are relative to the full screen.

8.33.2 Error-Checking and Careful Evaluation

There are several functions that can be used to evaluate lisp expressions that may contain
errors, while avoiding a crash into the debugger. These functions may be used to evaluate
user input to make sure it is free of errors before passing it on to the rest of an application.
If the user input contains an error (i.e., does not successfully evaluate), the functions return
a special value and can display an error-gadget informing the user of the error.

These functions are more portable and more useful than implementation-dependent func-
tions like ignore-errors. These functions are used in many Garnet applications and de-
mos where information is supplied by the user. Examples can be found in the Inspector,
demo-graph, garnet-calculator, and the line and filling-style dialog boxes in Gilt.

All of the careful-eval functions are defined in error-gadget-utils, and are loaded
automatically along with the error and query gadgets when you do (garnet-load

"gadgets:error-gadget-loader") or (garnet-load "gadgets:motif-error-gadget-

loader").

These functions were inspired by the protected-eval module in the Garnet contrib di-
rectory, created by Russell G. Almond.

8.33.3 Careful-Eval

[Macro]gg:careful-eval form &optional error-gadget error-message
Careful-Eval will evaluate the form. If an error is encountered during the eval,
then the error-gadget will be displayed with the actual lisp error message that was
generated, followed by the specified error-message (separated by carriage returns).

When the evaluation is successful, gg:Careful-Eval returns the evaluated value
(which may be multiple values). If there was an error, then Careful-Eval returns two
values: nil and the error condition structure. (For a discussion of error conditions,
see Chapter 29 of the Second Edition of Guy Steele’s Common Lisp, the Language.)

Examples:

lisp> (gg:careful-eval ’(+ 4 5)) ;; evaluates successfully

9

lisp> (gg:careful-eval ’(+ 4 y)) ;; signals an error

NIL

#<EXCL::SIMPLE-ERROR.0>

lisp> (multiple-value-bind (val errorp)

(gg:careful-eval ’(+ 4 y))

Chapter 8: Garnet Gadgets 482

() (if errorp ; perhaps (typep errorp ’condition) is safer

(format t "An error was encountered~%")

(format t "Value is ~S~%" val)))

An error was encountered

NIL

lisp>

8.33.4 Careful-Read-From-String

gg:Careful-Read-From-String string &optional error-gadget error-message [function],

page 90

Careful-Read-From-String will try to read a symbol or expression from the string and
return it if successful. If an error is encountered, then the error-gadget will be raised
and two values will be returned: nil and the error condition. The message displayed in
the error gadget will be a concatenation of the actual lisp error message followed by the
error-message.

8.33.5 Careful-String-Eval

gg:Careful-String-Eval string &optional error-gadget error-message [function],

page 90

Careful-String-Eval will try to read a symbol or expression from the string and then eval
it. If the read and eval are successful, then the evaluated value is returned. If there was
an error during either the read or eval, then the error-gadget is raised and two values are
returned: NIL and the error condition. The message displayed in the error gadget will be
a concatenation of the actual lisp error message and the error-message.

8.33.6 Careful-Eval-Formula-Lambda

gg:Careful-Eval-Formula-Lambda expr error-gadget error-message [function],

page 90

the-obj the-slot the-formula warn-p

Careful-Eval-Formula-Lambda evaluates the expression AS IF it were installed in the-slot
of the-obj as a formula. This is useful when the expr contains gvl calls, which normally
require that the expr is already installed in an o-formula when it is evaluated. If the
evaluation is successful, then the evaluated value is returned. If there was an error during
the eval, then the error-gadget is raised and two values are returned: nil and the error
condition. The message displayed in the error gadget will be a concatenation of the actual
lisp error message followed by the error-message.

If a formula object has already been created for the expression, then it should be passed
as the value of the-formula. This will cause dependencies to be established as the gv’s and
gvl’s are evaluated in the expression. The-formula may also have the value :ignore, which
will prevent the establishment of dependencies.

Example:

lisp> (create-instance ’R opal:rectangle

(:my-left 67))

Chapter 8: Garnet Gadgets 483

Object R

#k<R>

lisp> (gg:careful-eval-formula-lambda ’(gvl :my-left) NIL NIL

R :left :ignore NIL)

67

lisp>

8.34 Query-Gadget

(create-instance ’gg:Query-Gadget gg:error-gadget

(:button-names ’("OK" "CANCEL"))

(:string "Is that OK?")

(:parent-window NIL)

(:font opal:default-font)

(:justification :center)

(:modal-p T)

(:beep-p T)

(:window NIL) ; Automatically initialized

(:selection-function NIL) ; (lambda (gadget value))

...)

The loader file for the query-gadget is "error-gadget-loader" (the query-gadget is in the
same file as the error-gadget).

The query-gadget is similar to the error-gadget, but it allows more buttons in the win-
dow, so it is useful for a general purpose dialog box. The button names are supplied in the
:button-names slot of the query-gadget or as a parameter to the display functions. The
use of the query-gadget is the same as the error-gadget (and the same caveats apply).
There is also a motif-query-gadget, which is described in section [motif-query-gadget],
page 549.

To display a query-gadget, you first create an instance of query-gadget, and then call one
of:

display-query query-gadget &optional message label-list

display-query-and-wait query-gadget &optional message label-list

The message is the string to display, and the optional label-list allows you to change the but-
tons. It should be a list of strings, atoms or keywords. If message is not supplied, then the
value of the :string slot of the gadget is used. This function displays the query-gadget on
the screen and then returns immediately. The selection-function of the query gadget (if
any) is called with the item from the label-list the user selected. While the display-query
routine returns immediately when the dialog box appears, display-query-and-wait does
not return until the user hits one of the buttons. The return value display-query-and-

wait is the label of the selected button.

8.35 [Save Gadget]

(create-instance ’gg:Save-Gadget opal:aggregadget

(:maybe-constant ’(:parent-window :window-title :window-left :window-top

Chapter 8: Garnet Gadgets 484

:message-string :num-visible :initial-directory :button-panel-items

:button-panel-h-spacing :min-gadget-width :modal-p

:check-filenames-p :query-message :query-buttons

:dir-input-field-font :dir-input-label-font :message-font

:file-menu-font :file-input-field-font :file-input-label-font

:button-panel-font))

(:parent-window NIL)

(:window-title "save window")

(:min-gadget-width 240)

(:initial-directory "./")

(:message-string "fetching directory...")

(:query-message "save over existing file")

(:button-panel-items ’("save" "cancel"))

(:button-panel-h-spacing 25)

(:num-visible 6)

(:check-filenames-p t)

(:modal-p NIL)

(:selection-function NIL) ; (lambda (gadget value))

(:dir-input-field-font (opal:get-standard-font NIL NIL :small))

(:dir-input-label-font (opal:get-standard-font NIL :bold NIL))

(:file-input-field-font (opal:get-standard-font NIL NIL :small))

(:file-input-label-font (opal:get-standard-font NIL :bold NIL))

(:message-font (opal:get-standard-font :fixed :italic :small))

(:button-panel-font opal:default-font)

(:file-menu-font (opal:get-standard-font NIL :bold NIL))

...)

Chapter 8: Garnet Gadgets 485

Directory: /usr0/rajan/

Mail

Untitled

bin

g.lisp

include

lib

Filename: Untitled

Save Cancel

Figure 8.14: A save-gadget showing the contents of directory /usr0/rajan/

The loader file for the save-gadget is "save-gadget-loader" (which also loads the
load-gadget). Figure [save-gadget-tag], page 485, shows a picture of the save gadget.

Chapter 8: Garnet Gadgets 486

The save-gadget is a dialog box used to save a file, while displaying the contents of the
destination directory in a scrolling menu. The gadget has an accompanying query-gadget
dialog box (not shown) that can ask the user if the file really should be saved before the
save-gadget appears. This is an extra level of convenience for the application designer.

There is also a motif-save-gadget, as well as a load-gadget and motif-load-gadget.

Caveats:

Update the parent window before instantiating the save-gadget.

The instance of the save-gadget should not be added to an aggregate.

8.35.1 Programming Interface

When a save gadget is created, it does not appear automatically. Like the query and error
gadgets, it has its own display function. The save window is activated by calling one of
these functions:

gg:Display-Save-Gadget save-gadget &optional initial-filename[No value for

‘‘function’’]

gg:Display-Save-Gadget-And-Wait save-gadget &optional initial-filename[No

value for ‘‘function’’]

While the display-save-gadget routine returns immediately when the dialog box appears,
display-save-gadget-and-wait does not return until the user hits either the "Save" or
"Cancel" button. If an initial-filename is provided, it will appear in the "Filename:" box
when the gadget is displayed.

NOTE: To change the directory, set the :initial-directory slot of the gadget to be
the new directory. Then, when you call one of the display methods, the directory will be
updated.

To hide a save window, use

[Function]gg:hide-save-gadget save-gadget
The following function is described in section [save-file-if-wanted-fn], page 489.

[Function]gg:save-file-if-wanted save-gadget &optional filename
(query-string "save file first")

When a save-gadget is first displayed, the "Directory" box will contain the present
directory (unless otherwise specified, as explained in the next section); the scrolling-
menu will have the contents of that directory; and the "Filename" box will be blank.

Whenever the directory name is changed by the user, the scrolling menu will also
change to list the contents of the new directory. If an invalid directory name is
specified, there will be a beep and the invalid name will be replaced by the previous
name. Whenever a directory is being fetched, a brief message (by default, "Fetching
directory...") will appear, and will go away when the scrolling menu has been updated.
When a file name is typed into the "Directory" box, the file name will be moved down
to the "Filename" box, and the menu will be updated.

If a file in the scrolling menu is selected, then the "Filename" box will contain the
name of that file. If a directory is selected, the "Directory" box will be set to the
selected directory, and the scrolling menu will once again update itself.

Chapter 8: Garnet Gadgets 487

If an invalid file name is typed into the "Filename" box, there will be a beep and the
"Filename" box will be reset. An invalid file name is one that has a directory name
in it ("/usr/garnet/foo", for example).

The following slots may be changed to customize the save-gadget:

:window-title - contains the title of the save window, which is by de-
fault "Save Window". Window managers usually do not display titles for
subwindows (i.e., if a window is specified in :parent-window).

:parent-window - if this slot contains a window, then the save-gadget

will appear as a subwindow of that window. By default, the gadget will
automatically be centered inside the parent window. If this is not desired,
the :window-left and :window-top slots can be changed to position the
gadget.

:window-left and :window-top - specify the coordinates of the dialog
box. Default values are 0 for both slots unless there is a parent window.

:initial-directory - the directory to display when the save-gadget

appears. The default is "./", which is the current directory as determined
by the lisp process.

:message-string - the message to display to the user while the save
gadget fetches the contents of a new directory. Default is "Fetching di-
rectory...".

:num-visible - how many files to display in the scrolling menu. Default
is 6.

:button-panel-items - a list of names for the buttons. The default is
’("Save" "Cancel"). NOTE: It is important that, when you rename the
buttons and use the default-save-function, you rename them in the
"Save" "Cancel" order. That is, the label that should cause the gadget
to save must appear first in the :items list, and the label that cancels
the gadget’s action must appear second. For example, if you rename
the :button-panel-items slot as ’("Go" "Return"), it will produce the
correct results. However, if you use ’("Return" "Go") instead, the wrong
functions will get called.

:button-panel-h-spacing - the distance between the buttons (default
25).

:min-gadget-width specifies the width of the "Directory" and "File-
name" boxes. The scrolling menu is centered between them.

:modal-p - when T, then interaction in other Garnet windows will be
suspended untill either the "Save" or the "Cancel" button is hit.

:check-filenames-p - whether to check to see whether the file already
exists before saving. If the file exists, then a query gadget will pop up
and ask for confirmation.

:query-message - the string that will be used in the query gadget that
pops up when you try to overwrite a file. If :check-filenames-p slot is
nil, this slot is ignored.

Chapter 8: Garnet Gadgets 488

:selection-function - as usual, the function called when the "Save"
button is hit.

:dir-input-field-font and :dir-input-label-font - the fonts for the
field and label of the "Directory" box.

:file-input-field-font and :file-input-label-font - the fonts for
the field and label of the "Filename" box.

:message-font - the font to use for the message that appears when the
directory is being fetched.

:file-menu-font - the font of the items inside the scrolling menu

:button-panel-font - the font for the buttons

8.35.2 Adding more gadgets to the save gadget

It is possible to add more gadgets, such as extra buttons, etc. to the save gadget. To do
this, you simply add more components to the :parts list of the save gadget (which is an
aggregadget). However, you MUST include the following 5 components in the parts list:
:dir-input, :file-menu, :file-input, :message, and :OK-cancel-buttons.

An example of adding more gadgets to a save gadget follows:

(create-instance ’SG gg:save-gadget

(:parts

‘(:dir-input :file-menu :file-input :message :OK-cancel-buttons

(:extra-button ,gg:text-button

(:left 10) (:top 220)

(:text-offset 2) (:shadow-offset 5) (:gray-width 3)

(:string "Test")))))

This will, in addition to creating the standard save gadget parts, create an additional button.
This button can be accessed by using (gv SG :extra-button). Naturally, you can have
selection functions, etc. to whatever gadgets you add. However, it is extremely important to
include the :dir-input, :file-menu, :file-input, :message and :OK-cancel-buttons

in the :parts list.

NOTE: The save/cancel buttons automatically position themselves 25 pixels below the last
gadget in the :parts list, since most people desire the buttons at the bottom of the gadget.
If this is not desired, you can modify the :top slot of the :OK-cancel-buttons.

8.35.3 Hacking the Save Gadget

The slots described above should be enough to customize most applications. However, when
that is not the case, it is possible to hack the save gadget.

For example, the save/cancel buttons are centered with respect to the "Filename" box. If
this is not desirable, the :OK-cancel-buttons slot can be modified to the desired left and
top coordinates.

Suppose the left of the save/cancel buttons should be at 10. The save gadget then would
look like:

(create-instance ’sg gg:save-gadget

(:parts

‘(:dir-input

Chapter 8: Garnet Gadgets 489

:message

:file-menu

:file-input

(:OK-cancel-buttons :modify (:left 10)))))

8.35.4 The Save-File-If-Wanted function

If you are using a menubar with a "File" menu, you might want to use the save-file-if-
wanted function. You would call this function before such operations as quit, close, and
read if the contents of the window had not yet been saved. The format for this function is:

[Function]gg:save-file-if-wanted save-gadget &optional filename
(query-string "save file first)

This function will pop up a query gadget that asks "Save file first?", or whatever
you specify as the query-string. If "Yes" is selected, then it will call the stan-
dard display-save-gadget-and-wait function on the given filename, and the re-
turn value of this function will be the same as the return value for the save-gadget ’s
:selection-function. If "Cancel" is selected, it will return :CANCEL. If "No" is
selected, it will return :NO.

For an example of when and where this function can be used, look at the source code
for Garnetdraw, under the section labeled "MENU FUNCTIONS AND MENUBAR".
The Open, New and Quit functions all call this function.

Often, it is necessary to know if the "Cancel" button was hit or not. For this pur-
pose, the functions save-file-if-wanted and the display-save-gadget-and-wait
return :cancel if the "Cancel" button was hit. For example, the quit function in
Garnetdraw looks like this:

(defun quit-fun (gadget menu-item submenu-item)

(unless (eq :cancel (gg:Save-File-If-Wanted *save-db* *document-name*))

(do-stop)))

If the user clicks on "Cancel" either in the "Save file first?" query box, or in the
save-gadget itself, save-file-if-wanted will return :cancel.

8.36 [Load Gadget]

(create-instance ’gg:Load-Gadget opal:aggregadget

(:maybe-constant ’(:parent-window :window-title :window-left :window-top

:message-string :num-visible :initial-directory :button-panel-items

:button-panel-h-spacing :min-gadget-width :modal-p

:check-filenames-p :dir-input-field-font :dir-input-label-font

:message-font :file-menu-font :file-input-field-font

:file-input-label-font :button-panel-font))

(:parent-window NIL)

(:window-title "load window")

(:min-gadget-width 240)

(:initial-directory "./")

(:message-string "fetching directory...")

(:button-panel-items ’("load" "cancel"))

Chapter 8: Garnet Gadgets 490

(:button-panel-h-spacing 25)

(:num-visible 6)

(:check-filenames-p t)

(:modal-p nil)

(:selection-function NIL) ; (lambda (gadget value))

(:dir-input-field-font (opal:get-standard-font nil nil :small))

(:dir-input-label-font (opal:get-standard-font nil :bold nil))

(:file-input-field-font (opal:get-standard-font nil nil :small))

(:file-input-label-font (opal:get-standard-font nil :bold nil))

(:message-font (opal:get-standard-font :fixed :italic :small))

(:button-panel-font opal:default-font)

(:file-menu-font (opal:get-standard-font nil :bold nil))

...)

The load-gadget is loaded along with the save-gadget by the file "save-gadget-loader".

The load-gadget is very similar to the save-gadget. Both look alike, except for their
window titles. The same caveats apply to both the save and load gadgets (see section
[save-gadget], page 483).

The load-gadget has its own functions for displaying and hiding the gadget, which are
analogous to those used by the save-gadget:

[Function]gg:display-load-gadget load-gadget &optional initial-filename
[Function]gg:display-load-gadget-and-wait load-gadget &optional

initial-filename
[Function]gg:hide-load-gadget load-gadget

When a load gadget is created and display-load-gadget is called, the window that
pops up contains the same initial contents as in the save gadget. The "Directory"
box, the scrolling-menu, and the message, all work identically in both the gadgets.

The "Filename" box resembles the save gadget in that it beeps when an invalid file
name is typed in (unless the :check-filenames-p slot is NIL), and is reset to the
empty string, "". However, an invalid file name is defined as a file name that does
not exist, or a directory.

As in the save gadget, when you rename the buttons and use the default load function,
it is important to put the name corresponding to the "Load" button as the first
element of the :button-panel-items list.

8.37 Property Sheets

The prop-sheet gadget takes a list of values to display, and prop-sheet-for-obj takes
a KR object to display. The prop-sheet-with-OK and prop-sheet-for-obj-with-OK

gadgets combine a property sheet with OK, Apply and Cancel buttons and functions to
display these in windows (using the Garnet look and feel). Similarly, the motif-prop-

sheet-with-OK and motif-prop-sheet-for-obj-with-OK combine a property sheet with
buttons, but use the Motif look and feel (see section [motif-prop-sheets], page 552).

Chapter 8: Garnet Gadgets 491

8.37.1 User Interface

Press on the value of a slot with the left button to begin typing. Press with the left button
again (anywhere) or hit return or ^j to stop editing (if multi-line strings are allowed, then
return goes to the next line, so you need to use ^j or left button to stop editing). Pressing
with any other button inside the string moves the cursor. Regular editing operations are
supported (see the text-interactor in the Interactors chapter). If you hit tab, the cursor will
move to the next field. If label selection is enabled, then labels can be selected by pressing
with any mouse button. If value selection is enabled, then values must be selected with
the right button while they are not being edited. Selected labels or values are displayed in
bold.

8.37.2 Prop-Sheet

(create-instance ’gg:Prop-Sheet opal:aggregadget

(:maybe-constant ’(:left :top :items :default-filter :v-spacing

:multi-line-p :select-label-p :visible

:label-selected-func :label-select-event

:select-value-p :value-selected-func :single-select-p))

; Customizable slots

(:left 0) (:top 0)

(:items NIL) ; put the values to be displayed here

(:default-filter ’default-filter)

(:v-spacing 1)

(:pixel-margin NIL)

(:rank-margin NIL)

(:multi-line-p NIL) ; T if multi-line strings are allowed

(:select-label-p NIL) ; T if want to be able to select the labels

(:label-selected-func NIL)

(:label-select-event :any-mousedown)

(:select-value-p NIL) ; if want to be able to select the values

(:value-selected-func NIL)

(:single-select-p NIL) ; to select more than one value or label

; Read-only slots

(:label-selected NIL) ; set with the selected label objects (or a list)

(:value-selected NIL) ; set with the selected value objects (or a list)

(:value ...) ; list of pairs of all the slots and their (filtered) values

(:changed-values NIL)) ; only the values that have changed

Chapter 8: Garnet Gadgets 492

RANGE (1..20): 1

DIRECTION: up down diagonal
STATUS: Nervous
HEIGHT: 34
COLOR: Red

Figure 8.15: Example of a property sheet with an embedded gadget.

The loader for the gg:prop-sheet gadget is "prop-sheet-loader".

Customizable slots:

Chapter 8: Garnet Gadgets 493

:left, :top - Position of the gadget. Default: 0,0

:items - The control list of the items to be displayed in the gadget. The
format for the list is a list of lists, as follows: ((label1 stringval1 [filter1

[realval1 [comment]]]) (label2 ...))

The labels can be atoms or strings, and are shown at the left.

The stringval is the initial (default) value displayed. For an example
of the use of the various forms of stringval, see section [propexample],
page 503. It can be:

a string,

a formula object which computes a string. Note that all references in
the formula must be absolute (since otherwise they would be relative
to the property sheet).

an instance of a gadget (e.g., a radio-button-panel), in which case
that instance is used instead of an editable text field. Note that the
instance itself is used, so it will be destroyed if the prop-sheet is
destroyed. The gadget instance should supply its value in a slot called
:value (as the standard garnet gadgets do). NOTE: If a gadget,
no filter functions are called (use the :selection-function of the
gadget), the realval is ignored, and the :changed-values slot is
not valid. Useful gadgets are described in section [propusefulgadgets],
page 502.

If the filter is non-NIL, it is a function called after the user types the
value (see below).

The realval, if supplied, is the actual value the stringval represents (e.g.
if the real values are not strings). If stringval is a list of strings, then
realval should be a list of the same length.

If supplied, the comment is displayed after the label. It can be any string,
and will be displayed after the slot label. Typical uses would be to give
legal values (e.g.: "(1..20)").

:default-filter - If there is no filter on an individual item, then the global
default-filter function is called when the user finishes editing. See below. The
default filter does nothing.

:v-spacing - Vertical space between the items. Default = 1

:pixel-margin - Multiple-valued items are represented as an aggrelist, so this
determines the maximum pixel value of an item, before wrapping to the next
line. Note that this does not affect single valued items. Default: nil

:rank-margin - Same as :pixel-margin, but is a count of the number of values.
Default: nil

:multi-line-p - Whether the user can enter multi-line strings, which means
that return does not exit a field, but makes a new line. Default: nil.

:select-label-p - Whether pressing on the label (with any mouse button)
causes the item to be selected. Default: nil.

Chapter 8: Garnet Gadgets 494

:label-select-event - If you want to make the labels selectable, you can
specify which mouse event to use in the slot :label-select-event.

:label-selected-func - Called with (gadget label-obj label) when a label is
selected.

:select-value-p - Whether pressing on the value (with the right button)
causes the value to be selected. NOTE: Values which are specified as gadgets
cannot be selected. Default: nil.

:value-selected-func - Called when a value is selected with (gadget value-obj
value label) where label is the label of that field.

:single-select-p - Whether a single label or value can be selected (T) or
multiple fields can be selected (NIL). This is only relevant if one or both of
:select-label-p or :select-value-p is non-NIL. Default: nil.

Read-only (output) slots:

:label-selected - Will be set with a list of the selected label objects. Call
Get-Val-For-PropSheet-Value to get label name from the label object.

:value-selected - Will be set with a list of the selected value objects. Call
Get-Val-For-PropSheet-value on an obj to get the value and label from the
value object.

:value - List of all the slots and their (filtered) values. For example: ((label1

value1) (label2 value2) ...).

:changed-values - List of the slots that have changed, as: ((label1 value1)

(label2 value2)) This slot is not kept valid if a gadget is used as an item.

Filter functions:

The filter functions allow the program to convert the string values to the appropriate form.
The displayed string and the "real" value are stored separately, so they can be different.
Filter functions are defined as: (lambda (prop-sheet-gadget label value-obj new-str

old-str))

The index is used for multi-valued slots, and otherwise is zero. The value-obj is the actual
object used to display the string, and will be needed only by hackers. The filter function
can return the value to use (modified new-str, not necessarily a string) or it can return three
values: (new-val in-valid-p new-str) where new-val is a value (not necessarily a string)
to use, in-valid-p is T if the new-str value is invalid (bad), in which case the new-str is still
used, but it is shown in italic. If new-str is returned, then it is displayed instead of what
the user typed (for example if the filter function expands or corrects the typed value).

An example of a custom filter function is shown in section [propexample], page 503.

8.37.3 Prop-Sheet-For-Obj

When you want to display a property sheet for a Garnet object, you can use prop-sheet-
for-obj. The prop-sheet can directly access the :parameters list of a Garnet object, which
is a list of the slots normally customizable for the object. You can also display and modify
slots of multiple objects simultaneously. Gilt makes heavy use of many features in this
prop-sheet.

(create-instance ’gg:Prop-Sheet-For-Obj gg:prop-sheet

Chapter 8: Garnet Gadgets 495

(:maybe-constant ’(:left :top :obj :slots :eval-p :set-immediately-p

:v-spacing :multi-line-p :select-label-p

:label-selected-func :label-select-event :visible

:select-value-p :value-selected-func :single-select-p

:type-gadgets :union? :error-gadget))

(:left 5)

(:top 5)

(:obj NIL) ; a single obj or a list of objects

(:slots NIL) ; list of slots to show. If NIL, get from :parameters

(:union? T) ; if slots is NIL and multiple objects, use union or in-

tersection of :parameters?

(:eval-p T) ; if T, then evaluates what the user types. Use T for

; graphical objects. If NIL, then all the values will be strings.

(:set-immediately-p T) ; if T then sets slots when user hits return, else doesn’t

; ever set the slot.

(:type-gadgets NIL) ; descriptor of special handling for types

(:error-gadget NIL) ; an error gadget to use to report errors.

;; plus the rest of the slots also provided by prop-sheet

(:v-spacing 1)

(:pixel-margin NIL)

(:rank-margin NIL)

(:multi-line-p NIL) ; T if multi-line strings are allowed

(:select-label-p NIL) ; T if want to be able to select the labels

(:label-select-event :any-mousedown)

(:label-selected-func NIL)

(:select-value-p NIL) ; if want to be able to select the values

(:value-selected-func NIL)

(:single-select-p NIL) ; to select more than one value or label

; Read-only slots

(:label-selected NIL) ; set with the selected label objects (or a list)

(:value-selected NIL) ; set with the selected value objects (or a list)

(:value ...) ; list of pairs of all the slots and their (filtered) values

(:changed-values NIL)) ; only the values that have changed

Chapter 8: Garnet Gadgets 496

FILLING-STYLE: OPAL:GRAY-FILL
LINE-STYLE: OPAL:LINE-2
HEIGHT: 40
WIDTH: 50
TOP: 10
LEFT: 150

Figure 8.16: Example of a property sheet for an object (the object is shown at the upper
left).

The loader for prop-sheet-for-obj is "prop-sheet-loader".

Customizable slots:

Chapter 8: Garnet Gadgets 497

:left, :top - Position of the gadget. Default: 0,0

:obj - The KR object or list of objects to be displayed. If this slot contains a
list of objects, then if multiple objects share a slot which is displayed, then the
value from the first object is shown. If the values from multiple objects differ,
then the slot value is shown in italics. If the user edits the value, then it is set
into each object which has that slot in its :parameters list.

:error-gadget - An error-gadget may be placed in this slot. Type checking is
performed before setting a slot, and any errors are reported in this error gadget.
If there is no error gadget, then the error message is simply not displayed, but
a beep is sounded and the slot value is shown in italics.

:slots - The list of slots of the object to view. Default value is nil, which
means the prop-sheet should get the list of slots from the :parameters slot
of the object being edited (see :union?). When relying on :parameters,
the property sheet will use the Horiz-Choice-List gadget for slots of type
KR-boolean and (Member ...) where the number of options is 5 or less (see
also :type-gadgets). If the type of a slot has a documentation string, gotten
using kr:get-type-documentation, then this is displayed as the slot comment
field.

Alternatively, any element in the list can be a slot name or a sublist: (slot
"comment" display):

If the comment is non-nil, it is displayed after the label.

If the display parameter is supplied, it can either be:

A list of legal values for the slot, e.g. ’(:direction (:horizontal

:vertical))

A function of the form (lambda (new-val)) which returns T if the
value is bad. This function might pop up an error dialog box after
testing but before returning. The slot keeps its illegal value, but it is
shown in italics.

A gadget, in which case the :value slot of the gadget is set with the
old value, and the :value slot is queried to get the final value. If
gadgets are used, then :set-immediately-p for the property sheet
should be nil. A useful gadget is Pop-Up-From-Icon.

:union? - This affects which slots are shown for objects when their :parameters
lists are being used. If there are multiple objects, then a value of T for this
slot will display the slots that are in any of the objects. If the value of this slot
is nil, then only those slots that appear in all of the :parameters lists (the
intersection of the lists) will be displayed. The default is T, to show the union
of all :parameters lists.

:eval-p - If nil, then the values set into the slots will be all strings. If T,
then evaluates what the user types (using Read-From-String) and sets the
result into the slot. Usually, you use T when displaying the graphical fields of
graphical objects. Default=T. NOTE: Evaluating a slot may cause the interface
to crash if the values are not valid.

Chapter 8: Garnet Gadgets 498

:set-immediately-p - If T, then as soon as the user types CR, the object’s
slot is set. If nil, some external action must set the object’s slots (e.g., when
using prop-sheet-for-obj-with-OK, the object’s slots are not set until the
OK button is hit). Default=T.

:type-gadgets - This slot is used to modify the default displays for slots from
the :parameters list. :Type-gadgets contains a list which can contain the
following entries:

a slot name - this means never display this slot (omit the slot even though
it is in the :parameters list).

a list of (typ gadget) - this means whenever a slot of type typ is displayed
in the prop-sheet, use the specified gadget. For example, Gilt uses this
mechanism to display a Pop-Up-From-Icon for all slots which contain a
font:

(list (g-type opal:text :font)

(create-instance NIL gg:Pop-Up-From-Icon

(:constant :icon-image :pop-up-function)

(:creator-function ’Show-Font-Dialog)

(:pop-up-function ’Pop-Up-Prop-Dialog)))

a list of (typ othertyp) - this means whenever a slot of type typ is found,
pretend instead that it has type othertyp. This is useful, for example, to
map types that are complicated to ones that will generate a member gadget.

The slots :v-spacing, :pixel-margin, :rank-margin, :multi-line-p, :select-label-
p, :label-select-event, :label-selected-func, :select-value-p, :value-selected-
func, and :single-select-p are the same as for the prop-sheet gadget.

Read-only (output) slots (same as Prop-Sheet)

:label-selected

:value-selected

:value

:changed-values

8.37.4 Useful Functions

[Function]gg:reusepropsheet prop-sheet-gadget new-items
ReUsePropSheet allows you to re-use an old prop-sheet or a prop-sheet-with-

OK gadget with a new set of values, which is much more efficient than destroying
and creating a new prop-sheet. NOTE: it is NOT sufficient to simply s-value the
:items slot. If you plan to reuse property sheets, do not declare the :items slot
constant.

[Function]gg:reusepropsheetobj prop-sheet-for-obj &optional obj slots
ReUsePropSheetObj allows a prop-sheet-for-obj or prop-sheet-for-obj-with-

OK gadget to be re-used. If the new obj and slots are not supplied, then they should
be set into the object before this function is called. NOTE: it is NOT sufficient to
simply s-value the :obj and :slots slot.

Chapter 8: Garnet Gadgets 499

[Function]gg:Get-Val-For-Propsheet-Value (label-or-value-obj)
The Get-Val-For-PropSheet-Value function returns the label when a label is passed
in, or for a value-obj, returns multiple values: value label, where label is the label
(name, not object) of that field.

If you want to change the value of a property sheet item without regenerating a new
property sheet, you can use the new function Set-Val-For-PropSheet-Value. This
takes the form:

[Function]gg:set-val-for-propsheet-value label-or-value-obj new-value
The label-or-value-obj parameter is the object used by the property-sheet to represent
the field.

8.37.5 Prop-Sheet-With-OK

The next set of gadgets combine property sheets with OK, Apply and Cancel buttons.
There are two pairs: one for Garnet look-and-feel gadgets, and one for Motif look-and-feel
gadgets (see section [motif-prop-sheets], page 552, for the Motif version).

(create-instance ’gg:Prop-Sheet-With-OK opal:aggregadget

(:maybe-constant ’(:left :top :items :default-filter :ok-function

:apply-function :Cancel-Function :v-spacing

:multi-line-p :select-label-p :visible

:label-selected-func :label-select-event

:select-value-p :value-selected-func :single-select-p))

; Customizable slots

(:left 0) (:top 0)

(:items NIL)

(:default-filter ’default-filter)

(:OK-Function NIL)

(:Apply-Function NIL)

(:Cancel-Function NIL)

(:v-spacing 1)

(:pixel-margin NIL)

(:rank-margin NIL)

(:multi-line-p NIL) ; T if multi-line strings are allowed

(:select-label-p NIL) ; T if want to be able to select the entries

(:label-select-event :any-mousedown)

(:label-selected-func NIL)

(:select-value-p NIL)

(:value-selected-func NIL)

(:single-select-p NIL)

; Read-only slots

(:label-selected ...)

(:value-selected ...)

(:value ...)

(:changed-values ...))

The prop-sheet-with-OK gadget is just the prop-sheet gadget with Garnet text buttons
for OK, Apply, and Cancel.

Chapter 8: Garnet Gadgets 500

The loader for prop-sheet-with-OK is "prop-sheet-win-loader".

Customizable slots

:OK-Function - Function called when the OK button is hit. Defined as:

(lambda (Prop-Sheet-With-OK-gadget)) Typically, this would do something
with the values gotten from (gv Prop-Sheet-With-OK-gadget :values)

or (gv Prop-Sheet-With-OK-gadget :changed-values). If you use the
Pop-Up-Win-For-Prop functions, then the window will be removed before the
OK-function is called, so you do not have to worry about the window.

:Apply-Function - Function called when the Apply button is hit. Defined as:

(lambda (Prop-Sheet-With-OK-gadget) Typically, this would do something
with the values gotten from (gv Prop-Sheet-With-OK-gadget :values) or

(gv Prop-Sheet-With-OK-gadget :changed-values).

:Cancel-Function - Function called when Cancel button is hit. Defined as:
(lambda (Prop-Sheet-With-OK-gadget)) Programmers typically would not
use this. If you use the Pop-Up-Win-For-Prop functions, then the window will
be removed before the Cancel-function is called, so you do not have to worry
about the window.

The rest of the slots are the same as for prop-sheet.

8.37.6 Prop-Sheet-For-Obj-With-OK

(create-instance ’gg:Prop-Sheet-For-Obj-With-OK prop-sheet-with-OK

(:maybe-constant ’(:left :top :obj :slots :eval-p :ok-function

:apply-function :Cancel-Function :v-spacing

:multi-line-p :select-label-p :visible

:label-selected-func :label-select-event

:select-value-p :value-selected-func :single-select-p))

; Customizable slots

(:OK-Function NIL)

(:Apply-Function NIL)

(:Cancel-Function NIL)

(:left 0) (:top 0)

(:obj NIL) ; a single obj or a list of objects

(:slots NIL) ; list of slots to show. If NIL, get from :parameters

(:eval-p T) ; if T, then evaluates what the user types. Use T for

; graphical objects. If NIL, then all the values will be strings.

(:set-immediately-p T) ; if T then sets slots when user hits return, else doesn’t

; ever set the slot.

(:type-gadgets NIL) ; descriptor of special handling for types

(:error-gadget NIL) ; an error gadget to use to report errors.

;; plus the rest of the slots also provided by prop-sheet

(:v-spacing 1)

(:pixel-margin NIL)

(:rank-margin NIL)

Chapter 8: Garnet Gadgets 501

(:multi-line-p NIL) ; T if multi-line strings are allowed

(:select-label-p NIL) ; T if want to be able to select the labels

(:label-select-event :any-mousedown)

(:label-selected-func NIL)

(:select-value-p NIL) ; if want to be able to select the values

(:value-selected-func NIL)

(:single-select-p NIL) ; to select more than one value or label

; Read-only slots

(:label-selected NIL) ; set with the selected label objects (or a list)

(:value-selected NIL) ; set with the selected value objects (or a list)

(:value ...) ; list of pairs of all the slots and their (filtered) values

(:changed-values NIL)) ; only the values that have changed

The prop-sheet-for-obj-with-OK gadget is just the prop-sheet-for-obj gadget with
Garnet text buttons for OK, Apply, and Cancel.

The loader for prop-sheet-for-obj-with-OK is "prop-sheet-win-loader".

Given a list of slots for a KR object, displays the values and allows them to be edited. The
labels and values can optionally be selectable. Sets the object’s slot only when OK or Apply
is hit. (So :set-immediately-p is always nil).

Customizable slots

:OK-Function - Function called when the OK button is hit. Defined as:
(lambda (Prop-Sheet-For-Obj-With-OK-gadget)) Since this gadget will set
the slots of the object automatically when OK is hit (before this function is
called) and the window visibility is handled automatically, programmers rarely
need to supply a function here.

:Apply-Function - Function called when the Apply button is hit. Defined as:
(lambda (Prop-Sheet-For-Obj-With-OK-gadget)) Since this gadget will set
the slots of the object automatically when Apply is hit (before this function is
called), programmers rarely need to supply a function here.

:Cancel-Function - Function called when Cancel button is hit. Defined as:
(lambda (prop-sheet-for-obj-with-ok-gadget)) Since the window visibil-
ity is handled automatically, programmers rarely need to supply a function
here.

8.37.7 Useful Functions

[Function]gg:pop-up-win-for-prop prop-gadget-with-ok left top title
&optional modal-p

Given an existing gadget of any of the "OK" types, this function pops up a window
which will show the property sheet, and will go away when the user hits either "OK"
or "Cancel". The window is allocated by this function to be the correct size. When
the modal-p parameter is T, then interaction in all other Garnet windows will be
suspended until the user clicks either the "OK" or "Cancel" button in this window.
This function can be called many times on the same gadget, which is much more

Chapter 8: Garnet Gadgets 502

efficient than allocating a new gadget and window each time. To change the items or
object before redisplaying, use one of the functions below.

[Function]gg:pop-up-win-change-items prop-gadget-with-ok new-items left
top title &optional modal-p

Given an existing gadget, Pop-Up-Win-Change-Items sets the items field of the gadget
to the specified value, and then pops up a window displaying that property sheet.
(This function calls ReUsePropSheetObj automatically). (Note: if you want to pop
up a Prop-Sheet-With-OK or Motif-Prop-Sheet-With-OK gadget without changing
the items field, you can simply pass it to Pop-Up-Win-For-Prop.

[Function]gg:pop-up-win-change-obj prop-obj-gadget-with-ok obj slots left
top title &optional modal-p

Given an existing gadget, Pop-Up-Win-Change-Obj sets the obj and slot fields of the
gadget to the specified values, and then pops up a window displaying that property
sheet. (This function calls ReUsePropSheetObj automatically). (Note: if you want
to pop up a Prop-Sheet-For-Obj-With-OK or Motif-Prop-Sheet-For-Obj-With-OK
gadget without changing the obj and slot fields, you can simply pass it to Pop-Up-

Win-For-Prop.

8.37.8 Useful Gadgets

This section describes two gadgets that are useful in property sheet fields as the values.
Both of these gadgets are shown in Figure [motifpropfix], page 555.

8.37.9 Horiz-Choice-List

The horiz-choice-list displays the choices and allows the user to pick one with the left
mouse button. The choices can be strings or atoms.

(create-instance ’gg:Horiz-Choice-List opal:aggregadget

(:maybe-constant ’(:left :top :items))

; Customizable slots

(:left 0) ; left and top are set automatically when used in a prop-sheet

(:top 0)

(:items ’("one" "two" "three")) ; the items to choose from

; Input and output slot

(:value NIL) ; what the user selected

)

The loader for Horiz-Choice-List is "prop-values-loader", although it is automatically
loaded when you load a property sheet.

The Horiz-Choice-List is automatically used when you list a set of legal values for the
display parameter for a prop-sheet-for-obj.

8.37.10 Pop-Up-From-Icon

The Pop-Up-From-Icon displays a small icon, and if the user hits on it, then a function is
called which can pop-up a dialog box or menu to make the choice.

(create-instance ’gg:Pop-Up-From-Icon opal:aggregadget

(:maybe-constant ’(:left :top :icon-image :pop-up-function))

Chapter 8: Garnet Gadgets 503

; Customizable slots

(:left 0) ; left and top are set automatically when used in a prop-sheet

(:top 0)

(:icon-image pop-up-icon) ; you can replace with your own picture

(:pop-up-function NIL)) ;put a function here to pop-up the menu or whatever

The loader for Pop-Up-From-Icon is "prop-values-loader", although it is automatically
loaded when you load a property sheet.

The pop-up-function is called when the user presses with the left button and then releases
over the icon. It is called as follows: (lambda(pop-up-from-icon-gadget)) It should stuff
its results into the :value field of that gadget. See the chapter on Gilt for some functions
that are useful for popping up dialog boxes and menus.

8.37.11 Property Sheet Examples

First, an example filter function, which checks if value is a number, and if it is between 1
and 20.

(defun string-to-num-filter (prop-gadget label index value-obj new-str old-str)

(declare (ignore prop-gadget label index value-obj))

(let* ((sym (read-from-string new-str))

(number (when (integerp sym) sym)))

(if (and number (>= number 1) (<= number 20))

; then OK, return the converted number

(values number NIL new-str)

; else bad, return original string and T to say invalid

(progn

(inter:beep) ; first, beep

(values new-str T new-str)))))

Now, we will use that filter function in a property sheet. This code creates the property
sheet shown in Figure [plainproppix], page 492, in section [propsheetsec], page 491. It
contains three regular lines, a slot using a gadget, and then a slot with a filter function and
a comment.

(create-instance ’PROP1 garnet-gadgets:prop-sheet

(:items ‘((:color "Red")

(:height "34")

(:status "Nervous")

(:direction ,(create-instance NIL garnet-gadgets:horiz-choice-list

(:items ’("up" "down" "diagonal"))))

(:range "1" ,#’string-to-num-filter 1 "(1..20)"))))

Finally, a Motif look and feel property sheet for an object with OK, Apply and Cancel
buttons in it. The my-rectangle1 object is only changed when OK or Apply is hit. The
resulting window is shown in Figure [motifpropfix], page 555.

(create-instance ’MY-OBJ-PROP gg:motif-prop-sheet-for-obj-with-OK

(:left 0)

(:top 0)

(:obj MY-RECTANGLE1)

(:slots ‘(:left ; first four slots are normal

Chapter 8: Garnet Gadgets 504

:top

:width

:height

(:quality (:good :medium :bad)) ;list of options

; next two slots use pop-up icon gadgets

(:line-style ,(create-instance NIL gg:pop-up-from-icon

(:pop-up-function #’Line-Style-Pop-Up)))

(:filling-style ,(create-instance NIL gg:pop-up-from-icon

(:pop-up-function #’Fill-style-pop-up))))))

8.38 Mouseline

There are two new gadgets that will show a help string attached to any object. The string
can be shown in a fixed location in a window using the MouseLine gadget, and therefore
is like the mouse documentation line on Symbolics Lisp machines (sometime called the
“mode line” or “who line”). Alternatively, the help string can pop up in a window using
the MouseLinePopup gadget, and therefore be like Balloon Help in the Macintosh System
7. You can also control whether the string appears immediately or only after the mouse is
over an object for a particular period of time.

An example of the use of the two mouseline gadgets is gg:mouseline-go which is at the
end of the mouseline.lisp file. The standard demos-controller which you get when
you load garnet-demos-loader also uses the MouseLinePopup gadget to show what the
different demos do.

Note: the mouseline gadget is implemented in a rather inefficient manner. It has the
potential to significantly slow down applications, especially when the delay feature is used
(:wait-amount non-zero). If this proves to be a big problem in practice, please let us know.

Note 2: the delay feature is implemented with multiple processes, which are only supported
in Allegro and Lucid lisp.

8.38.1 MouseLine gadget

(create-instance ’gg:MouseLine opal:aggregadget

(:left 5)

(:top (o-formula (- (gvl :window :height) ; default is bottom of window

(gvl :label :height)

5)))

(:windows (o-formula (gvl :window))) ; default is the window contain-

ing the mouseline gadget

(:wait-amount 0) ; how long to wait before displaying the string

The loader file for the MouseLine is mouseline-loader.

You create an instance of the mouseline gadget and add it to a window. By default it
is positioned at the bottom left, but you can override the :top and :left to position it
where-ever you want. Once created, the string will display the value of the :help-string

field for any object the mouse is over in the window or windows specified in the :windows

slot. By default :windows is only the window that the mouseline gadget is in, but it can
be any list of windows, or T for all interactor windows.

Chapter 8: Garnet Gadgets 505

The gadget first looks at the leaf object under the mouse, and if that does not have a help-
string, then its parent (aggregate) is looked at, and so on. The lowest-level help string found
is displayed in the string. The string can contain newlines but not font information (the
display is a opal:multi-text not a opal:multifont-text). Of course, the :help-string
slot can contain a formula, which might, for example, generate a different string when a
gadget is disabled explaining why.

If the mouseline gadgets catch on, we might provide a way to specify the help-strings as
part of the standard :items protocol for gadgets, but for now you need to s-value the
:help-string slots directly. See the demos-controller for how this might be done.

If the :wait-amount slot is non-zero, then it is the number of seconds the mouse must
remain over an object before the mouseline string is displayed. This feature relies on
the animation-interactor which uses the multi-process mechanism in Lisp, so the
:wait-amount is only currently available in Lucid, Allegro, and LispWorks.

8.38.2 MouseLinePopup gadget

(create-instance ’gg:MouseLinePopup opal:aggregadget

(:start-event :SHIFT-CONTROL-META-LEFTDOWN)

(:windows (o-formula (gvl :window))) ; default is the window contain-

ing the mouseline gadget

(:wait-amount 3) ; how long to wait before displaying string

The loader file for the MouseLinePopup is mouseline-loader.

This displays the same help-string as the mouseline gadget above, but the string is displayed
in a window which pops up at the mouse. Therefore it is like “Balloon Help” in the
Macintosh System 7. The window is just big enough for the string, and it goes away when
you move off of the object. The :wait-amount determines how long in seconds you must
keep the mouse over the object before the window appears.

8.39 Standard Edit

There are a number of editing functions that are shared by most graphical editors. The
file standard-edit.lisp supplies many of these functions in a manner that can probably
be used by your graphical editors without change. They support such operations such as
cut, copy, paste, delete, duplicate, group, ungroup, refresh, to-top, to-bottom, etc. These
functions are designed to work with the Multi-Graphics-Selection gadget, and can be
invoked from buttons, menus, or a menubar. The standard-edit functions are currently
used by GarnetDraw, Gilt and Marquise. You don’t have to use all the functions in an
application. For example, Gilt does not support grouping and ungrouping. (If you find
that changing a standard-edit routine will allow it to be useful to your application, let us
know.)

The standard-edit routines can be loaded using (garnet-load "gg:standard-edit-

loader").

8.39.1 General Operation

The standard-edit routines assume that the graphical objects that are to be edited are all
in a single aggregate in a single window (extensions to handle multiple windows are planned,

Chapter 8: Garnet Gadgets 506

but not in place yet). The routines are tightly tied to the design of the Multi-Graphics-

Selection gadget. For example, most routines determine which objects to operate on by
looking at the current selection, and many change the selection.

Standard-edit determines how to edit objects by looking at various slots. The slots listed
below are set in the selected objects, not in the selection gadget itself. Most Garnet proto-
types already contain the correct default values:

:line-p - if non-NIL, then the object is controlled by a :points list of 4 values.
True by default for opal:line and gg:arrow-lines.

:polygon-p - if non-NIL, then the object is controlled by a :point-list list
of multiple values. True by default for opal:polylines.

:group-p - if non-NIL, then the object is a group of objects that the user might
be able to get the parts of. True by default for opal:aggregadgets. If you allow
high-level objects to be added in your editor (e.g., gadgets like buttons), and
you supply the Standard-Ungroup command, you should set the :group-p slot
of any objects you don’t want the user to ungroup to be nil.

:grow-p - whether the object can change size or not.

If the object has :line-p and :polygon-p both nil, then it is assumed to be controlled
by a :box slot.

The various routines find information they need by looking in a special slots of the gadget
that invokes them. This means that all routines must be invoked from the same gadget set,
for example, the same menubar or motif-button-panel.

8.39.2 The Standard-Edit Objects

The gg:Clipboard-Object holds the last object that was cut or copied. It also contains
some parameters used for pasting and duplicating the objects. Each application can have
its own clipboard, or a set of applications can share a clipboard to allow cut and paste
among applications. For example, GarnetDraw and Gilt both share the same clipboard, so
you can cut and paste objects between the two applications. By default, all applications
share the one gg:Default-Global-Clipboard.

Note that this does not use the X cut buffer, since there is no standard way to copy graphics
under X.

(create-instance ’gg:Clipboard-Object NIL

(:value NIL)

(:x-inc-amt NIL) ; Offset for duplicate. If NIL, then uses 10

(:y-inc-amt NIL))

(create-instance ’gg:Default-Global-Clipboard gg:Clipboard-Object)

The Default-Global-Clipboard is used by default, and allows objects to be copied from
one Garnet application to another.

8.39.3 Standard Editing Routines

gg:Standard-Initialize-Gadget gadget selection-gadget agg-of-items [function],

page 90

&key clipboard undo-delete?

Chapter 8: Garnet Gadgets 507

This routine must be called once before any of the others are invoked. Typically, you would
call this after the editor’s windows and objects are created. It takes the gadget that is going
to invoke the standard-edit routines (e.g., a menubar), the selection gadget that is used to
select objects in the graphics editor, and the aggregate that holds the items created in the
graphics editor. If you do not supply a clipboard object, then Default-Global-Clipboard

will be used.

Unfortunately, there is not yet a global undo facility, but you can support undoing just the
delete operations. The undo-delete? flag tells standard-edit whether you want this or not.
If non-NIL, then deleted objects are never destroyed, they are just saved in a list.

gg:Standard-NIY gadget &rest args [function], page 90

Useful for all those functions that are Not Implemented Yet. It prints "Sorry, Not Imple-
mented Yet" in the Lisp listener window and beeps.

gg:Standard-Delete gadget &rest args [function], page 90

Deletes all the selected objects. Makes there be no objects selected.

gg:Standard-Delete-All gadget &rest args [function], page 90

Deletes all the objects. Makes there be no objects selected.

gg:Standard-Undo-Last-Delete gadget &rest args [function], page 90

If you have initialized standard-edit with Undo-delete? as non-NIL, then this function will
undo the last delete operation. The objects brought back are selected.

gg:Standard-To-Top gadget &rest args [function], page 90

Moves the selected objects to the top (so not covered). They stay selected.

gg:Standard-To-Bottom gadget &rest args [function], page 90

Moves the selected objects to the bottom (so covered by all other objects). They stay
selected.

gg:Standard-Refresh gadget &rest args [function], page 90

Simply redraws the window containing the objects using (opal:update win T).

gg:Standard-Select-All gadget &rest args [function], page 90

Causes all of the objects to be selected.

gg:Standard-Cut gadget &rest args [function], page 90

Copies the selected objects into the clipboard’s cut buffer, and then removes them from the
window. Afterwards, there will be no selection.

gg:Standard-Copy gadget &rest args [function], page 90

Copies the selected objects into the clipboard’s cut buffer, but leaves them in the window.
The selection remains the same.

gg:Standard-Paste-Same-Place gadget &rest args [function], page 90

Pastes the objects in the clipboard into the window at the same place from which they
were cut. Pasting the same objects multiple times will give multiple copies, all in the
same place. An application will typically provide either Standard-Paste-Same-Place or
Standard-Paste-Inc-Place as the “paste” operation. The new objects will be selected.

gg:Standard-Paste-Inc-Place gadget &rest args [function], page 90

Pastes the objects in the clipboard into the window offset from where they were cut. Pasting
the same objects multiple times will give multiple copies, each offset from the previous.

Chapter 8: Garnet Gadgets 508

The offset amount is determined by the :x-inc-amt and :y-inc-amt slots of the clipboard
object, or, if nil, then 10 is used. The new objects will be selected.

gg:Standard-Duplicate gadget &rest args [function], page 90

Makes a copy of the selected objects, and places them back into the window, offset from the
previous objects by :x-inc-amt and :y-inc-amt (or 10 if these are nil). The new objects
will be selected.

gg:Standard-Group gadget &rest args [function], page 90

Creates an aggregadget and puts the selected objects into it. The Multi-Graphics-

Selection gadget will then operate on the group as a whole, and will not let parts of it be
manipulated (like MacDraw, but unlike Lapidary). The group (aggregadget) object will be
selected.

gg:Standard-UnGroup gadget &rest args [function], page 90

Goes through all the selected objects, and for any that have the :group-p slot non-NIL,
removes all the components from that aggregate and adds the objects directly to the parent
of the group. :Group-p is true by default for opal:aggregadgets. If you allow high-
level objects to be added in your editor (e.g., gadgets like buttons), and you supply the
Standard-Ungroup command, you should set the :group-p slot to be nil for any objects
you don’t want the user to ungroup.

8.39.4 Utility Procedures

gg:Sort-Objs-Display-Order objs draw-agg [function], page 90

For many operations, it is important to operate on the objects in display order, rather than
in the order in which the objects were selected. Sort-Objs-Display-Order takes a list of
objects (objs) and an aggregate that contains them (draw-agg) and sorts the objects so they
are in the same order as in draw-agg. The procedure returns a copy of the list passed in, so
it is safe to supply the :value of the Multi-Graphics-Selection gadget, for example.

gg:Is-A-Motif-Background obj [function], page 90

Tests whether the specified object is a Motif-Background object. This procedure is safe
even if the Motif gadgets have not been loaded.

gg:Is-A-Motif-Rect obj [function], page 90

Tests whether the specified object is a Motif-Rect object. This procedure is safe even if
the Motif gadgets have not been loaded.

8.40 The Motif Gadget Objects

The Motif gadgets in the Gadget Set were designed to simulate the appearance and be-
havior of the OSF/Motif widgets. They are analogous to the standard gadgets of Chapter
[Standard-Gadgets], page 407, and many of the customizable slots are the same for both
sets of gadgets.

As in the previous chapter, the descriptions of the Motif gadgets begin with a list of cus-
tomizable slots and their default values (any of which may be ignored). The motif-gadget-
prototype object which occurs in the definition of each Motif gadget is just an instance of
an opal:aggregadget with several color, filling-style, and line-style slot definitions used by
all Motif gadgets.

Chapter 8: Garnet Gadgets 509

The Motif gadgets have been implemented to appear on either color or black-and-white
screens without changes to the instances. The :foreground-color slot is used to compute
filling-styles internally on a color screen, and it is ignored on a black-and-white screen.
Figure [color-and-bw-motif], page 510, shows how a few of the Motif gadgets look on each
type of screen.

Chapter 8: Garnet Gadgets 510

Radio 1

Radio 2

Radio 3

Text 1

Text 2

0

30

60
90

120

150

180

Motif Gauge

Radio 1

Radio 2

Radio 3

Text 1

Text 2

0

30

60
90

120

150

180

Motif Gauge

Figure 8.17: Motif style gadgets on color and black-and-white screens

Chapter 8: Garnet Gadgets 511

8.41 Useful Motif Objects

In order to facilitate the construction of interfaces containing Motif gadgets, Garnet exports
some miscellaneous objects that are commonly found in Motif. The objects described in
this section are defined in the "motif-parts" file (automatically loaded with all Garnet
Motif-style "-loader" files).

8.41.1 Motif Colors and Filling Styles

In each Motif gadget, there is a slot for the color of the gadget. The :foreground-color

is the color that should be shown in the foreground of the gadget (i.e., the part of the
gadget that does not appear recessed). The background, shadow, and highlight colors for
the gadget are computed internally based on the :foreground-color given.

The default :foreground-color for the gadgets is opal:motif-gray, but the user may
provide any instance of opal:color in the slot. Additionally, Opal provides the following
colors for use with the Motif gadgets. The associated filling styles may be of use in other
objects designed by the programmer.

opal:motif-gray

opal:motif-blue

opal:motif-green

opal:motif-orange

opal:motif-light-gray

opal:motif-light-blue

opal:motif-light-green

opal:motif-light-orange

opal:motif-gray-fill

opal:motif-blue-fill

opal:motif-green-fill

opal:motif-orange-fill

opal:motif-light-gray-fill

opal:motif-light-blue-fill

opal:motif-light-green-fill

opal:motif-light-orange-fill

When the Motif gadgets are used on a black-and-white monitor, the gadgets ignore the
:foreground-color slot and internally compute reasonable filling-styles that are black,
white, or Opal halftones.

8.41.2 Motif-Background

(create-instance ’gg:Motif-Background opal:rectangle

(:foreground-color opal:motif-gray))

In order to simulate the Motif three-dimensional effect in an interface, there should be a
gray background in a window containing Motif-style gadgets. Garnet provides two ways

Chapter 8: Garnet Gadgets 512

to achieve this effect. You could add an instance of the motif-background object to the
window, which is a rectangle whose dimensions conform to the size of the window in which
it appears.

Alternately, you could supply the :background-color of your window with an appropriate
Opal color object (like opal:motif-gray). This is generally more efficient, since it is faster
to redraw a window with its background color than to redraw a rectangle that occupies the
entire window.

NOTE: If you choose to use the motif-background object, it is essential that the instance
be added to the top-level aggregate before any other Garnet object. This will ensure that
the background is drawn behind all other objects in the window.

Of course, the :foreground-color of the motif-background instance or the
:background-color of the window should be the same as the colors of all the Motif
gadgets in the window.

8.41.3 Motif-Tab-Inter

(create-instance ’gg:Motif-Tab-Inter inter:button-interactor

(:window NIL)

(:objects NIL)

(:rank 0)

(:continuous NIL)

(:start-where T)

(:start-event ’(#\tab :control-tab))

(:waiting-priority gg:motif-tab-priority-level)

(:running-priority gg:motif-tab-priority-level)

(:stop-action #’(lambda (interactor obj-over) ...))

(:final-function NIL))

Each Motif gadget has the ability to be operated by the keyboard as well as the mouse.
In traditional Motif interfaces, the keyboard selection box is moved within each gadget
with the arrow keys, and it is moved among gadgets with the tab key (i.e., one gadget’s
keyboard selection is activated while the previous gadget’s keyboard selection is deacti-
vated). The keyboard interface can be chapterly activated by setting a Motif gadget’s
:keyboard-selection-p to T, but the bookkeeping becomes formidable when there are a
large number of Motif gadgets on the screen and their keyboard status is changing. Thus,
Garnet provides the motif-tab-inter which handles the bookkeeping among multiple Mo-
tif gadgets.

To use the motif-tab-inter, create an instance with a list of the Motif gadgets on which
to operate in the :object slot and the window of the objects in the :window slot. Usually,
these are the only two slots that will need to be set.

Repeatedly hitting the tab key (or simultaneously hitting control and tab will cause the
keyboard selection to cycle through the list of objects. Specifically, hitting the tab key
causes the :rank of the motif-tab-inter to be incremented, and the interactor checks the
:active-p slot of the next object in the :object list. If the result is T, then that object’s
:keyboard-selection-p slot is set to T. Otherwise, the :rank is incremented again and
the next object is checked.

Chapter 8: Garnet Gadgets 513

The :active-p slots of the "continuous" Motif gadgets – the scroll bars, slider, and gauge
– all default to T, while the :active-p slots of the Motif buttons and menu depend on the
items in the :inactive-items list.

The :running-priority and :waiting-priority of the motif-tab-inter are both set
to be motif-tab-priority-level, which is a higher priority than the default interactor
priority levels (but lower than the error-gadget’s error-priority-level). This allows
the motif-tab-inter to be used at the same time as the inter:text-interactor (as in
the motif-scrolling-labeled-box).

The function in the :final-function slot is executed whenever the current selection
changes. It takes the parameters (lambda (inter new-object))

Examples of the motif-tab-inter in use may be found in demo-motif and in all three
Motif button demos.

8.42 Motif Scroll Bars

(create-instance ’gg:Motif-V-Scroll-Bar gg:motif-gadget-prototype

(:maybe-constant ’(:left :top :width :height :val-1 :val-2 :scr-incr

:page-incr :scr-trill-p :percent-visible :scroll-p

:foreground-color :visible))

(:left 0)

(:top 0)

(:width 20)

(:height 200)

(:val-1 0)

(:val-2 100)

(:scr-incr 1)

(:page-incr 5)

(:scr-trill-p T)

(:percent-visible .5)

(:scroll-p T)

(:keyboard-selection-p NIL)

(:foreground-color opal:motif-gray)

(:value (o-formula ...))

(:active-p T)

(:selection-function NIL) ; (lambda (gadget value))

)

(create-instance ’gg:Motif-H-Scroll-Bar gg:motif-gadget-prototype

(:maybe-constant ’(:left :top :width :height :val-1 :val-2 :scr-incr

:page-incr :scr-trill-p :percent-visible :scroll-p

:foreground-color :visible))

(:left 0)

(:top 0)

(:width 200)

(:height 20)

(:val-1 0)

(:val-2 100)

Chapter 8: Garnet Gadgets 514

(:scr-incr 1)

(:page-incr 5)

(:scr-trill-p T)

(:percent-visible .5)

(:scroll-p T)

(:keyboard-selection-p NIL)

(:foreground-color opal:motif-gray)

(:value (o-formula ...))

(:active-p T)

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 515

The loader file for the motif-v-scroll-bar is "motif-v-scroll-loader". The loader file for
the motif-h-scroll-bar is "motif-h-scroll-loader".

The Motif scroll bars allow the specification of the minimum and maximum values of a
range, while the :value slot is a report of the currently chosen value in the range. The
interval is determined by the values in :val-1 and :val-2, and either slot may be the
minimum or maximum of the range. The value in :val-1 will correspond to the top of
the vertical scroll bar and to the left of the horizontal scroll bar. The :value slot may be
accessed directly by some function in the larger interface, and other formulas in the interface

Chapter 8: Garnet Gadgets 516

may depend on it. If the :value slot is set directly, then the appearance of the scroll bar
will be updated accordingly.

The trill boxes at each end of the scroll bar allow the user to increment and decrement
:value by the amount specified in :scr-incr. The designer may choose to leave the trill
boxes out by setting :scr-trill-p to nil.

The indicator may also be moved directly by mouse movements. Dragging the indicator
while the left mouse button is pressed will change the :value accordingly. A click of the left
mouse button in the background trough of the scroll bar will cause the :value to increase
or decrease by :page-incr, depending on the location of the indicator relative to the mouse
click.

When :keyboard-selection-p is T, then a black-selection box is drawn around the scroll
bar and the indicator can be moved with the arrow keys (uparrow and downarrow for the
motif-v-scroll-bar, leftarrow and rightarrow for the motif-h-scroll-bar).

The :percent-visible slot contains a value between 0 and 1, and is used to specify the
length of the indicator relative to the length of the trough. If :percent-visible is .5, then
the length of the indicator will be half the distance between the two trill boxes. This feature
might be useful in a scrolling menu where the length of the indicator should correspond to
one "page" of items in the menu (e.g., for three pages of items, set :percent-visible to
.33).

The slots :scroll-p and :active-p are used to enable and disable the scrolling feature of
the scroll bar. When either is set to nil, the trill boxes of the scroll bar become inactive
and the indicator cannot be moved. The difference is that when :active-p is set to nil,
then the keyboard selection cannot be enabled.

8.43 Motif Slider

(create-instance ’gg:Motif-Slider gg:motif-v-scroll-bar

(:maybe-constant ’(:left :top :height :trough-width :val-1 :val-2

:scr-incr :page-incr :scr-trill-p :text-offset

:scroll-p :indicator-text-p :indicator-font

:foreground-color :visible))

(:left 0)

(:top 0)

(:height 200)

(:trough-width 16)

(:val-1 0)

(:val-2 100)

(:scr-incr 1)

(:page-incr 5)

(:scr-trill-p NIL)

(:text-offset 5)

(:scroll-p T)

(:indicator-text-p T)

(:keyboard-selection-p NIL)

(:indicator-font opal:default-font)

(:foreground-color opal:motif-gray)

Chapter 8: Garnet Gadgets 517

(:value (o-formula ...))

(:active-p T)

(:selection-function NIL) ; (lambda (gadget value))

(:parts (...)))

2

"motif-slider-loader".

Chapter 8: Garnet Gadgets 518

The motif-slider is similar to the motif-v-scroll-bar, except that it has a fixed-size
indicator with accompanying text feedback. The mouse can be used to drag the indicator,
and the arrow keys can be used when keyboard-selection is activated.

The slots :value, :val-1, :val-2, :scr-incr, :page-incr, :scr-trill-p, :scroll-p,
:active-p and :keyboard-selection-p all have the same functionality as in the motif-v-
scroll-bar.

The :trough-width slot determines the width of the scroll-bar part of the slider. The
actual :width of the gadget is not user-settable because of the changing value feedback
width.

The current :value of the slider is displayed beside the trough if :indicator-text-p is T.
The font of the indicator text is in :indicator-font. The distance from the indicator text
to the trough is in :text-offset.

Chapter 8: Garnet Gadgets 519

8.44 Motif-Trill-Device

20

(create-instance ’gg:Motif-Trill-Device gg::motif-gadget-prototype

(:left 0) (:top 0)

(:width 150) (:height 40)

(:val-1 0) (:val-2 100)

(:value 20)

Chapter 8: Garnet Gadgets 520

(:foreground-color opal:motif-gray)

(:format-string "~a")

(:value-feedback-font opal:default-font)

(:value-feedback-p T)

(:scroll-incr 1)

(:selection-function NIL) ; (lambda (gadget value))

)

The loader file for the motif-trill-device is "motif-trill-device-loader". The
demo (gg:motif-trill-go) is loaded by default, and shows an example of the
motif-trill-device.

The motif-trill-device is a simple incrementing/decrementing gadget with trill boxes
and a numerical display. The behavior is identical to the standard trill-device – click
on the left or right arrows to change the value, and click the left mouse button on the text
to edit it.

The slots :val-1 and :val-2 contain the upper and lower bounds for the value of the gadget.
Either slot may be the minimum or maximum, and either slot may be nil (indicating no
boundary). If a value less than the minimum allowed value is entered, the value of the
gadget will be set to the minimum, and analogously for the maximum. Clicking on the left
trill box always moves the value closer to :val-1, whether that is the max or min, and
clicking on the right trill box always moves the value closer to :val-2.

The current value of the gadget is stored in the :value slot, and may be set directly using
s-value. The :scroll-incr slot specifies the increment for changing the value with the
trill boxes. All other slots work the same as in the standard trill-device. See section
[trill-device], page 414, for more information.

The :foreground-color slot specifies the color of the object.

8.45 Motif Gauge

(create-instance ’gg:Motif-Gauge gg:motif-gadget-prototype

(:maybe-constant ’(:left :top :width :title :foreground-color :title-font

:value-font :enum-font :num-marks :tic-marks-p

:enumerate-p :value-feedback-p :text-offset :val-1 :val-2

:scr-incr :format-string :enum-format-string :visible))

(:left 0)

(:top 0)

(:width 230)

(:title "Motif Gauge")

(:foreground-color opal:motif-gray)

(:title-font opal:default-font)

(:value-font opal:default-font)

(:enum-font (create-instance NIL opal:font (:size :small)))

(:num-marks 10) ; Includes endpoints

(:tic-marks-p T)

(:enumerate-p T)

(:value-feedback-p T)

(:text-offset 5)

Chapter 8: Garnet Gadgets 521

(:val-1 0)

(:val-2 180)

(:scr-incr 5)

(:format-string "~a") ; How to print the feedback value

(:enum-format-string "~a") ; How to print the tic-mark values

(:keyboard-selection-p NIL)

(:value (o-formula ...))

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 522

0

20

40

60

80100

120

140

160

180

Temperature

60.000

The motif-gauge is a semi-circular meter with tic-marks around the perimeter. As with
scroll bars and sliders, this object allows the user to specify a value between minimum
and maximum values. An arrow-shaped polygon points to the currently chosen value, and
may be rotated either by dragging it with the mouse or by the arrow keys when keyboard
selection is activated. Text below the gauge reports the current value to which the needle
is pointing.

Chapter 8: Garnet Gadgets 523

The slots :num-marks, :tic-marks-p, :enumerate-p, :val-1, :val-2, and :enum-font

are implemented as in the standard Garnet sliders (see section [sliders], page 410). The
value in :val-1 corresponds to the right side of the gauge.

The title of the gauge is specified in :title. No title will appear if :title is nil. The
fonts for the title of the gauge and the current chosen value are specified in :title-font

and :value-font, respectively.

If :value-feedback-p is T, then numerical text will appear below the gauge indicating the
currently chosen value. The value in :text-offset determines the distance between the
gauge and the title string, and between the title string and the value feedback.

The :format-string and :enum-format-string slots allow you to control the formatting
of the text strings, in case the standard formatting is not appropriate. This is mainly useful
for floating point numbers. The slots should each contain a string that can be passed to
the lisp function format. The default string is "~a".

Setting :keyboard-selection-p to T activates the keyboard interface to the motif-gauge.
The left and right arrow keys can then be used to change the value of the gauge. The
increment by which the value of the gauge changes during each press of an arrow key is in
:scr-incr.

Chapter 8: Garnet Gadgets 524

8.46 Motif Buttons

Red

Green

Blue

Bold

Italic

Underline

Helvetica

Geneva

Courier

Roman

Times

Symbol

Figure 8.18: Motif Text Buttons, Check Buttons, and Radio Buttons

Chapter 8: Garnet Gadgets 525

As with the standard Garnet buttons, the Motif buttons can be either a single, stand-alone
button or a panel of buttons. Use of the Motif gadgets is identical to the use of standard
Garnet buttons in the following respects (see Section [buttons], page 420).

All slots that can be customized in an aggrelist can be customized in the Motif button
panels.

The :value slot contains the string or atom of the currently selected item (in the
motif-check-button-panel this value is a list of selected items). In button panels,
the currently selected component of the panel’s aggrelist is named in the :value-obj

slot.

The :width and :height of button panels are determined internally, and may not be
set directly. Instead, refer to the slots :fixed-width-size and :fixed-height-size.
The :width and :height slots may be accessed after the object is instantiated.

The :items slot can be either a list of strings, a list of atoms, or a list of string/function
or atom/function pairs (see section [items-slot], page 401).

The font in which the button labels appear may be specified in the :font slot.

Most of the buttons and button panels have a :toggle-p slot that controls whether
buttons can become deselected. If the value of this slot is T, then clicking on a se-
lected button deselects it. Otherwise, the button always stays selected, though the
:selection-function and the item functions will continue to be executed each time
the button is pressed.

The following slots provide additional functionality for the Motif buttons:

In single Motif buttons, if the :active-p slot is nil, then the string of the button
appears in "grayed-out" text and the button is not user selectable.

Analogously, the :inactive-items slot of the Motif button panels contains a list of
strings or atoms corresponding to the members of the :items list. The text of each
item listed in :inactive-items will appear "grayed-out" and those buttons will not
be user selectable. If :active-p is set to nil, then all items will appear "grayed-out".

When the slot :keyboard-selection-p is T, the keyboard interface to the button
gadgets is activated. The arrow keys will move the selection box among the buttons
in a button panel, and the space-bar will select the boxed button. The component
of the button panel aggrelist currently surrounded by the selection box is named in
:keyboard-selection-obj, and its string is in :keyboard-selection. Thus, the slot
:keyboard-selection may be set with a string (or an atom, depending on the :items
list) to put the selection box around a button. Since this slot contains a formula, the
programmer may not supply an initial value at create-instance time. Instead, as with
the :value slot, the user must first gv the :keyboard-selection slot and then s-value
it to the desired initial value.

NOTE: When keyboard selection is activated, the space-bar is used to select buttons,
while the return key is used to select items in the motif-menu.

8.46.1 Motif Text Buttons

(create-instance ’gg:Motif-Text-Button gg:motif-gadget-prototype

(:maybe-constant ’(:left :top :text-offset :active-p :string :toggle-p :font

:final-feedback-p :foreground-color :visible))

Chapter 8: Garnet Gadgets 526

(:left 0)

(:top 0)

(:text-offset 5)

(:active-p T)

(:string "Motif Text Button")

(:font opal:default-font)

(:final-feedback-p NIL)

(:toggle-p T)

(:keyboard-selection-p NIL)

(:foreground-color opal:motif-gray)

(:value (o-formula (if (gvl :selected) (gvl :string))))

(:selected (o-formula (gvl :value))) ;Set by interactor

(:selection-function NIL) ; (lambda (gadget value))

)

(create-instance ’gg:Motif-Text-Button-Panel motif-gadget-prototype

(:maybe-constant ’(:left :top :text-offset :final-feedback-p :toggle-p :items :font

:foreground-color :direction :v-spacing :h-spacing :v-align

:h-align :indent :fixed-width-p :fixed-width-size :fixed-height-p

:fixed-height-size :rank-margin :pixel-margin :visible))

(:left 0)

(:top 0)

(:text-offset 5)

(:final-feedback-p NIL)

(:items ’("Text 1" "Text 2" "Text 3" "Text 4"))

(:inactive-items NIL)

(:toggle-p NIL)

(:keyboard-selection-p NIL)

(:keyboard-selection (o-formula ...))

(:keyboard-selection-obj (o-formula ...))

(:font opal:default-font)

(:foreground-color opal:motif-gray)

(:value-obj NIL)

(:value (o-formula ...))

(:active-p (o-formula ...))

(:selection-function NIL) ; (lambda (gadget value))

<All customizable slots of an aggrelist>)

The loader file for the motif-text-button and motif-text-button-panel is "motif-text-
buttons-loader".

The motif-text-button-panel is a set of rectangular buttons, with the string or atom
associated with each button aligned inside. The button will stay depressed after the mouse
is released only if :final-feedback-p is T.

The distance from the beginning of the longest label to the inside edge of the button frame
is specified in :text-offset.

Chapter 8: Garnet Gadgets 527

8.46.2 Motif Check Buttons

(create-instance ’gg:Motif-Check-Button gg:motif-gadget-prototype

(:maybe-constant ’(:left :top :button-width :text-offset :text-on-left-p

:active-p :toggle-p :string :font :foreground-color :visible))

(:left 0)

(:top 0)

(:button-width 12)

(:text-offset 5)

(:text-on-left-p NIL)

(:active-p T)

(:string "Motif Check Button")

(:font opal:default-font)

(:toggle-p T)

(:keyboard-selection-p NIL)

(:foreground-color opal:motif-gray)

(:value (o-formula (if (gvl :selected) (gvl :string))))

(:selected (o-formula (gvl :value))) ;Set by interactor

(:selection-function NIL) ; (lambda (gadget value))

)

(create-instance ’gg:Motif-Check-Button-Panel motif-gadget-prototype

(:maybe-constant ’(:left :top :button-width :text-offset :text-on-left-p :items

:font :foreground-color :direction :v-spacing :h-spacing

:v-align :h-align :indent :fixed-width-p :fixed-width-size

:fixed-height-p :fixed-height-size :rank-margin :pixel-margin

:visible))

(:left 0)

(:top 0)

(:button-width 12)

(:text-offset 5)

(:text-on-left-p NIL)

(:items ’("Check 1" "Check 2" "Check 3"))

(:inactive-items NIL)

(:keyboard-selection-p NIL)

(:keyboard-selection (o-formula ...))

(:keyboard-selection-obj (o-formula ...))

(:font opal:default-font)

(:foreground-color opal:motif-gray)

(:value-obj NIL)

(:value (o-formula ...))

(:active-p (o-formula ..))

(:selection-function NIL) ; (lambda (gadget value))

<All customizable slots of an aggrelist>)

The loader file for the motif-check-button and the motif-check-button-panel is "motif-
check-buttons-loader".

Chapter 8: Garnet Gadgets 528

The motif-check-button-panel is analogous to the x-button-panel from the standard
Garnet Gadget Set. Any number of buttons may be selected at one time, and clicking on a
selected button de-selects it.

Since the motif-check-button-panel allows selection of several items at once, the :value
slot is a list of strings (or atoms), rather than a single string. Similarly, :value-obj contains
a list of button objects.

The slot :text-on-left-p specifies whether the text will appear on the right or left of
the buttons. A nil value indicates that the text should appear on the right. When text
appears on the right, the designer will probably want to set :h-align to :left in order to
left-justify the text against the buttons.

The distance from the labels to the buttons is specified in :text-offset.

The slot :button-width specifies the height and width of each button square.

8.46.3 Motif Radio Buttons

(create-instance ’gg:Motif-Radio-Button gg:motif-gadget-prototype

(:maybe-constant ’(:left :top :button-width :text-offset :text-on-left-p

:toggle-p :active-p :string :font :foreground-color :visible))

(:left 0)

(:top 0)

(:button-width 12)

(:text-offset 5)

(:text-on-left-p NIL)

(:active-p T)

(:string "Motif Radio Button")

(:font opal:default-font)

(:toggle-p T)

(:keyboard-selection-p NIL)

(:foreground-color opal:motif-gray)

(:value (o-formula (if (gvl :selected) (gvl :string))))

(:selected (o-formula (gvl :value))) ; Set by interactor

(:selection-function NIL) ; (lambda (gadget value))

)

(create-instance ’gg:Motif-Radio-Button-Panel motif-gadget-prototype

(:maybe-constant ’(:left :top :button-width :text-offset :text-on-left-p :toggle-p

:items :font :foreground-color :direction :v-spacing :h-spacing

:v-align :h-align :indent :fixed-width-p :fixed-width-size

:fixed-height-p :fixed-height-size :rank-margin :pixel-margin

:visible))

(:left 0)

(:top 0)

(:button-width 12)

(:text-offset 5)

(:text-on-left-p NIL)

(:items ’("Radio 1" "Radio 2" "Radio 3"))

(:inactive-items NIL)

Chapter 8: Garnet Gadgets 529

(:toggle-p NIL)

(:keyboard-selection-p NIL)

(:keyboard-selection (o-formula ...))

(:keyboard-selection-obj (o-formula ...))

(:font opal:default-font)

(:foreground-color opal:motif-gray)

(:value-obj NIL)

(:value (o-formula ...))

(:active-p (o-formula ...))

(:selection-function NIL) ; (lambda (gadget value))

<All customizable slots of an aggrelist>)

The loader file for the motif-radio-button and motif-radio-button-panel is "motif-
radio-buttons-loader".

The motif-radio-button-panel is a set of diamond buttons with items appearing to either
the left or the right of the buttons (implementation of :button-width, :text-on-left-
p and :text-offset is identical to the motif check buttons). Only one button may be
selected at a time.

8.47 [Motif Option Button]

(create-instance ’gg:Motif-Option-Button opal:aggregadget

(:maybe-constant ’(:left :top :text-offset :label :button-offset :items :initial-item

:button-font :label-font :button-fixed-width-p :v-spacing

:keep-menu-in-screen-p :menu-h-align :foreground-color))

(:left 40) (:top 40)

(:text-offset 6)

(:label "Option button:")

(:button-offset 2)

(:items ’("Item 1" "Item 2" "Item 3" "Item 4"))

(:initial-item (o-formula (first (gvl :items))))

(:button-font opal:default-font)

(:label-font (opal:get-standard-font NIL :bold NIL))

(:foreground-color opal:motif-gray)

(:value (o-formula (gvl :option-text-button :string)))

(:button-fixed-width-p T)

(:v-spacing 8)

(:keep-menu-in-screen-p T)

(:menu-h-align :left)

(:selection-function NIL) ; (lambda (gadget value))

...)

Chapter 8: Garnet Gadgets 530

Color: Blue

Color:

Red

Blue

Green

Yellow

Aquamarine

Cyan

Fluorescent

Figure 8.19: A Motif option button in its normal state (left), and showing the available
options after the button is pressed (right).

Chapter 8: Garnet Gadgets 531

This is a Motif version of the option-button gadget. When the left mouse button is clicked
on the option button, a menu will pop up, from which items can be selected by moving the
mouse over the desired item and releasing the button. The selected item will appear as the
new label of the button. Figure [motif-option-button-tag], page 530, shows a Motif option
button in its normal state and after the button has been pressed.

This button works exactly like the standard option-button described in section [option-
button], page 426. The customizations are also alike, except that the motif-option-button
does not have a :button-shadow-offset slot and adds a :background-color slot. The
loader file for the motif option button is named "motif-option-button-loader".

8.48 Motif Menu

(create-instance ’gg:Motif-Menu gg:motif-gadget-prototype

(:maybe-constant ’(:left :top :min-frame-width :text-offset :v-spacing :h-align

:items :accelerators :bar-above-these-items :item-font

:accel-font :item-to-string-function :final-feedback-p

:foreground-color :visible))

(:left 0)

(:top 0)

(:min-frame-width 0)

(:text-offset 6)

(:v-spacing 8)

(:h-align :left)

(:items ’("Menu 1" "Menu 2" "Menu 3" "Menu 4" "Menu 5"))

(:inactive-items NIL)

(:accelerators NIL)

(:bar-above-these-items NIL)

(:item-to-string-function

#’(lambda (item)

(if item

(if (stringp item)

item

(string-capitalize (string-trim ":" item)))

"")))

(:final-feedback-p T)

(:keyboard-selection-p NIL)

(:keyboard-selection (o-formula ...))

(:keyboard-selection-obj (o-formula ...))

(:item-font opal:default-font)

(:accel-font opal:default-font)

(:foreground-color opal:motif-gray)

(:value-obj NIL)

(:value (o-formula ...))

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 532

Restore size F2

Move window F3

Resize window F4

Iconify window F5

Full-zoom F6

Lower window F7

Kill window F8

The loader file for the motif-menu is "motif-menu-loader".

8.48.1 Programming Interface

The motif-menu is analogous to the menu from the standard Gadget Set, with the addition
of an :accelerators slot which facilitates the selection of a menu item by the user. Only
one item may be selected at a time.

The :accelerators slot is a list of triples which correspond to the items in the :items list.
Consider the following slot definitions in an instance of the motif-menu:

Chapter 8: Garnet Gadgets 533

(:items ’("Remove-window" "Move-window" ...))

(:accelerators ’((#\R "Alt+F2" :META-F2) (#\M "Alt+F3" :META-F3) ...))

Since the #\M character appears in the second accelerator pair, the "M" in the "Move-
window" item will be underlined in the menu. The string "Alt+F3" will appear to the right
of the "Move-window" item in the menu. Interactors are defined in the motif-menu that
allow the user to press the "M" key whenever keyboard selection is activated to select "Move-
window". And, after properly initializing an instance of the motif-menu-accelerator-

inter (described below), simultaneously pressing the "Alt" and "F3" keys will also select
"Move window".

Since this menu supports only single selection, the :value slot contains the currently se-
lected item (from the :items list) and the :value-obj slot contains the currently selected
object in the menu’s aggrelist.

The :items and :item-to-string-function slots are implemented as in the
:scrolling-menu from the standard Gadget Set (see Section [scrolling-menu], page 435).
Each item (the actual item, not its string conversion) specified in the :inactive-items

list will appear "grayed-out" and will not be selectable.

A separator bar will appear above each item listed in the slot :bar-above-these-items.

The minimum width of the menu frame is determined by :min-frame-width. The menu
will appear wider than this value only if the longest item string (and its corresponding
accelerator, if any) will not fit in a menu of this width.

The :v-spacing slot determines the distance between each item in the menu, and
:text-offset determines the distance from the menu frame to the items (and the distance
between the longest item and its corresponding accelerator, if any).

The justification of the items in the menu is determined by the slot :h-align and may be
either :left, :center, or :right.

A feedback box will appear around the currently selected item if :final-feedback-p is T.

When the slot :keyboard-selection-p is T, the keyboard interface to the motif-menu is
activated. The arrow keys will move the selection box among the items in the menu, and
the return key will select the boxed item. The component of the menu’s aggrelist currently
surrounded by the selection box is named in :keyboard-selection-obj, and its string is in
:keyboard-selection. Thus, the slot :keyboard-selection may be set with a string (or
an atom, depending on the :items list) to put the selection box around an item. Since this
slot contains a formula, the programmer may not supply an initial value at create-instance
time. Instead, as with the :value slot, the user must first gv the :keyboard-selection

slot and then s-value it to the desired initial value. NOTE: The return key is used to select
items in the motif-menu, while the space-bar is used to select Motif buttons.

The fonts in which to display the items and the accelerator strings are in :item-font and
:accel-font, respectively.

8.48.2 The Motif-Menu Accelerator Interactor

(create-instance ’gg:Motif-Menu-Accelerator-Inter inter:button-interactor

(:window NIL)

(:menus NIL)

(:continuous NIL)

Chapter 8: Garnet Gadgets 534

(:start-where T)

(:start-event (o-formula (multiple-value-call #’append

(values-list (gvl :accel-chars)))))

(:accel-chars (o-formula (mapcar #’(lambda (menu)

(gv menu :global-accel-chars))

(gvl :menus))))

(:waiting-priority gg:motif-tab-priority-level)

(:running-priority gg:motif-tab-priority-level)

(:stop-action #’(lambda (interactor obj-over) ...))

(:final-function NIL))

The motif-menu-accelerator-inter interactor is used with a set of motif-menu instances
to implement the global character selection feature (:META-F2, etc. above). When an
instance is supplied with a list of menus in the :menus slot and the window of the menus in
the :window slot, then when the user strikes any of the accelerator keys defined in the menus,
the corresponding menu item will be selected and its functions will be executed. Only one
item may be assigned to each global accelerator character. An example of the motif-menu-
accelerator-inter may be found in demo-motif and in the motif-menu demo.

8.48.3 Adding Items to the Motif-Menu

The add-item method for the motif-menu is similar to the standard method, except that
the programmer may supply an accelerator to be added to the menu which corresponds to
the item being added.

opal:add-item motif-menu item [:accelerator accel] [[:where] position [lo-

cator] [:key function-name]]

The value for accel should be an accelerator triplet that can be inserted into the
:accelerators list of the motif-menu, such as ’(#\R "Alt+F2" :META-F2). Note that the
accelerator parameter must come before the "where" keys.

The usual remove-item method is used for the motif-menu, with the additional feature
that the accelerator corresponding to the old item is automatically removed from the
:accelerators list (if there is one).

Chapter 8: Garnet Gadgets 535

8.49 [Motif Scrolling Menu]

Menu

Times

Roman

Courier

Helvetica

Chicago

(create-instance ’gg:Motif-Scrolling-Menu motif-gadget-prototype

(:maybe-constant ’(:left :top :scroll-on-left-p

:scr-incr :page-incr :min-frame-width :v-spacing :h-align

:multiple-p :items :item-to-string-function

Chapter 8: Garnet Gadgets 536

:item-font :num-visible :int-menu-feedback-p

:final-feedback-p :text-offset :title :title-font

:visible))

(:left 0) (:top 0)

(:active-p T)

;; Scroll bar slots

(:scroll-on-left-p T)

(:scr-incr 1)

(:page-incr (o-formula (gvl :num-visible)))

(:scroll-selection-function NIL)

;; Menu slots

(:toggle-p T)

(:min-frame-width 0)

(:v-spacing 6)

(:h-align :left)

(:multiple-p T)

(:items ’("Item 1" "Item 2" "Item 3" "Item 4" "Item 5" "Item 6" "Item 7"

"Item 8" "Item 9" "Item 10" "Item 11" "Item 12" "Item 13"

"Item 14" "Item 15" "Item 16" "Item 17" "Item 18" "Item 19"

"Item 20"))

(:item-to-string-function

#’(lambda (item)

(if item

(if (stringp item)

item

(string-capitalize (string-trim ":" item)))

"")))

(:item-font opal:default-font)

(:num-visible 5)

(:int-menu-feedback-p T)

(:final-feedback-p T)

(:text-offset 6)

(:title NIL)

(:title-font (opal:get-standard-font :serif :roman :large))

(:menu-selection-function NIL)

(:selected-ranks NIL)

(:foreground-color opal:motif-gray)

(:value (o-formula ...)))

The loader file for the motif-scrolling-menu is named "motif-scrolling-menu-loader".

The motif-scrolling-menu is very much like the standard scrolling-menu, but there are
a few differences. Since the scrolling window has a motif-v-scroll-bar as a part of it, the
slots :min-scroll-bar-width, page-trill-p, :indicator-text-p, and :int-scroll-

feedback-p are not applicable.

Chapter 8: Garnet Gadgets 537

Also, the motif-scrolling-menu has a slot :foreground-color, which is absent in the
standard scrolling-menu.

Chapter 8: Garnet Gadgets 538

8.50 Motif-Menubar

Family Face Size

Small !s

Medium !m

Large !l

Very-Large !v

Figure 8.20: An instance of the [motif-menubar] gadget

(create-instance ’gg:Motif-Menubar gg::motif-gadget-prototype

(:left 0)(:top 0)

Chapter 8: Garnet Gadgets 539

(:items NIL)

(:title-font opal:default-font)

(:item-font opal:default-font)

(:min-menubar-width 0)

(:accelerators NIL)

(:accelerator-windows (o-formula (gvl :window)))

(:bar-above-these-items NIL))

To load the motif-menubar, execute (garnet-load "gadgets:motif-menubar-loader").

The motif-menubar is used very much like the standard menubar, described in section
[menubar], page 438. The motif-menubar has several additional features, including: slots
that allow the menubar to extend across the top of the entire window, keyboard accelerators,
and decorative "bars" in the submenus.

A simple demo which uses the motif-menubar is loaded along with the motif-menubar.
To run it, execute (gg:motif-menubar-go). Larger demos also use the motif-menubar,
including GarnetDraw and Demo-Multifont.

The :min-menubar-width slot specifies how wide the motif-menubar should be. If it
contains a value greater than the current width of the motif-menubar, the bar will extend
itself. However, the items will remain fixed (i.e. they won’t spread out equidistantly over
the bar). This feature is useful when you want the menubar to extend across the top of the
entire window, as in Figure [motif-menubar-pix], page 538.

8.50.1 Selection Functions

Like in the standard menubar, there is no :value slot for this gadget. The designer must
use the :selection-function or the item functions to act on the user’s selections.

There are three levels of functions in the motif-menubar gadget that may be called when
the user makes a selection. Functions can be attached to individual submenu items, whole
submenus, or the top level menubar.

All the selection functions take three parameters:

(lambda (gadget menu-item submenu-item))

The following :items list is taken from the gg:Motif-Menubar-Go demo, defined at the
end of motif-menubar.lisp.

(:items

‘((:family ,#’family-fn

((:fixed ,#’fixed-fn)(:serif ,#’serif-fn)(:sans-serif ,#’sans-serif-fn)))

(:face ,#’face-fn

((:roman)(:bold)(:italic)(:bold-italic)))

(:size ,#’size-fn

((:small)(:medium)(:large)(:very-large)))))

This :items list attaches the functions family-fn, face-fn, and size-fn to each of the
submenus in the menubar. Whenever the user selects an item from one of those submenus,
the corresponding submenu-function will be executed.

Additionally, the functions fixed-fn, serif-fn, and sans-serif-fn are attached to each
item in the first submenu. Whenever the user chooses "Fixed", "Serif", or "Sans-Serif"
from the "Family" menu, the function associated with that item will be executed.

Chapter 8: Garnet Gadgets 540

The order of function execution is as follows: First, the submenu-item function is called,
then the submenu function, and then the top-level :selection-function. Notice that this
is different from the order in which the functions for the regular menubar are called.

8.50.2 Accelerators

Since the motif-menubar uses actual instances of the motif-menu gadget for its submenus,
the "accelerators" feature of the motif-menu gadget can be used in the menubar. The
syntax for specifying accelerators is a bit more complicated in the menubar, because multiple
submenus are used.

An accelerator is a relationship between a keyboard event and an item in the menubar.
When a key is typed that corresponds to a menubar item, the function that is associated
with the item is executed as if the user had pulled down the submenu and selected the item
with the mouse. Each accelerator is specified by its lisp character (e.g., :F3), and a string
to be shown to the user describing the accelerator key (e.g., "F3"). These string/character
pairs are supplied to the menubar in a list, one pair for each item in the menubar. For
example,

(:accelerators ’((("!f" :|META-f|) ("!b" :|META-b|))

NIL

(NIL NIL ("!x" :|META-x|))))

In this accelerators list, the first item in the first submenu has accelerator string "!f", and
is selected by the keyboard event, :META-f. The second item in the first submenu has
the accelerator string "!b", and keyboard event :META-b. The second submenu has no
accelerators. The first two items in the third submenu have no accelerators. The third item
in the third submenu has string "!x" and event META-x.

In general, the format for the :accelerators slot is:

(:accelerators ’(((s1,1 k1,1) (s1,2 k1,2) ...)

((s2,1 k2,1) (s2,2 k2,2) ...)

...))

where sM,N is the accelerator string for the N-th item in the M-th submenu, and kM,N is
the keyboard event for the same.

The :accelerator-windows slot by default contains the motif-menubar’s window, but
may contain a list of windows. When an accelerator event occurs in one of these windows,
it will be perceived by the menubar and the item functions will be executed. If the mouse
is in a different window, and the accelerator event occurs, the menubar will not notice the
event. For this reason, you should put a list of all your application’s windows in this slot,
if you always want the accelerator to activate the menubar.

8.50.3 Decorative Bars

The "bars" feature of the motif-menu can also be used in the motif-menubar gadget. The
:bar-above-these-items slot specifies over which items a horizontal line should appear.
For example:

(:bar-above-these-items ’(("Small")

NIL

("Faster" "Warp Speed")))

Chapter 8: Garnet Gadgets 541

will cause a bar to appear above the item "Small" in the first submenu, and above the items
"Faster" and "Warp Speed" in the third submenu, with no bars in the second submenu.
In the motif-menubar demo, pictured in Figure [motif-menubar-pix], page 538, there is a
bar above third item in the last submenu.

8.50.4 Programming the Motif-Menubar the Traditional Garnet
Way

There are two approaches to programming a motif-menubar. The first, discussed in this
section, is the Garnet way, where all the :items are provided while creating the menubar.
The second approach, discussed in section [mmbar-components], page 543, requires that all
the sub-objects be created individually and attached to the menubar.

The format for the :items slot of the motif-menubar is the same as in the regular menubar.
For example,

(:items ’(("Speed" NIL (("Slow" Slow-Fn) ("Medium" Med-Fn)

("Fast" Fast-Fn) ("Whoa" Too-Fast-Fn)))))

This :items list creates a menubar with one bar-item, "Speed", which has no submenu
selection function. In that bar-item’s submenu, are the items "Slow", "Medium", "Fast"
and "Whoa", which will call Slow-Fn, Med-Fn, Fast-Fn and Too-Fast-Fn respectively when
selected. Note that in contrast to the example of Section [mmbar-sel-fns], page 539, we did
not include #’ function specifiers with the selection function names. This is not necessary,
because the functions are invoked with funcall, and the symbols will be dereferenced when
necessary (though it would be faster to include the #’, and avoid the dereferencing).

The submenu-items should always be described with lists, even if they have no functions
(e.g., ("Slow") instead of "Slow"). Also, the submenu function should either be nil (as
in the above example) or a function. As in the regular menubar, the item functions are
optional and may be omitted.

8.50.5 An Example

The following example creates the motif-menubar pictured in Figure [motif-menubar-pix],
page 538. Note the behavior of the META-f accelerator and the location of the bar.

(create-instance ’WIN inter:interactor-window

(:background-color opal:motif-gray)

(:aggregate (create-instance ’TOP-AGG opal:aggregate)))

(defun Fixed-Fn (submenu bar-item submenu-item)

(format T "Fixed called with ~s ~s ~s~%" submenu bar-item submenu-item))

(defun Face-Fn (gadget menu-item submenu-item)

(format T "Face called with ~s ~s ~s~%"

gadget menu-item submenu-item))

(create-instance ’MY-MOTIF-MENUBAR gg:motif-menubar

(:foreground-color opal:motif-gray)

(:items

’((:family NIL

((:fixed fixed-fn)(:serif)(:sans-serif)))

Chapter 8: Garnet Gadgets 542

(:face face-fn

((:roman)(:bold)(:italic)(:bold-italic)))

(:size NIL

((:small)(:medium)(:large)(:very-large)))))

(:accelerators

’((("!f" :|META-f|) ("!e" :|META-e|) ("!a" :|META-a|))

(("!r" :|META-r|) ("!b" :|META-b|) ("!i" :|META-i|) ("!B" :META-B))

(("!s" :|META-s|) ("!m" :|META-m|) ("!l" :|META-l|) ("!v" :|META-v|))))

(:bar-above-these-items

’(NIL

NIL

(:large))))

(opal:add-component TOP-AGG MY-MOTIF-MENUBAR)

(opal:update win)

8.50.6 Adding Items to the Motif-Menubar

Adding items to the motif-menubar is very similar to adding items to the regular menubar,
with the additional ability to add accelerators to the menubar along with the new items.

The add-item method for the motif-menubar may be used to add submenus:

opal:Add-Item menubar submenu [:accelerators accels] 〈undefined〉 [method],

page 〈undefined〉
[[:where] position [locator] [:key index-

function]]

NOTE: If any accelerators are being added, the :accelerators keyword and arguments
must appear before the :where arguments.

The following will add a bar item named "Volume", with a few items and accelerators in
it:

(opal:add-item MY-MOTIF-MENUBAR

’("Volume" NIL (("Low") ("Medium") ("High") ("Yowsa")))

:accelerators ’(NIL NIL

("!h" :|META-h|) ("!y" :|META-y|))

:before :size :key #’car)

To add a submenu item, use the function:

gg:Add-Submenu-Item menubar submenu-title submenu-item 〈undefined〉 [method],

page 〈undefined〉
[:accelerator accel]

[[:where] position [locator] [:key index-function]]

As with the previous function, if any accelerators are being added, they must appear before
the :where. Also, notice that since only one accelerator is being added for the item, the
keyword is :accelerator, not :accelerators.

The following example will add a submenu item named "Quiet" to the submenu named
"Volume", and its accelerator will be META-q:

(gg:add-submenu-item MY-MOTIF-MENUBAR "Volume" ’("Quiet")

:accelerator ’("!q" :|META-q|) :before "Low" :key #’car)

Chapter 8: Garnet Gadgets 543

8.50.7 Removing Items from the Motif-Menubar

An item is removed from a motif-menubar in exactly the same way as from a regular
menubar. To remove an entire submenu, use:

opal:Remove-Item <menubar submenu> 〈undefined〉 [method], page 〈undefined〉
For traditional Garnet programming, the <submenu> should be a sublist of the top level
:items list, or it can just be the title of a submenu.

The following line will remove the "Volume" submenu from the previous examples.

(opal:remove-item MY-MOTIF-MENUBAR "Volume")

For removing submenu items, use

gg:Remove-Submenu-Item <menubar submenu-title submenu-item> 〈undefined〉
[method], page 〈undefined〉
The following will remove the :small item from the submenu, :size.

(gg:remove-submenu-item MY-MOTIF-MENUBAR :size ’(:small))

8.50.8 Programming the Motif-Menubar with Components

The designer may also choose a bottom-up way of programming the motif-menubar. The
idea is to create the submenus of the menubar individually using the functions described in
this section, and then attach them to a menubar.

8.50.9 An Example

This example creates a motif-menubar and several components, and attaches them to-
gether.

(create-instance ’WIN inter:interactor-window

(:background-color opal:motif-blue)

(:aggregate (create-instance ’TOP-AGG opal:aggregate)))

; Create the menubar and a bar item

(setf MY-MOTIF-MENUBAR (garnet-gadgets:make-motif-menubar))

(s-value MY-MOTIF-MENUBAR :foreground-color opal:motif-blue)

(setf MAC-BAR (garnet-gadgets:make-motif-bar-item :title "Fonts"))

; Create the submenu items

(setf SUB1 (garnet-gadgets:make-motif-submenu-item :desc ’("Gothic")))

(setf SUB2 (garnet-gadgets:make-motif-submenu-item :desc ’("Venice")))

(setf SUB3 (garnet-gadgets:make-motif-submenu-item :desc ’("Outlaw")))

; Add submenu items to the bar item

(opal:add-item MAC-BAR SUB1)

(opal:add-item MAC-BAR SUB2)

(opal:add-item MAC-BAR SUB3 :after "Venice" :key #’car)

; Add the bar item to the menubar and update the window

(opal:add-item MY-MOTIF-MENUBAR MAC-BAR

Chapter 8: Garnet Gadgets 544

:accelerators ’(("!g" :|META-g|) ("!v" :|META-v|) ("!o" :|META-o|)))

; Add the menubar to the top-level aggregate

(opal:add-component TOP-AGG MY-MOTIF-MENUBAR)

(opal:update win)

When programming a motif-menubar by components, you should add accelerators only
when you add a bar-item to the menubar, or when adding a submenu item to a bar item
that has already been added to a menubar. That is, you cannot add an accelerator to a
submenu that has not been attached to a menubar yet.

8.50.10 Creating Components of the Motif-Menubar

A motif-menubar is essentially the same as a menubar in that there are three components
- the menubar itself, bar items containing submenus, and submenu items. Each can be
created with the following functions:

gg:Make-Motif-Menubar [function], page 90

Will return an instance of motif-menubar.

gg:Make-Motif-Bar-Item &key <desc font title> [function], page 90

Returns a motif-bar-item. Like the regular menubar, the :desc parameter is a description
of the submenu (e.g., ’("Speed" NIL (("Fast") ("Slow") ("Crawl")))), and the font and
title keys specify the font and the heading of the submenu.

[Function]gg:make-motif-submenu-item &key desc enabled
Creates and returns an instance of motif-submenu-item, which is actually a
motif-menu-item, since each motif-submenu is just a motif-menu. The :desc

parameter describes the item, (e.g., ’("Italic") or ’("Italic" italic-fn)). The
default for enabled is T.

8.50.11 Adding Components to the Motif-Menubar

Two types of components that can be added to the motif-menubar are bar-items and
submenu-items. The add-item method can be used to add new bar-items to the menubar,
and can also be used to add new submenu-items to existing bar-items. The set-... func-
tions are used to install a collection of components all at once.

gg:Set-Menubar <motif-menubar new-bar-items> 〈undefined〉 [method], page 〈unde
fined〉
This removes the current bar-items from <motif-menubar> and adds the new bar items.
This is useful for recycling a menubar instead of creating a new one.

gg:Set-Submenu <motif-bar-item new-submenu-items> 〈undefined〉 [method],
page 〈undefined〉
Sets the <motif-bar-item> to have the new submenu-items. For more information on these
two functions, see section [menubar], page 438.

opal:Add-Item <motif-menubar motif-bar-item> [:accelerators <accels>] 〈un
defined〉 [method], page 〈undefined〉

< > [[:where] <position> [<locator>] [:key <index-function>]]

Chapter 8: Garnet Gadgets 545

Will add <motif-bar-item> to <motif-menubar>. As usual, if any accelerators are
being added, the :accelerators key must be specified before the :where key. The
:accelerators syntax is described in Section [mmbar-accelerators], page 540.

opal:Add-Item <motif-bar-item motif-menu-item> 〈undefined〉 [method], page 〈un
defined〉

[:accelerator <accels>]

[[:where] <position> [<locator>] [:key <index-function>]]

Adds the submenu-item, <motif-menu-item> to <motif-bar-item>. If the <motif-bar-item> is
not attached to a motif-menubar, then no accelerators will be added, regardless of whether
any are specified.

The following example shows how bar items are added to a motif-menubar:

(setf bar1 (gg:make-motif-bar-item

:desc ’("Color" NIL (("Red") ("Blue") ("Polka Dots")))))

(setf bar2 (gg:make-motif-bar-item

:desc ’("Size" NIL (("Small") ("Medium") ("Large")))))

(opal:add-item MY-MOTIF-MENUBAR bar1

:accelerators ’(("!r" :|META-r|) ("!b" :|META-b|) ("!p" :|META-p|)))

(opal:add-item MY-MOTIF-MENUBAR bar2 :before bar1)

(opal:update win)

This sequence shows how submenu-items can be attached to bar-items:

(setf color1 (gg:make-motif-submenu-item :desc ’("Maroon")))

(setf color2 (gg:make-motif-submenu-item :desc ’("Peachpuff")))

(opal:add-item bar1 color1 :accelerator ’("!m" :|META-m|))

(opal:add-item bar1 color2 :after "Blue" :key #’car)

8.50.12 Removing Components from the Menubar

Bar-items and submenu-items can be removed from the menubar with the remove-item

method.

In the example from the previous section, to remove color1 from bar1, we say:

(opal:remove-item bar1 color1)

And to remove the bar1 itself:

(opal:remove-item MY-MOTIF-MENUBAR bar1)

8.50.13 Methods Shared with the Regular Menubar

The following methods have the same effect on the motif-menubar as they have on the
standard menubar. Please see section [menubar], page 438, for more information.

gg:Menubar-Components <motif-menubar> 〈undefined〉 [method], page 〈undefined〉
gg:Submenu-Components <motif-bar-item> 〈undefined〉 [method], page 〈undefined〉
gg:Get-Bar-Component <motif-menubar> <item> 〈undefined〉 [method], page 〈un
defined〉
gg:Get-Submenu-Component <motif-bar-item> <item> 〈undefined〉 [method], page 〈un
defined〉
gg:Find-Submenu-Component <motif-menubar> <submenu-title> <submenu-item> 〈un
defined〉 [method], page 〈undefined〉

Chapter 8: Garnet Gadgets 546

gg:Menubar-Disable-Component <motif-menubar-component> 〈undefined〉 [method],

page 〈undefined〉
gg:Menubar-Enable-Component <motif-menubar-component> 〈undefined〉 [method],

page 〈undefined〉
gg:Menubar-Enabled-P <motif-menubar-component> 〈undefined〉 [method], page 〈un
defined〉
gg:Menubar-Get-Title <motif-menubar-component> 〈undefined〉 [method], page 〈un
defined〉
gg:Menubar-Set-Title <motif-menubar-component> 〈undefined〉 [method], page 〈un
defined〉
gg:Menubar-Installed-P <motif-menubar-component> 〈undefined〉 [method], page 〈un
defined〉

8.51 Motif-Scrolling-Labeled-Box

(create-instance ’gg:Motif-Scrolling-Labeled-Box motif-gadget-prototype

(:maybe-constant ’(:left :top :width :field-offset :label-offset :label-string

:field-font :label-font :foreground-color :active-p :visible))

(:left 0)

(:top 0)

(:width 135)

(:field-offset 4)

(:label-offset 5)

(:label-string "Label:")

(:value "Field")

(:field-font opal:default-font) ;;**Must be fixed width**

(:label-font (create-instance NIL opal:font (:face :bold)))

(:foreground-color opal:motif-gray)

(:keyboard-selection-p NIL)

(:active-p T)

(:selection-function NIL) ; (lambda (gadget value))

)

Chapter 8: Garnet Gadgets 547

Label: Field

The loader file for the motif-scrolling-labeled-box is "motif-scrolling-labeled-box-
loader".

This gadget is a Motif version of the scrolling-labeled-box. The :width of the box is
fixed, and the :value string will scroll inside the box if it is too long to be displayed.

When the :active-p slot is set to nil, both the label and the field will appear "grayed-out"
and the field will not be editable.

Chapter 8: Garnet Gadgets 548

8.52 Motif-Error-Gadget

Error: Invalid input from user.
Press OK to continue.

OK

(create-instance ’gg:Motif-Error-Gadget opal:aggregadget

(:string "Error")

(:parent-window NIL)

(:font (opal:get-standard-font :sans-serif :bold :medium))

Chapter 8: Garnet Gadgets 549

(:justification :center)

(:modal-p T)

(:beep-p T)

(:window NIL) ;; Automatically initialized

(:foreground-color opal:motif-orange)

(:selection-function NIL) ; (lambda (gadget value))

)

The loader file for the motif-error-gadget is "motif-error-gadget-loader".

The motif-error-gadget is a dialog box that works exactly the same way as the
error-gadget described in section [error-gadget], page 479. The same caveats apply, and
the functions display-error and display-error-and-wait may be used to display the
dialog box.

There is an additional slot provided in the motif-error-gadget which determines the color
of the dialog box. The :foreground-color slot may contain any instance of opal:color.

8.53 Motif-Query-Gadget

(create-instance ’gg:Motif-Query-Gadget gg:motif-error-gadget

(:string "Is that OK?")

(:button-names ’("OK" "CANCEL"))

(:parent-window NIL)

(:font (opal:get-standard-font :sans-serif :bold :medium))

(:justification :center)

(:modal-p T)

(:beep-p T)

(:window NIL) ;; Automatically initialized

(:foreground-color opal:motif-orange)

(:selection-function NIL) ; (lambda (gadget value))

)

The loader file for the motif-query-gadget is "motif-error-gadget-loader" (it is defined in
the same file as the motif-error-gadget).

The motif-query-gadget works exactly the same way as the query-gadget described
in section [query-gadget], page 483. It has more buttons than the motif-error-gadget,
so it can be used as a general-purpose dialog box. The functions display-query and
display-query-and-wait may be used to display the dialog box.

The additional :foreground-color slot may contain any instance of opal:color, and
determines the color of the dialog box.

Chapter 8: Garnet Gadgets 550

8.54 [Motif Save Gadget]

Directory: /usr0/rajan/

GARNET

Mail

Untitled

bin

g.lisp

include

Filename: Untitled

Save Cancel

Figure 8.21: An instance of the Motif save gadget. "/usr0/rajan" is the current directory.

(create-instance ’motif-save-gadget opal:aggregadget

(:maybe-constant ’(:left :top :parent-window :window-title :window-left :window-top

Chapter 8: Garnet Gadgets 551

:message-string :num-visible :initial-directory :button-panel-items

:button-panel-h-spacing :min-gadget-width :check-filenames-p

:modal-p :query-message :query-buttons :foreground-color

:dir-input-field-font :dir-input-label-font :file-input-field-font

:file-input-label-font :file-menu-font :button-panel-font

:message-font))

(:window-title "save window")

(:initial-directory "./")

(:message-string "fetching directory...")

(:num-visible 6)

(:button-panel-items ’("save" "cancel"))

(:button-panel-h-spacing 25)

(:min-gadget-width 240)

(:modal-p NIL)

(:check-filenames-p t)

(:query-message "save over existing file")

(:foreground-color opal:motif-light-blue)

(:selection-function NIL) ; (lambda (gadget value))

(:dir-input-field-font (opal:get-standard-font NIL NIL :small))

(:dir-input-label-font (opal:get-standard-font NIL :bold NIL))

(:file-input-field-font (opal:get-standard-font NIL NIL :small))

(:file-input-label-font (opal:get-standard-font NIL :bold NIL))

(:message-font (opal:get-standard-font :fixed :italic :small))

(:file-menu-font (opal:get-standard-font NIL :bold NIL))

(:button-panel-font opal:default-font)

...)

The motif-save-gadget works exactly like the save-gadget, described in section [save-
gadget], page 483. The only difference is that the motif-save-gadget has a slot called
:foreground-color which allows the user to set the color of the gadget. This slot can be
set to any opal:color object.

The loader file for the motif-save-gadget is named "motif-save-gadget-loader". Figure
[motif-save-gadget-tag], page 550, shows an instance of the Motif save gadget.

8.55 [Motif Load Gadget]

(create-instance ’gg:Motif-Load-Gadget opal:aggregadget

(:maybe-constant ’(:left :top :parent-window :window-title :window-left

:window-top :dir-input-field-font :dir-input-label-font

:message-font :message-string :num-visible :file-menu-font

:initial-directory :file-input-field-font

:file-input-label-font :button-panel-items :button-panel-font

:button-panel-h-spacing :min-gadget-width :modal-p

:check-filenames-p :foreground-color)))

(:parent-window NIL)

(:window-title "load window")

(:message-string "fetching directory...")

(:num-visible 6)

Chapter 8: Garnet Gadgets 552

(:initial-directory "./")

(:button-panel-items ’("load" "cancel"))

(:button-panel-h-spacing 25)

(:min-gadget-width 240)

(:modal-p NIL)

(:check-filenames-p t)

(:foreground-color opal:motif-light-blue)

(:selection-function NIL) ; (lambda (gadget value))

(:dir-input-field-font (opal:get-standard-font NIL NIL :small))

(:dir-input-label-font (opal:get-standard-font NIL :bold NIL))

(:file-input-field-font (opal:get-standard-font NIL NIL :small))

(:file-input-label-font (opal:get-standard-font NIL :bold NIL))

(:message-font (opal:get-standard-font :fixed :italic :small))

(:file-menu-font (opal:get-standard-font NIL :bold NIL))

(:button-panel-font opal:default-font)

...)

The motif-load-gadget is loaded along with the motif-save-gadget by the file "motif-
save-gadget-loader".

The motif-load-gadget works the same way as the standard load-gadget. The only
difference is that the motif gadget has an additional :foreground-color slot, which can
be set to any opal:color object.

8.56 Motif Property Sheets

The following property sheets are similar to the standard property sheets, except that they
use the Motif look and feel. For a complete discussion of the use of property sheets, see
section [propertysheets], page 490.

8.56.1 Motif-Prop-Sheet-With-OK

(create-instance ’gg:Motif-Prop-Sheet-With-OK opal:aggregadget

(:maybe-constant ’(:left :top :items :default-filter :ok-function :apply-function

:cancel-function :v-spacing :multi-line-p :select-label-p

:label-selected-func :label-select-event :select-value-p

:value-selected-func :single-select-p :foreground-color :visible))

; Customizable slots

(:foreground-color opal:motif-gray) ; the color for the background

(:left 0) (:top 0)

(:items NIL)

(:default-filter ’default-filter)

(:OK-Function NIL)

(:Apply-Function NIL)

(:Cancel-Function NIL)

(:v-spacing 1)

(:pixel-margin NIL)

(:rank-margin NIL)

Chapter 8: Garnet Gadgets 553

(:multi-line-p NIL)

(:select-label-p NIL)

(:label-select-event :any-mousedown)

(:label-selected-func NIL)

(:select-value-p NIL)

(:value-selected-func NIL)

(:single-select-p NIL)

; Read-only slots

(:label-selected ...

(:value-selected ...

(:value ...

(:changed-values ...

The loader for motif-prop-sheet-with-OK is "motif-prop-sheet-win-loader".

This is the same as Prop-Sheet-With-OK (described in section [propsheetwithok], page 499,
except that it uses the Motif look-and-feel, and you can set the foreground color.

8.56.2 Motif-Prop-Sheet-For-Obj-With-OK

(create-instance ’Motif-Prop-Sheet-For-Obj-With-OK Motif-Prop-Sheet-With-OK

(:maybe-constant ’(:left :top :obj :slots :eval-p :ok-function :apply-function

:cancel-function :v-spacing :multi-line-p :select-label-p

:label-selected-func :label-select-event :select-value-p

:value-selected-func :single-select-p :foreground-color :visible))

; Customizable slots

(:foreground-color opal:motif-gray)

(:OK-Function NIL)

(:Apply-Function NIL)

(:Cancel-Function NIL)

(:left 0) (:top 0)

(:obj NIL) ; a single obj or a list of objects

(:slots NIL) ; list of slots to show. If NIL, get from :parameters

(:union? T) ; if slots is NIL and multiple objects, use union or in-

tersection of :parameters?

(:eval-p T) ; if T, then evaluates what the user types. Use T for

; graphical objects. If NIL, then all the values will be strings.

(:set-immediately-p T) ; if T then sets slots when user hits return, else doesn’t

; ever set the slot.

(:type-gadgets NIL) ; descriptor of special handling for types

(:error-gadget NIL) ; an error gadget to use to report errors.

;; plus the rest of the slots also provided by prop-sheet

(:v-spacing 1)

(:pixel-margin NIL)

Chapter 8: Garnet Gadgets 554

(:rank-margin NIL)

(:multi-line-p NIL) ; T if multi-line strings are allowed

(:select-label-p NIL) ; T if want to be able to select the labels

(:label-select-event :any-mousedown)

(:label-selected-func NIL)

(:select-value-p NIL) ; if want to be able to select the values

(:value-selected-func NIL)

(:single-select-p NIL) ; to select more than one value or label

; Read-only slots

(:label-selected NIL) ; set with the selected label objects (or a list)

(:value-selected NIL) ; set with the selected value objects (or a list)

(:value ...) ; list of pairs of all the slots and their (filtered) values

(:changed-values NIL)) ; only the values that have changed

Chapter 8: Garnet Gadgets 555

OK Apply Cancel

FILLING-STYLE:
LINE-STYLE:

QUALITY: :GOOD :MEDIUM :BAD
HEIGHT: 20
WIDTH: 20
TOP: 0
LEFT: 0

Figure 8.22: An example of motif-prop-sheet-for-obj-with-OK containing some gadgets.
The code to create this is shown in section [propexample], page 503.

The loader for motif-prop-sheet-for-obj-with-OK is "motif-prop-sheet-win-loader".

Chapter 8: Garnet Gadgets 556

The implementation and operation of motif-prop-sheet-for-obj-with-ok is identical to
the prop-sheet-for-obj-with-ok gadget (described in section [propsheetforobjwithok],
page 500, with the exception that the :foreground-color slot may be set to any
opal:color object.

8.57 Motif-Prop-Sheet-For-Obj-With-Done

There is a new gadget that displays a property sheet for an object and a “Done” button.
When a slot value is edited, the slot is set immediately, rather than waiting for an OK or
APPLY to be hit. Thus, the prop-sheet-for-obj slot :set-immediately-p is always T. This
is especially useful for when the property sheet is displaying multiple objects, since slots
which are not edited won’t be set. The Done button simply removes the property sheet
window from the screen.

Sorry, there is no Garnet look-and-feel version of this gadget.

The parameters are pretty much the same as for prop-sheet-for-obj, with the addition
of the :done-function which is called with the property sheet as a parameter.

(create-instance ’gg:Motif-Prop-Sheet-For-Obj-With-Done opal:aggregadget

(:maybe-constant ’(:left :top :obj :slots :eval-p :done-function :v-spacing

:multi-line-p :select-label-p :label-selected-func

:label-select-event :select-value-p :value-selected-func

:single-select-p :foreground-color :visible :type-gadgets

:union? :error-gadget))

(:left 5) (:top 5)

(:obj NIL) ; can be one object or a list of objects

(:slots NIL) ; list of slots to show. If NIL uses :parameters

(:done-function NIL) ; called when hit done as (lambda (prop))

(:eval-p T) ; evaluate the values of the slots? Usually T.

(:error-gadget NIL) ; used to report errors on evaluation

(:type-gadgets NIL) ; modifies the default display of slots

(:union? T) ; if slots is NIL and multiple objects, use union or in-

tersection of :parameters?

(:v-spacing 1)

(:select-p NIL) ; T if want to be able to select the entries

(:foreground-color opal:Motif-Gray) ; background color of the window

(:select-label-p NIL) ; T if want to be able to select the entries

(:label-selected-func NIL)

(:label-select-event :any-mousedown)

(:select-value-p NIL)

(:value-selected-func NIL)

(:single-select-p NIL)

;; Read-Only Slots

(:label-selected (o-formula (gvl :propsheet :label-selected)))

(:value-selected (o-formula (gvl :propsheet :value-selected)))

(:value (o-formula (gvl :propsheet :value)))

Chapter 8: Garnet Gadgets 557

(:changed-values (o-formula (gvl :propsheet :changed-values)))

(:width (o-formula (MAX (gvl :done-panel :width)

(gvl :propsheet :width))))

(:height (o-formula (+ 2 (gvl :done-panel :height)

(gvl :propsheet :height))))

The loader for motif-prop-sheet-for-obj-with-done is "motif-prop-sheet-win-loader".

8.58 Motif Scrolling Window

(create-instance ’gg:Motif-Scrolling-Window-With-Bars opal:aggregadget

(:maybe-constant ’(:left :top :width :height :border-width :title :total-width

:total-height :foreground-color :h-scroll-bar-p :v-scroll-bar-p

:h-scroll-on-top-p :v-scroll-on-left-p :h-scr-incr :h-page-incr

:v-scr-incr :v-page-incr :icon-title :parent-window :visible))

;; Window slots

(:left 0) ; left, top, width and height of outermost window

(:top 0)

(:position-by-hand NIL) ; if T, then left,top ignored and user asked for win-

dow position

(:width 150) ; width and height of inside of outer window

(:height 150)

(:border-width 2) ; of outer window

(:parent-window NIL) ; window this scrolling-window is inside of, or NIL if top level

(:double-buffered-p NIL)

(:omit-title-bar-p NIL)

(:title "Motif-Scrolling-Window")

(:icon-title (o-formula (gvl :title))) ; Default is the same as the title

(:total-width 200) ; total size of the scrollable area inside

(:total-height 200)

(:X-Offset 0) ; x offset in of the scrollable area. CANNOT BE A FORMULA

(:Y-Offset 0) ; CANNOT BE A FORMULA

(:visible T) ; whether the window and bars are visible (mapped)

(:foreground-color opal:motif-gray)

(:h-scroll-bar-p T) ; Is there a horizontal scroll bar?

(:v-scroll-bar-p T) ; Is there a vertical scroll bar?

;; Scroll Bar slots

(:h-scroll-on-top-p NIL) ; whether horiz scroll bar is on top or bottom

(:v-scroll-on-left-p T) ; whether vert scroll bar is on left or right

(:h-scr-incr 10) ; in pixels

(:h-page-incr (o-formula (- (gvl :width) 10))) ; default jumps one page mi-

nus 10 pixels

(:v-scr-incr 10) ; in pixels

Chapter 8: Garnet Gadgets 558

(:v-page-incr (o-formula (- (gvl :height) 10))) ; default jumps one page mi-

nus 10 pixels

;; Read-Only slots

(:Inner-Window NIL) ; these are created by the update method

(:inner-aggregate NIL) ; add your objects to this aggregate (but have to up-

date first)

(:outer-window NIL) ; call Opal:Update on this window (or on gadget itself)

(:clip-window NIL)

...)

Chapter 8: Garnet Gadgets 559

The loader file for the motif-scrolling-window-with-bars gadget is "motif-scrolling-
window-loader".

The use of motif-scrolling-window-with-bars is identical to the scrolling-window-

with-bars gadget described in section [scrolling-windows], page 462, with the exception
that the parameters to the scroll bars are slightly different and the :foreground-color

can be set.

Caveats:

Chapter 8: Garnet Gadgets 560

If the motif-scrolling-window has a :parent-window, update the parent window before
instantiating the motif-scrolling-window.

Update the scrolling-window gadget before referring to its inner/outer windows and
aggregates.

The instance of the motif-scrolling-window should not be added to an aggregate.

The motif-scrolling-window-with-bars gadget is not a window itself; it is an
aggregadget that points to its own windows. These windows are accessed through the
:outer-window, :inner-window, and :clip-window slots of the gadget, as in (g-value

MY-SCROLL-WIN :outer-window). So you cannot call opal:make-ps-file with the
scrolling-window gadget as an argument. You have to send one of the windows that it
points to:

> (opal:make-ps-file (g-value SCROLL-WIN :outer-window)

"fig.PS" :LANDSCAPE-P T :BORDERS-P :MOTIF)

T

>

8.59 Using the Gadgets: Examples

8.60 Using the :value Slot

In order to use the value returned by a gadget, we have to access the top level :value slot.
As an example, suppose we want to make an aggregadget out of a vertical slider and a circle,
and that we want the diameter of the circle to be dependent on the current value of the
slider. We may create such a unit by putting a formula in the :diameter slot of the circle
that depends on the value returned from the slider. Such an aggregadget is implemented
below. The formula in the :diameter slot of the circle uses the KR function gvl to access
the :value slot of the vertical slider.

(create-instance ’BALLOON opal:aggregadget

(:parts

‘((:slider ,gg:v-slider

(:left 10)

(:top 20))

(:circle ,opal:circle

(:diameter ,(o-formula (gvl :parent :slider :value)))

(:left 100) (:top 50)

(:width ,(o-formula (gvl :diameter)))

(:height ,(o-formula (gvl :diameter)))))))

8.61 Using the :selection-function Slot

In order to execute a function whenever any new value or item is selected (i.e., when the
:value slot changes), that function must be specified in the slot :selection-function.
Suppose we want a set of buttons which give us a choice of several ancient cities. We would
also like to define a function which displays a message to the screen when a new city is
selected. This panel can be created with the definitions below.

(create-instance ’MY-BUTTONS gg:text-button-panel

Chapter 8: Garnet Gadgets 561

(:selection-function #’Report-City-Selected)

(:items ’("Athens" "Babylon" "Rome" "Carthage")))

(defun Report-City-Selected (gadgets-object value)

(format t "Selected city: ~S~%~%" value)

(format t "Pressed button object ~S~%"

(gv gadgets-object :value-obj)))

8.62 Using Functions in the :items Slot

In order to execute a specific function when a specific menu item (or button) is selected,
the desired function must be paired with its associated string or atom in the :items list. A
menu which executes functions assigned to item strings appears below. Only one function
(My-Cut) has been defined, but the definition of the others is analogous.

(create-instance ’MY-MENU gg:menu

(:left 20)

(:top 20)

(:title "Menu")

(:items ’(("Cut" my-cut) ("Copy" my-copy) ("Paste" my-paste))))

(defun my-cut (gadgets-object item-string)

(format t "Function CUT called~%~%"))

8.63 Selecting Buttons

In order to directly select a button in a button panel (rather than allowing the user to select
the button with the mouse), either the :value or :value-obj slots may be set. However,
neither of these slots may be given values at the time that the button panel is created
(i.e., do not supply values in the create-instance call for these slots), since this would
permanently override the formulas in the slots.

The :value slot may be set with any of the items (or the first element in any of the item
pairs) in the :items list of the button panel. The example below shows how buttons on
a text-button-panel and an x-button-panel could be chapterly selected. In both cases, the
selected items (i.e., those appearing in the :value slot) will appear selected when the button
panels are displayed in a window.

(create-instance ’MY-TEXT-BUTTONS gg:text-button-panel

(:items ’(:left :center :right)))

(gv MY-TEXT-BUTTONS :value) ;; initialize the formula in the :value slot

(s-value MY-TEXT-BUTTONS :value :center)

(create-instance ’MY-X-BUTTONS gg:x-button-panel

(:items ’("Bold" "Underline" "Italic")))

(gv MY-X-BUTTONS :value) ;; initialize the formula in the :value slot

;; Value must be a list because x-buttons have multiple selection

(s-value MY-X-BUTTONS :value ’("Bold" "Underline"))

Buttons may also be selected by setting the :value-obj slot to be the actual button object
or list of button objects which should be selected. This method requires the designer to

Chapter 8: Garnet Gadgets 562

look at the internal slots of the button gadgets. The example below shows how the same
results may be obtained using this method as were obtained in the above example.

(create-instance ’NEW-TEXT-BUTTONS gg:text-buttons-panel

(:items ‘(:left :center :right)))

(s-value NEW-TEXT-BUTTONS

:value-obj

;; The second button corresponds to the item ":center"

(second (gv NEW-TEXT-BUTTONS :text-button-list :components)))

The :value slot of a single button will either contain the :string of the button or nil.
Single buttons will appear selected when the :value slot contains any non-NIL value.

8.64 The :item-to-string-function Slot

The :items slot of the scrolling menu may be a list of any objects at all, including the
standard items described in section [buttons], page 420. The mechanism which allows strings
to be generated from arbitrary objects is the user-defined :item-to-string-function. The
default scrolling menu will handle a list of standard items, but for a list of other objects a
suitable function must be supplied.

As discussed in section [items-slot], page 401, the elements of the :items list can be either
single atoms or lists. When an element of the :items list is a list, then the :item-to-

string-function is applied only to the first element in the list, rather than the list itself. In
other words, the :item-to-string-function takes the car of the item list as its parameter,
rather than the entire item list.

Suppose the list in the :items slot of the scrolling menu is

(list v-scroll-bar v-slider trill-device)

which is a list of Garnet Gadget schemas. A function must be provided which returns a
string identifying an item when given a schema as input. The following slot/value pair,
inserted into the definition of the new schema, will accomplish this task:

(:item-to-string-function #’(lambda (item)

(if item

(name-for-schema item) ;; imported from KR

"")))

563

9 Debugging Tools for Garnet Reference chapter

by Roger B. Dannenberg, Andrew Mickish, Dario Giuse

14 May 2020

9.1 Abstract

Debugging a constraint-based graphical system can be difficult because critical interdepen-
dencies can be hard to visualize or even discover. The debugging tools for Garnet provide
many convenient ways to inspect objects and constraints in Garnet-based systems.

9.2 Introduction

This chapter is intended for users of the Garnet system and assumes that the reader is
familiar with Garnet. Other reference chapters cover the object and constraint system
KR KRTR2, the graphics system Opal OpalCHAPTER, Interactors InterCHAPTER for
handling keyboard and mouse input, Aggregadgets AggregadgetsCHAPTER for making
instances of aggregates of Opal objects.

9.3 Notation in this Chapter

In the examples that follow, user type-in follows the asterisk (*), which is the prompt
character in CMU Common Lisp on the RT. Function results are printed following the
characters “-->”. This is not what CMU Common Lisp prints, but is added to avoid
confusion, since most debugging functions print text in addition to returning values:

* (some-function an-arg or-two)

some-function prints out this information,

which may take several lines

--> function-result-printed-here

9.4 Loading and Using Debugging Tools

Normally, debugging tools will be loaded automatically when you load the file
garnet-loader.lisp. Presently, the debugging tools are located in the files
debug-fns.lisp and objsize.lisp. A few additional functions are defined in the
packages they support.

Most of the debugging tools are in the GARNET-DEBUG package, and you should ordinarily
type

(use-package "GARNET-DEBUG")

to avoid typing the package name when using these tools. Functions and symbols mentioned
in this document that are not in the GARNET-DEBUG package will be shown with their full
package name.

9.5 Inspecting Objects

Chapter 9: Debugging Tools for Garnet Reference chapter 564

9.5.1 Inspector

The Inspector is a powerful tool that can be of significan help in debugging. It pops up a
window showing an object, and also shows the aggregate and is-a hierarchy for objects, and
the dependencies for formulas. Various operations can be performed on objects and slots.
In general, the Inspector is quite useful for debugging programs, and provides interfaces
to many of the other debugging functions in Garnet. A view of an object being inspected
in shown in Figure [inspectorfig], page 565.

Chapter 9: Debugging Tools for Garnet Reference chapter 565

Showing #k<TEXT-6508>

Show Object Show in New Re-Fetch Dependencies Done Done All

Flash Search Break Notify Clear Breaks Inherited Slots Objects

#k<TEXT-6508>

:IS-A = (#k<TEXT-6509>)
:LEFT - #k<F2975-4250-6074> (V) = 114
:TOP - #k<F2976-4252-6075> (V) = 7
:WIDTH - #k<F32-3310-3311-5501> (V) = 27
:HEIGHT - #k<F31-3333-3334-5511> (V) = 14
:VISIBLE - #k<F16-352-357-3277-3278-5448> (V) = T
:LINE-STYLE - #k<F2979-4254-6076> (V) = #k<OPAL:DEFAULT-LINE-STYLE>
:PARENT (C) = #k<MOTIF-BAR-ITEM-3024-5430>
:FONT - #k<F2977-3327-5508> (V) = #k<FONT-192>
:KNOWN-AS (C) = :TEXT
:STRING - #k<F2978-3313-5502> (V) = "Size"
:UPDATE-INFO = #<Update-Info dirty-p NIL invalid-p NIL>
:WINDOW = #k<DEMO-MULTIFONT::WIN>

Figure 9.1: The Inspector showing a text object.

The Inspector is loaded automatically when you load the debugging tools which is en-
abled by default in garnet-loader, but it can also be loaded explicitly using (garnet-load

"debug:inspector") The Inspector is in the garnet-debug package.

Chapter 9: Debugging Tools for Garnet Reference chapter 566

An example of using the Inspector is included in the Tutorial at the beginning of this
Reference chapter.

9.5.2 Invoking the Inspector

There are a number of ways to inspect objects. The easiest is to put the mouse over an
object and hit the HELP keyboard key. This will print a message in the Lisp listener window
and pop up a window like Figure [inspectorfig], page 565. If you want to use the HELP

keyboard key for something else, you can set the variable garnet-debug:*inspector-key*
to a different key (or nil for none) before loading the Inspector.

Alternatively, you can explicitly invoke the Inspector on an object using either

garnet-debug:Inspector <obj> [function], page 90

gd:Inspector <obj>

(gd is an abbreviation for garnet-debug).

To inspect the next interactor that runs, you can hit CONTROL-HELP on the keyboard (the
mouse position is irrelevant), or call the function

gd:Inspect-Next-Inter [function], page 90

Hitting CONTROL-HELP a second time before an interactor runs will cancel the
invocation of the Inspector. To change the binding of this function, set the variable
gd:*inspector-next-inter-key* before loading the Inspector.

By default, SHIFT-HELP is bound to a little function that simply prints the object under
the mouse to the Lisp Listener, and does not invoke the Inspector. Example output from
it is:

--> (24,96) = #k<MULTIFONT-LINE-1447> in window #k<INTERACTOR-WINDOW-1371>

--> No object at (79,71) in window #k<INTERACTOR-WINDOW-1371>

To change the binding of this function, use the variable

9.5.3 Schema View

The schema view shown in Figure [inspectorfig], page 565, tells all the local slots of an
object. To see the inherited slots also, click on the Inherited Slots button. For each slot,
the display is:

The slot name.

A (C) if the slot is constant.

An (I) if the slot is inherited.

The formula for the slot, if any.

If there is a formula, then a (V) if the slot value is valid, otherwise a (IV) for invalid.

The current value of the slot, which may wrap to multiple lines if the value is long.

The entire line is red if the slot is a parameter to the object (if it is in the :parameters
list), otherwise the line is black.

If the object’s values change while it is being inspected, the view is not updated automati-
cally. To see the current value of slots, hit the "Re-Fetch" button.

Chapter 9: Debugging Tools for Garnet Reference chapter 567

To change the value of a slot of an object, click in the value part of the slot (after the
=), and edit the value to the desired value and hit return. The object will immediately
be updated and the Inspector display will be re-fetched. If you change your mind about
editing the value before hitting return, simply hit control-g. If you try to set a slot which
is marked constant, the Inspector will go ahead and set the slot, but it gives you a warning
because often dependencies based on the slot will no longer be there, so the effect of setting
the slot may not work.

If a slot’s value is an object and you want to inspect that object, or if you want to inspect
a formula, you can double-click the left button over the object name, and hit the "Show

Object" button. Also, you can use the "Show in New" button if you want the object to be
inspected in a new window.

9.5.4 Object View

Hitting the "Objects" button brings up the view in Figure [inspectorobjects], page 568.
This view shows the name of the object being inspected at the top, then the is-a hierar-
chy. In Figure [inspectorobjects], page 568, TEXT-6509 is the immediate prototype of the
inspected object (TEXT-6508), and TEXT-7180 is the prototype of TEXT-6509, and so on.
The next set of objects shows the aggregate hierarchy. Here, TEXT-6508 is in the aggregate
MOTIF-BAR-ITEM-3024-5430, etc. The last item in this list is always the window that the
object is in (even though that is technically not the :parent of the top-level aggregate).
The final list is simply the list of objects that have been viewed in this window, which forms
a simple history of views.

Chapter 9: Debugging Tools for Garnet Reference chapter 568

Showing #k<TEXT-6508>

Show Object Show in New Re-Fetch Dependencies Done Done All

Flash Search Break Notify Clear Breaks Inherited Slots Objects

#k<TEXT-6508>

For #k<TEXT-6508> :

IS-A hierarchy:
 #k<TEXT-6509>
 #k<TEXT-7180>
 #k<OPAL:TEXT>
 #k<OPAL:GRAPHICAL-OBJECT>
 #k<OPAL:VIEW-OBJECT>

Aggregate hierarchy (:parent slot):
 #k<MOTIF-BAR-ITEM-3024-5430>
 #k<MENUBAR-ITEMS-7179>
 #k<DEMO-MULTIFONT::PULL-DOWN>
 #k<DEMO-MULTIFONT::TOP>
 #k<DEMO-MULTIFONT::WIN>

Objects Shown in This Window:
 #k<TEXT-6508>

Figure 9.2: The Inspector showing the objects related to the text object of Figure
[inspectorfig], page 565.

To return to the schema view of the current object, use the "Re-Fetch" button. You can
double-click on any object and use "Show Object" or "Show in New" to see its fields, or you
can hit "Objects" to go to the object view of the selected object.

Chapter 9: Debugging Tools for Garnet Reference chapter 569

9.5.5 Formula Dependencies View

If you select a formula or a slot name (by double-clicking on it) and then hit the
"Dependencies" button, you get the view of Figure [inspectordepfig], page 570. This
slows the slots used in calculating the value in the formula.

Chapter 9: Debugging Tools for Garnet Reference chapter 570

Showing #k<TEXT-6508>

Show Object Show in New Re-Fetch Dependencies Done Done All Flash Search

Break Notify Clear Breaks Inherited Slots Objects

#k<TEXT-6508>

Slot :VISIBLE of #k<TEXT-6508> (formula = #k<F16-352-357-3277-3278-5448>) = T:
Expression = (LET ((OPAL::PARENT (GVL :PARENT)))
 (OR (NULL OPAL::PARENT) (GV OPAL::PARENT :VISI
 (OR (NULL OPAL::PARENT) (GV OPAL::PARENT :VISIBLE)))
Dependencies:
 :VISIBLE of #k<MOTIF-BAR-ITEM-3024-5430> = T
 :VISIBLE of #k<MENUBAR-ITEMS-7179> = T
 :VISIBLE of #k<DEMO-MULTIFONT::PULL-DOWN> = T
 ...
 :PARENT of #k<MOTIF-BAR-ITEM-3024-5430> = #k<MENUBAR-ITEMS-7179>

Figure 9.3: The Inspector showing the dependencies of the :visible slot of the object
shown in Figure [inspectorfig], page 565.

The first lines show the object, the slot, the formula name, and the expression of the formula.
Then the dependencies are shown. The outer-most level of indenting are those slots that
are immediately used by the formula. In this case, the :visible slot of #k<MOTIF-BAR-

Chapter 9: Debugging Tools for Garnet Reference chapter 571

ITEM-3024-5430>. Note that only non-constant slots are shown, which is why the :parent
slot of TEXT-6508 is not listed (it is constant). Indented underneath each slot are the
slots it depends on in turn, so :visible of #k<MOTIF-BAR-ITEM-3024-5430> depends on
its :parent and its parent’s :visible. The "..." means that there are more levels of
dependencies. To see these, you can double click on the "..." or on any slot name and hit
the "Dependencies" button.

9.5.6 Summary of Commands

double-clicking the left button on an object or slot will select it, and it will then
be the parameter for further commands.

single-clicking the left button after the = will let you edit the value. Hit return
to set the value or control-g to abort.

Show Object - displays the selected object in the same window.

Show in New - displays the selected object in a new window.

Re-Fetch - redisplay the current object, and re-fetch the values of all slots, in
case any have changed. This command is also used to get back to the schema
view from the object or dependency views.

Dependencies - when a formula or a slot containing a formula is selected,
then shows the slots that are used to calculate it (see section [dependencysec],
page 569).

Done - get rid of this Inspector window.

Done All - get rid of all Inspector windows.

Flash - if an object is selected, flash it, otherwise flash the current object being
inspected. The object is flashed by bringing its window to the top and putting
an XOR rectangle over it (using the function gd:flash).

Search - Find a slot of the object and display it at the top of the list. This helps
you find slots in a long list, and it will find inherited slots, so you don’t have
to hit Inherited Slots and get the whole list when you are only interested in
one slot. After hitting the Search button, you will be prompted for the slot
name, and you can type in a few letters, hit RETURN, and the Inspector will
try to fill out the name based on all current slots of the object.

Notify - If a slot is selected, then will print a message in the Inspector and
in the Lisp Listener window whenever the selected slot of the object is set. If
no slot is selected, then will print a message whenever any slot of the object
is set. You can be waiting for a Notify or Break on multiple slots of multiple
objects at the same time. Note that execution is much slower when there are
any Breaks or Notifies in effect.

Break - If a slot is selected, then will break into the debugger whenever the
selected slot of the object is set. If no slot is selected, then will break into the
debugger whenever any slot of the object is set. You should go to your Lisp
Listener window to handle the break, and then continue from the break (rather
than aborting or popping from the break). The Inspector will not operate
while you are in the debugger unless you type (inter:main-event-loop).

Chapter 9: Debugging Tools for Garnet Reference chapter 572

Clear Breaks - Clear all the breaks and notifies. All Breaks and Notifies are
also cleared when you hit the Done or Done All buttons. There is no interface
for clearing a single break or notify.

Inherited Slots - Toggle the display of inherited slots in the schema view.

Objects - Switch to the object view that shows the is-a and aggregate hierarchy
(see section [inspectobjects], page 567).

9.6 PS – Print Schema

The same information that is shown in the Inspector for an object’s slots and values can be
printed with the simpler kr:ps. This function does not create a new window to show the
information, but instead prints right into the lisp listener.

kr:PS object &key types-p all-p (control T) (inherit NIL) [function], page 90

(indent 0) (stream *standard-output*)

(All the nuances of this function are described in the KR chapter.)

9.7 Look, What, and Kids

For quick inspection of objects, the look, what, and kids functions may be used:

gd:Look object &optional (detail 2)[function], page 90

gd:What object[function], page 90

gd:Kids object[function], page 90

The look function prints out varying amounts of information about an object, depending
upon the optional argument detail :

(look obj 0) prints a one-line description of obj. This is equivalent to calling (what

obj).

(look obj 1) prints a one-line description of obj and also shows the immediate com-
ponents of obj if it is an aggregate. This form is equivalent to calling (kids obj).

(look obj 2) recursively prints all components of obj. This is the default, equivalent
to typing (look obj). Use it to look at the structure of an aggregate.

(look obj 3) prints slots of obj, using ps, and then prints the tree of components.

(look obj 4) prints slots of obj and its immediate components. Any (trees of) sub-
components are also printed.

(look obj 5) prints what is essentially complete information about a tree of objects,
including all slots of all components.

For example,

* (what mywindow)

#k<MYWINDOW> is-a #k<INTERACTOR-WINDOW> (WINDOW)

--> NIL

* (look mywindow)

#k<MYWINDOW> is-a #k<INTERACTOR-WINDOW> (WINDOW)

#k<MYAGG> is-a #k<AGGREGATE> (VIEW-OBJECT)

#k<MYRECT> is-a #k<MOVING-RECTANGLE> (RECTANGLE)

#k<MYTEXT> is-a #k<CURSOR-MULTI-TEXT> (MULTI-TEXT)

--> NIL

Chapter 9: Debugging Tools for Garnet Reference chapter 573

9.8 Is-A-Tree

Look prints the parent of the object and then the “standard parent” The “standard parent”
is the first named object encountered traveling up the :is-a tree. If look does not print
enough information about an object, the is-a-tree function might be useful:

gd:Is-A-Tree[function], page 90

This function traces up :is-a links and prints the resulting tree:

* (is-a-tree mytext)

#k<MYTEXT> is-a

#k<CURSOR-MULTI-TEXT> is-a

#k<MULTI-TEXT> is-a

#k<TEXT> is-a

#k<GRAPHICAL-OBJECT> is-a

#k<VIEW-OBJECT>

--> NIL

9.9 Finding Graphical Objects

It is often necessary to locate a graphical object or figure out why a graphical object is not
visible.

gd:Where object[function], page 90

prints out the object ’s :left, :top, :width, :height, and :window in a one-line format.

* (where mywindow)

#k<MYWINDOW> :TOP 43 :LEFT 160 :WIDTH 355 :HEIGHT 277

--> NIL

* (where myagg)

#k<MYAGG> :TOP 20 :LEFT 80 :WIDTH 219 :HEIGHT 150 :WINDOW #k<MYWINDOW>

--> NIL

If you are not sure which screen image corresponds with a particular Opal object, use the
following function:

gd:Flash object[function], page 90

The flash function will invert the bounding box of object making the object flash on and
off. flash has two interesting features:

You can flash aggregates, which are otherwise invisible.

If the object is not visible, flash will try hard to tell you why not. Possible reasons
include:

The object does not have a window,

The window does not have an aggregate,

The object is missing a critical slot (e.g. :left),

The object is outside of its window,

The object’s :visible slot is nil,

The aggregate containing the object is not visible, or

The object is outside of its aggregate (a problem with the aggregate).

Chapter 9: Debugging Tools for Garnet Reference chapter 574

Flash does not test to see if the object is obscured by another window. If flash does not
complain and you do not see any blinking, use where to find the object’s window. Then
use where (or flash) applied to the window to locate the window on your screen. Bring
the window to the front and try again.

The invert function is similar to flash, but it leaves the object inverted. The uninvert

function will undo the effect of invert:

gd:Invert object[function], page 90

gd:Uninvert object[function], page 90

invert uses a single Opal rectangle to invert an area of the screen. If the rectangle is in
use, it is first removed, so at most one region will be inverted at any given time. Unlike,
flash, invert depends upon Opal, so if Opal encounters problems with redisplay, invert
will not work (see fix-up-window in Section [fix-up-windows], page 578).

The previous functions are only useful if you know the name of a graphical object. To
obtain the name of an object that is visible on the screen, use:

gd:Ident[function], page 90

Ident waits for the next input event and reports the object under the mouse at the time
of the event. In addition to printing the leaf object under the mouse, ident runs up
the :parent links and prints the chain of aggregates up to the window. Some interesting
features to note are:

ident will report a window if you do not select an object.

ident returns a list1 in the form (object window x y code) so you can then use the
selection in another expression, e.g. (kr:ps (car (ident))). Object will be nil if
none was selected.

ident also prints the input event and mouse location. For instance, use ident if you
want to know the Lisp name for the character transmitted when you type the key
labeled “Home” on your keyboard or to tell you the window coordinates of the mouse.

Another way to locate

gd:Windows[function], page 90

which prints a list of Opal windows and their locations. The list of windows is returned.
Only mapped windows are listed, so windows will only report a window that has been
opal:update’d.

* (windows)

#k<MYWINDOW> :TOP 43 :LEFT 160 :WIDTH 355 :HEIGHT 277

#k<DEMO-GROW::VP> :TOP 23 :LEFT 528 :WIDTH 500 :HEIGHT 300

--> (#k<DEMO-GROW::VP> #k<MYWINDOW>)

9.10 Inspecting Constraints

Formulasnot always help when formulas and objects are inherited and/or created at run
time. To make dependencies explicit, the explain-slot

gd:Explain-Slot object slot[function], page 90

1 A list is returned rather than a multiple value because multiple values print out on multiple lines in CMU
Common Lisp, taking too much screen space when ident is used interactively.

Chapter 9: Debugging Tools for Garnet Reference chapter 575

explain-slot will track down all dependencies of object ’s slot and prints them. Indirect
dependencies that occur when a formula depends upon the value of another formula are
also printed. The complete set of dependencies is a directed graph, but the printout is tree-
structured, representing a depth-first traversal of the graph. The search is cut off whenever
a previously visited node is encountered. This can represent either a cycle or two formulas
with a common dependency.

In the following example, the :top of mytext depends upon the :top of myrect which in
turn depends upon its own :box slot:

* (explain-slot mytext :top)

#k<MYTEXT>’s :TOP is #k<F2449> (20 . T),

which depends upon:

#k<MYRECT>’s :TOP is #k<F2439> (20 . T),

which depends upon:

#k<MYRECT>’s :BOX is (80 20 100 150)

--> NIL

When explain-slot is too verbose, a non-recursive version can be used:

gd:Explain-Short object slot[function], page 90

For example:

* (explain-short mytext :top)

#k<MYTEXT>’s :TOP is #k<F2449> (20 . T),

which depends upon:

#k<MYRECT>’s :TOP is #k<|1803-2439|> (20 . T),

...

--> NIL

Warning: explain-slot and explain-shortmay produce incorrect results in the following
ways:

Both explain-slot and explain-short rely on dependency pointers maintained for
internal use by KR. In the present version, KR sometimes leaves dependencies around
that are no longer current. This is not a bug because, at worst, extra dependencies only
cause formulas to be reevaluated unnecessarily. However, this may cause explain-slot
or explain-short to print extra dependencies.

Formulas may access slots but not use the values. This will create the appearance of a
dependency when none actually exists.

Formulas that that try to follow a null link,(gv :self :feedback-obj :top) where
:feedback-obj is nil, may be marked as invalid and have their dependency lists
cleared. explain-slot and explain-short will detect this case and warn you if it
happens.

9.11 Choosing Constant Slots

Since the use of constants can significantly reduce the storage requirements and execution
time of an application, we have provided several new functions that help you to choose
which slots should be declared constant. The following functions are used in conjunction
to identify slots that are candidates for constant declarations.

Chapter 9: Debugging Tools for Garnet Reference chapter 576

9.11.1 Suggest-Constants

gd:Record-From-Now[function], page 90

gd:Suggest-Constants object &key max (recompute-p T) (level 1)[function],

page 90

To use these functions, bring up the application you want to analyze, and execute
record-from-now. Exercise all the parts and gadgets of the interface that are expected
to be operated during normal use, and then call suggest-constants. Information will
be printed out that identifies slots which, if declared constant, would cause dependent
formulas to be replaced by their actual values.

Keep in mind that it is usually not necessary to declare every reported slot constant. Many
formulas will become constant if they depend on constant slots. For example, declaring
many of the parameters of a gg:text-button-panel constant in the top-level gadget is
sufficient to eliminate the internal formulas that depend on them.

Also, it is important to exercise all parts of the application in order to get an accurate list of
constant slot candidates. If you forget to operate a certain button while recording, slots may
be suggested that would cause the button to become inoperable, since suggest-constants
would assume it was a static object.

Suggest-constants will tell you if a potential slot is in the object’s :maybe-constant list.
When the slot is in this list, then it can be declared constant by supplying the value of T
in the :constant list. As you add constants, though, you may want to carefully name each
slot individually in the :constant list to avoid erroneous constant declarations.

The parameters to suggest-constants are used as follows:

object - This can be any Garnet object, but it is usually a window or its top-level
aggregate. The function examines formulas in object and all its children.

max - This parameter controls how many constant slot candidates are printed
out. The default is to print all potential constant slots that are found in object
and all its children.

recompute-p - Set this parameter to nil if you do not need to reexamine all the
objects and you trust what was computed earlier (the same information that
was printed out before will be printed out again, without checking that it is
still valid).

level - The default value of level, which is 1, causes the function to print only
slots which would, by themselves, eliminate some formula. If level is made
higher, slots will be printed that may not eliminate formulas by themselves,
but will at least eliminate some dependencies from the formulas that remain.

For example, consider a formula that depends on slots A and B. Declaring
constant either A or B alone would not eliminate the formula, so with level
set to 1, slots A and B would not be suggested by suggest-constants. Set-
ting level to 2, however, will printe both A and B, since the combination of
the two slots would indeed eliminate a formula. Higher values of level make
suggest-constants print out formulas that are less and less likely to eliminate
formulas.

Chapter 9: Debugging Tools for Garnet Reference chapter 577

9.12 Explain-Formulas and Find-Formulas

gd:Explain-Formulas aggregate &optional (limit 50) eliminate-useless-p[function],

page 90

Explain-formulas is used to analyze all the formulas that were not evaluated since the last
call to record-from-now. These formulas might have been evaluated when the application
was first created, to position the objects appropriately, but are not a dynamic part of
the interface, and are thus candidates for constant declarations. If the eliminate-useless-p
option is non-NIL, then formulas that are in fact unnecessary (i.e., would go away if they
were recomputed) are actually eliminated immediately.

gd:Find-Formulas aggregate &optional (only-totals-p T) (limit 50) from[function],

page 90

If the function find-formulas is called with a non-NIL only-totals-p option, it will print
out the total number of formulas that have not been reevaluated since the last call to
record-from-now. If only-totals-p is nil and limit is specified, it will print out at most
limit formula names. If limit is nil, all formula names will be printed out.

You will seldom need to specify the from parameter. This allows you to print out formulas
that have been unevaluated since from. The default value is the number returned by the
last call to record-from-now; specifying a smaller number reduces the number of formulas
that are printed out, since formulas that were evaluated earlier are discarded.

9.13 Count-Formulas and Why-Not-Constant

gd:Count-Formulas object[No value for ‘‘function’’]

Count-formulas will print a list of all existing formulas in object and all its children. It is
important to note that formulas are not copied down into an object until they are specifically
requested by a g-value or gv call. Thus, you may not get an accurate count of the real
number of formulas in an object until you exercise the object in its intended way. For
example, if a prototype A has a formula in its :left slot and you count the formulas in
B, an instance of A, before asking for B’s :left slot, then B’s :left formula will not be
counted, because it has not been copied down yet.

gd:Why-Not-Constant object slot[No value for ‘‘function’’]

This function is extremely useful when you are trying to get rid of formulas by declaring
constant slots. If count-formulas tells you that formulas still exist in your application
that you think should go away due to propagation of constants, then you can call why-not-
constant on a particular slot to find out what its formula depends on. The function will
print out a list of dependencies for the formula in the slot, which will give you a hint about
what other slot could be declared constant to make this formula go away.

9.14 Noticing when Slots are Set

It is often useful to be notified when a slot of an object is set, so now we provide a set of
debugging functions that do this. There is also an interface to these functions through the
Inspector (section [inspectorsec], page 564) which makes them more convenient to use.

Chapter 9: Debugging Tools for Garnet Reference chapter 578

Note that the implementation of this is very inefficient and is intended only for debugging.
Don’t use this as general-purpose demon technique since a search is performed for every
formula evaluation and every slot setting when any notifies or breaks are set.

gd:Notify-On-Slot-Set &key object slot value [function], page 90

This will print out a message in the Lisp Listener window whenever the appropriate slot is
set. If a value is supplied, then only notifies when the slot is set to that particular value.
If an object is provided, then only notifies when a slot of that object is set. If no object is
supplied, then notifies whenever any object is set. If a slot is provided, then only notifies
when that slot is set. If no slot is supplied, then notifies whenever any slot is set. If object
is nil, then clears all breaks and notifies. If all parameters are missing, then shows current
status. For example,

(gd:Notify-On-Slot-Set :object obj :slot :left) ;notify when :left of obj set

(gd:Notify-On-Slot-Set :object obj :slot :left :value 0) ;notify when :left of obj set to 0

(gd:Notify-On-Slot-Set :value NIL) ;notify when any slot of any obj set to NIL

(gd:Notify-On-Slot-Set :object obj) ;notify when any slot of obj set

Each call to Notify-On-Slot-Set adds to the previous list of breaks and notifies, unless
the object is nil. You can use clear-slot-set to remove a break or notify (see below).

gd:Break-On-Slot-Set &key object slot value [function], page 90

Same as Notify-On-Slot-Set, but breaks into the debugger when the appropriate slot is
set.

gd:Call-Func-On-Slot-Set object slot value fnc extra-val [function],

page 90

This gives you more control, since you get to supply the function that is called when the
appropriate slot is set. The parameters here are not optional, so if you don’t want to specify
the object, slot or value, use the special keyword :*any*. The function fnc is called as:

(lambda (obj slot val reason extra-val))

where the slot of obj is being set with val. The reason explains why the slot is being
set and will be one of :s-value, :formula-evaluation, :inheritance-propagation or
:destroy-slot. Extra-val can be anything and is the same value passed into Call-Func-

On-Slot-Set.

gd:Clear-Slot-Set &key object slot value [function], page 90

Clear the break or notify for the object, slot and value. If nothing is specified or object is
nil, then clears all breaks and notifies.

9.15 Opal Update Failures

Opal assumes that graphical objects have valid display parameters such as :top or :width.
If a parameter is computed by formula and there is a bug, the problem will often cause an
error within Opal’s update function.

A "quarantine slot" named :in-progress exists in all Garnet windows. If there was a
crash during the last update of the window, then the window will stop being updated
automatically along with the other Garnet windows, until you can fix the problem and
update the window successfully. The quarantine slot is discussed in detail in the Opal
Chapter.

Chapter 9: Debugging Tools for Garnet Reference chapter 579

There are several ways to proceed after an update failure. The first and easiest action is to
run opal:update with the optional parameter t:

(opal:update window t)

This forces opal:update to do a complete update of window as opposed to an incremental
update. This may fix your problem by bringing all slots up-to-date and expunging previous
display parameters.

Another possibility is, after entering the debugger, call

gd:Explain-NIL[function], page 90

This functionwill check to see if a formula tried to follow a null link (a typical cause of
Opal object slots becoming nil). If so, the object and slot associated with the formula will
be printed followed by objects and slots on which the formula depends2. One of the slots
depended upon will be the null link that caused the formula to fail.

Warning: explain-nil will always attempt to describe the last formula that failed due
to a null link since the last time explain-nil was evaluated. This may or may not be
relevant to the bug you are searching for. The last error is cleared every time explain-nil
is evaluated to reduce confusion over old errors. If there has been no failure, explain-nil
will print

No errors in formula evaluation detected

A third possibility is to run

[Function]gd:fix-up-window window
on the window in question. (You may want to use windows to find the window
object.) fix-up-window will do type checking without attempting a redisplay. If an
error is detected, fix-up-window will allow you to interactively remove objects with
problems from the window.

After fixing the problem that caused update to crash, you should be able to do a
successful total update on the window (discussed above). A successful total update
will clear the quarantine slot, and will allow interactions to take place in the window
normally.

9.16 Inspecting Interactors

9.17 Tracing

A common problem is to create some graphical objects and an interactor but to discover that
nothing happens when you try to interact with the program. If you know what interactor
is not functioning, then you can trace its behavior using the function

inter:Trace-Inter interactor[function], page 90

2 Explain-nil does not use the same technique for finding dependencies as explain-slot, which uses forward
pointers from the formula’s :depends-on slot. Since :depends-on is currently cleared when a null link
is encountered, explain-nil uses back pointers from the objects back to the formula. These are in the
:depended-upon slot of objects. To locate the back pointers, explain-nil searches for all components of
all Opal windows. Only objects in windows are searched, so dependencies on non-graphical objects will be
missed.

Chapter 9: Debugging Tools for Garnet Reference chapter 580

This function enables some debugging printouts in the interactors package that should help
you determine what is wrong. A set of things to trace is maintained internally, so you can
call inter:trace-inter several times to trace several things. In addition to interactors,
the parameter can be one of:

t — trace everything.

NIL — untrace everything, same as calling inter:untrace-inter.

:window — trace things about interactor windows such as create and destroy oper-
ations.

:priority-level — trace changes to priority levels.

:mouse — trace set-interested-in-moved and ungrab-mouse.

:event — show all events that come in.

:next — start tracing when the next interactor runs, and trace that interactor.

:short — report only the name of the interactor that runs, so that the output is
much less verbose. This is very useful if you suspect that more than one interactor is
accidentally running at a time.

Tracing any interactor will turn on :event tracing by default. Call (inter:untrace-inter
:event) (see below) to stop :event tracing.

Just typing

(inter:trace-inter)

will print out the interactors currently being traced.

inter:Untrace-Inter interactor[function], page 90

can be used to selectively stop tracing a single interactor or other category. You can also
pass t or nil, or no argument to untrace to stop all tracing:

(inter:untrace-inter)

9.18 Describing Interactors

If you are not debugging a particular interactor, there are a few ways to proceed other than
wading through a complete interactor trace. First, you can find out what interactors are
active by calling:

gd:Look-Inter &optional interactor-or-object detail[function], page 90

The parameter interactor-or-object can be:

NIL to list all active interactors (see below),

an interactor to describe,

a window, to list all active interactors on that window,

an interactor priority-level, to list all active interactors on that level,

a graphical object, to try to find all interactors that affect that object,

:next to wait and describe the next interactor that runs

With no arguments (or nil as an argument), look-inter will print all active interactors
(those with their :active and :window slots set to something) sorted by priority level

* (look-inter)

Chapter 9: Debugging Tools for Garnet Reference chapter 581

Interactors that are :ACTIVE and have a :WINDOW are:

Level #k<RUNNING-PRIORITY-LEVEL>:

Level #k<HIGH-PRIORITY-LEVEL>: #k<DEMO-GROW::INTER2>

Level #k<NORMAL-PRIORITY-LEVEL>: #k<MYTYPER> #k<MYMOVER> #k<DEMO-GROW::INTER3>

#k<DEMO-GROW::INTER4> #k<DEMO-GROW::INTER1>

--> NIL

If detail is 1, look-inter will show the :start-event and :start-where of each active
interactor:

* (look-inter 1)

Interactors that are :ACTIVE and have a :WINDOW are:

Level #k<RUNNING-PRIORITY-LEVEL>:

Level #k<HIGH-PRIORITY-LEVEL>: #k<DEMO-GROW::INTER2>

Level #k<NORMAL-PRIORITY-LEVEL>: #k<MYTYPER> #k<MYMOVER> #k<DEMO-GROW::INTER3>

#k<DEMO-GROW::INTER4> #k<DEMO-GROW::INTER1>

#k<DEMO-GROW::INTER2> (MOVE-GROW-INTERACTOR)

starts when :LEFTDOWN (:ELEMENT-OF #k<AGGREGATE-164>)

#k<MYTYPER> (TEXT-INTERACTOR)

starts when :RIGHTDOWN (:IN #k<MYTEXT>)

#k<MYMOVER> (MOVE-GROW-INTERACTOR)

starts when :LEFTDOWN (:IN #k<MYRECT>)

#k<DEMO-GROW::INTER3> (MOVE-GROW-INTERACTOR)

starts when :MIDDLEDOWN (:ELEMENT-OF #k<AGGREGATE-136>)

#k<DEMO-GROW::INTER4> (MOVE-GROW-INTERACTOR)

starts when :RIGHTDOWN (:ELEMENT-OF #k<AGGREGATE-136>)

#k<DEMO-GROW::INTER1> (BUTTON-INTERACTOR)

starts when :LEFTDOWN (:ELEMENT-OF-OR-NONE #k<AGGREGATE-136>)

--> NIL

To get information about a single interactor, pass the interactor as a parameter:

* (look-inter mymover)

#k<MYMOVER>’s :ACTIVE is T, :WINDOW is #k<MYWINDOW>

#k<MYMOVER> is on the #k<NORMAL-PRIORITY-LEVEL> level

#k<MYMOVER> (MOVE-GROW-INTERACTOR)

starts when :LEFTDOWN (:IN #k<MYRECT>)

--> NIL

In some cases you need to know what interactor will affect a given object (perhaps located
using the ident function). This is not possible in general since the object(s) an interactor
changes may be referenced by arbitrary application code. However, if you use interactors in
fairly generic ways, you can call look-inter with a graphical object as argument to search
for relevant interactors:

* (look-inter myrect)

#k<MYMOVER>’s :start-where is (:IN #k<MYRECT>)

--> NIL

* (look-inter mytext)

#k<MYTYPER>’s :start-where is (:IN #k<MYTEXT>)

--> NIL

Chapter 9: Debugging Tools for Garnet Reference chapter 582

The search algorithm used by look-inter is fairly simple: the current value of :start-where
is interpreted to see if it could refer to the argument. Then the :feedback-obj and
:obj-to-change slots are examined for an exact match with the argument. If formulas
are encountered, only the current value is considered, so there are a number of ways in
which look-inter can fail to find an interactor.

9.19 Sizes of Objects

Several functions are provided to help make size measurements of Opal objects and aggre-
gates.

gd:ObjBytes object[function], page 90

will measure the size of a single Opal object or interactor in bytes.

gd:AggBytes aggregate &optional verbose[function], page 90

will measure the size of an Opal aggregate and all of its components in bytes. The first
argument may also be a list of aggregates, a window, or a list of windows. For example, to
compute the total size of all graphical objects, you can type this:

(aggbytes (windows))

The output will include various statistics on size according to object type. Sizes are printed
in bytes, and the returned value will be the total size in bytes. The size information does not
include any interactors because interactors can exist independent of the aggregate hierarchy.
The optional verbose flag defaults to t; setting it to nil will reduce the detail of the printed
information.

gd:InterBytes &interactor window verbose[function], page 90

will report size information on the interactors whose :window slot currently contains the
specified window. If the window parameter is omitted, t or nil, then the size of all inter-
actors is computed. (Use objsize for a single interactor.) Note that an interactor may
operate in more than one window and that interactors can follow objects from window to
window. As with aggbytes, the verbose flag defaults to t; setting it to nil will reduce the
detail of the printed information.

gd:*Avoid-Shared-Values*〈undefined〉 [variable], page 〈undefined〉
Normally, aggbytes does not consider the fact that list structures may be shared, so shared
storage is counted multiple times. To avoid this (at the expense of using a large hash table),
set avoid-shared-values to t.

gd:*Avoid-Equal-Values*〈undefined〉 [variable], page 〈undefined〉
To measure the potential for sharing, set this variable to t. This will do hashing using
#’equal so that equal values will be counted as shared instead of #’eq, which measures
actual sharing.

gd:*Count-Symbols*〈undefined〉 [variable], page 〈undefined〉
Ordinarily, storage for object names is not counted as part of the storage for objects. By
setting this variable for true, the sizes reported by objbytes and aggbytes will include this
additional symbol storage overhead.

Note: Size information for an object includes the size of any attached formulas. At present,
only objects and cons cells are counted. Storage for structures (other than KR schema),
strings, and arrays is not counted.

Chapter 9: Debugging Tools for Garnet Reference chapter 583

〈undefined〉 [References], page 〈undefined〉,

584

10 Demonstration Programs for Garnet

by Brad A. Myers, Andrew Mickish

14 May 2020

10.1 Abstract

This file contains an overview of the demonstration programs distributed with the Garnet
toolkit. These programs serve as examples of what Garnet can do, and also of how to write
Garnet programs.

10.2 Introduction

Probably the best way to learn about how to code using the Garnet Toolkit is to look at
example programs. Therefore, we have provided a number of them with the Toolkit release.
In addition, you can load and run the demos to see what kinds of things Garnet can do.

The “best” example program is demo-editor, which is included in this technical report.
The other example programs serve mainly to show how particular special features of Garnet
can be used.

Unfortunately, many of the demonstration programs were implemented before important
parts of the Garnet Toolkit were implemented. For example, many of the demos do not
use Aggregadgets and Aggrelists. These particular demos are not good examples of how we
would code today. Hopefully, we will soon re-code all of these old demos using the newest
features, but for the time being, you will probably only want to look at the code of the
newer demos.

This document provides a guide to the demo programs, what they are supposed to show,
and whether they are written with the latest style or not.

10.3 Loading and Compiling Demos

If for some reason the demos were not compiled during the standard installation procedure
discussed in the Overview chapter, you can compile just the demos by executing (garnet-
load "demos-src:demos-compiler"). This will generate new binaries for the demos, which
will need to be copied from the src/demos/ directory into your bin/demos directory.

Normally, the demonstration programs are not loaded by the standard Garnet loader. The
best way to view the demos is to load the garnet-loader as usual and then load the Demos
Controller:

(garnet-load "demos:demos-controller")

(demos-controller:do-go)

This will load the controller itself, but not any of the demos. It will display a window with
a set of check buttons in it. Just click with the mouse on a button, and the corresponding
demo will be loaded and started. Clicking on the check box again will stop the demo.
Clicking again will restart it (but not re-load it). An instruction window will appear at the
bottom of the screen with the instructions for the last demo started.

The demos-controller application features the gg:mouseline gadget. When you keep
the mouse still over one of the x-buttons for about 2 seconds, a window will pop up with a

Chapter 10: Demonstration Programs for Garnet 585

short description of the corresponding demo. For more information about this gadget, see
the appropriate section of the Gadgets Chapter.

Using the demos-controller causes each demo file to be loaded as it is needed. If you
wanted to load all of the demos at once (whether you eventually planned to use the
demos-controller or not), you could set user::load-demos-p to be T before loading
garnet-loader, or execute load Garnet-Demos-Loader.

All of the demos described here are in the sub-directory demos.

10.4 Running Demo Programs

To see a particular demo program, it is not necessary to use the Demos Controller de-
scribed in section [loadingandcompilingdemos], page 584. Instead, the file can be loaded
and executed by itself.

Almost all of the demonstration programs operate the same way. Once a file demo-xxx is
loaded, it creates a package called demo-xxx. In this package are two procedures – do-go

to start the demo and do-stop to stop it. Therefore, to begin a demo of xxx, you would
type: (demo-xxx:do-go). The do-stop procedure destroys the window that the demo is
running in. You can load and start as many demos as you like at the same time. Each will
run in its own separate window.

The do-go procedure will print instructions in the Lisp window about how to operate the
demonstration program.

Demos for the individual gadgets are all in the garnet-gadgets package and have unique
names. Section [gadgetdemos], page 589, describes how to see these demos.

10.5 Double-Buffered Windows

All the demos can take advantage of the Opal feature for double-buffered windows. The
do-go routine for each demo has an optional :double-buffered-p argument that defaults
to nil. For instance, to run demo-3d on a double-buffered window, say: (demo-3d:do-go
:double-buffered-p T) and to run it normally, say: (demo-3d:do-go)

10.6 Best Examples

10.6.1 GarnetDraw

There a useful utility called GarnetDraw which is a relatively simple drawing program
written using Garnet. Since the file format for storing the created objects is simply a
Lisp file which creates aggregadgets, you might be able to use GarnetDraw to prototype
application objects (but Lapidary is probably better for this).

GarnetDraw uses many features of Garnet including gridding, PostScript printing, selection
of all objects in a region, moving and growing of multiple objects, menubars, and the
save-gadget and load-gadget dialog boxes. The editing functions like Cut, Copy, and
Paste are implemented using the Standard-Editmodule from garnet-gadgets, and objects
can be cut and pasted between GarnetDraw and Gilt (since they share the same clipboard).
Accelerators are defined for the menubar commands, like META-x for Cut and META-v for
Paste.

Chapter 10: Demonstration Programs for Garnet 586

GarnetDraw works like most Garnet programs: select in the palette with any button, draw
in the main window with the right button, and select objects with the left button. Select
multiple objects with shift-left or the middle mouse button. Change the size of objects by
pressing on black handles and move them by pressing on white handles. The line style and
color and filling color can be changed for the selected object and for further drawing by
clicking on the icons at the bottom of the palette. You can also edit the shape of polylines:
create a polyline, select it, and choose "Reshape" from the "Edit" menu.

10.6.2 Demo-Editor

Probably the best example program is the sample graphics editor in the file
demo-editor.lisp. It demonstrates many of the basic components when building a
Garnet application. This demo automatically loads and uses the text-button-panel,
graphics-selection, and arrow-line gadgets.

10.6.3 Demo-Arith

Demo-arith is a simple visual programming interface for constructing arithmetic expres-
sions. It uses constraints to solve the expressions. There are buttons for producing Post-
Script output from the picture. Also, you can create new objects using gestures by dragging
with the middle mouse button (rather than selecting them from the palette). The instruc-
tions are printed when the program is started.

10.6.4 Demo-Grow

Demo-grow shows how to use the graphics-selection gadget. It uses the same techniques
as in demo-editor (section [demoeditor], page 586).

10.6.5 Multifont and Multi-Line Text Input

Demo-text shows how multi-line, multi-font text input can be handled. It does not use
Aggregadgets or any gadgets, but none are necessary.

10.6.6 Demo-Multifont

To see how to effectively use the multifont text object, along with its interactors, examine
the demo-multifont demo. Most of the code is actually a good demonstration of how to use
the menubar and motif-scrolling-window-with-bars gadgets, but the multifont-text
objects and interactors are in there. Features demonstrated include word wrap and how to
changing the fonts with the special multifont accelerators.

The lisp-mode feature of multifont-text is also shown in this demo. Select "Toggle
Lisp Mode" from the "Edit" menu, and type in a lisp expression (like a defun definition).
As you hit return, the next line will be automatically indented according to standard lisp
conventions. Hitting the tab key will re-indent the current line.

10.6.7 Creating New Objects

Demo-twop shows how new lines and new rectangles can be input. It uses the same tech-
niques as in demo-editor (section [demoeditor], page 586).

Chapter 10: Demonstration Programs for Garnet 587

10.6.8 Angles

There are two programs that demonstrate how to use the angle interactor. Demo-angle

contains circular gauges (but see the gauge gadget, section [gadgetdemos], page 589),
as well as a demonstration of how to use the “angle-increment” parameter to the angle
:running-action procedure.

Demo-clock shows a clock face with hands that can be rotated with the mouse.

10.6.9 Aggregraphs

The demo-graph file is an example of many features of Aggregraphs.

10.6.10 Scroll Bars

Although sliders and scroll bars are provided in the Garnet Gadget set (the gadgets subdi-
rectory), the file demo-scrollbar contains some alternative scroll bar objects. The Macin-
tosh scroll bar in this demo was written in the old Garnet style, but there are new versions
of scroll bars in the OpenLook, Next, and Motif style.

To see the demo of all four scroll bars, use the functions demo-scrollbar:do-go and
demo-scrollbar:do-stop as usual. There are also functions that display the scroll bars
individually called mac-go, open-go, next-go, and motif-go.

10.6.11 Menus

Demo-menu shows a number of different kinds of menus that can be created using Garnet.
All of them were implemented using Aggregadgets and Aggrelists.

10.6.12 Animation

Demo-animator uses background animation processes to move several objects in a window.
One of the objects is a walking figure which moves across the screen by rapidly redrawing
a pixmap.

Demo-fade shows a simple animation for the Garnet acronym.

Demo-logo performs the same animation as demo-fade, but it also includes the Garnet
logo.

10.6.13 Garnet-Calculator

The garnet-calculator has the look and feel of xcalc, the calculator supplied by X
windows, but it is more robust. The calculator is a self-contained tool, and can be integrated
inside a larger Garnet application.

You can load the demo with (garnet-load "demos:garnet-calculator"). To run it,
execute (garnet-calculator:do-go).

garnet-calculator:Start-Calc &key double-buffered-p [function], page 90

garnet-calculator:Stop-Calc app-object &optional (destroy-app-object? T) [function],

page 90

The function start-calc creates and returns a calculator "application object" that can be
used by a larger interface, and this object should be passed as the app-object parameter to
stop-calc.

Chapter 10: Demonstration Programs for Garnet 588

10.6.14 Browsers

The files demo-schema-browser and demo-file-browser show two uses of the
browser-gadget.

10.6.15 Demo-Virtual-Agg

To show off an example of virtual-aggregates, load Demo-Virtual-Agg and say:

(demo-virtual-agg:do-go :num-dots 1000)

Demo-virtual-agg:do-go takes a single optional keyed parameter :num-dots which tells
how many circles should appear in a window. The default is 1000.

The first 1000 circles are read in from circles.data in the user::Garnet-DataFile-PathName
directory (because that’s faster) and the rest are chosen randomly. A ’.’ is printed out for
every ten circles.

You will also see a little star in the upper left on the screen, in front of the
virtual-aggregate, and a big gray rectangle underneath the virtual-aggregate. These
are just to show that the update algorithm is working reasonably well.

Clicking with the left button creates a new circle (of random radius and color)
where you clicked.

Clicking with the right button "destroys" the top-most circle underneath where
you clicked, or beeps if there was nothing under there.

Clicking on the little star and dragging moves the little star.

Clicking shift-middle causes the circle underneath the cursor to change to a
different random color. (This shows off change-item.)

Clicking shift-right causes the entire virtual-aggregate to disappear or reap-
pear.

10.6.16 Demo-Pixmap

This new demo shows a two-dimensional virtual-aggregate in action. Here, the
virtual-aggregate is a 50 X 50 array of 5 X 5 rectangles. Each rectangle can be colored
from the color palette, and the pattern of colored rectangles is reflected in a pixmap.

You can load a pixmap into the demo (e.g., from the directory Garnet-Pixmap-PathName),
edit the pixmap with the color palette and virtual-aggregate, and then save the pixmap to
a new file. You can also generate PostScript files from this demo, though you have to have
a Level 2 printer (that defines the PostScript function colorimage) to print a color pixmap
image.

10.6.17 Demo-Gesture

Demo-gesture is an example of how the new gesture-interactor can be used in an interface.
In this demo, you can create perfect circles and rectangles by drawing rough approximations
with the mouse, which are interpreted by the gesture recognizer. Gestures may also be used
to copy and delete the shapes you have created.

10.6.18 Demo-Unidraw

Demo-Unidraw is a gesture-based text editor, which allows you to enter characters with
freehand drawing using the mouse. The gestures that this demo understands are comprised

Chapter 10: Demonstration Programs for Garnet 589

of a shorthand alphabet devised by David Goldberg at Xerox Parc. The gesture patterns
are shown in the middle of the demo window, and the canvas for drawing gestures is at the
bottom. As the demo recognizes the gestures you draw, it selects the corresponding gesture
and puts the new character in the text window.

10.6.19 Gadget Demos

There are separate demo programs of some of the gadgets in the files demo-gadgets and
demo-motif. Each of these packages export the usual do-go and do-stop procedures, and
can be found in the demos directory.

Other good examples are the Garnet Gadgets, stored in the gadgets sub-directory. These
were all written using the latest Garnet features. At the end of almost all gadget files is a
small demo program showing how to use that gadget. Since all the gadgets are in the same
package (garnet-gadgets), the gadget demos all have different names. They are:

Arrow-line-go, Arrow-line-stop - to demonstrate arrow-lines

Error-gadget-go, Error-gadget-stop - to demonstrate both the error gadget and
the query gadget

Gauge-go, Gauge-stop - to demonstrate circular gauges

H-scroll-go, H-scroll-stop - to demonstrate standard horizontal scroll bars

H-slider-go, H-slider-stop - to demonstrate standard horizontal sliders

Labeled-box-go, Labeled-box-stop - to demonstrate labeled text-type-in objects

Menu-go, Menu-stop - to demonstrate a standard menu

Menubar-go, Menubar-stop - to demonstrate pull-down menus

Motif-Check-Buttons-go, Motif-Check-Buttons-stop - to demonstrate Motif style
check buttons

Motif-Error-Gadget-go, Motif-Error-Gadget-stop - to demonstrate both the mo-
tif error gadget and the motif query gadget

Motif-Gauge-go, Motif-Gauge-stop - to demonstrate the Motif style gauge

Motif-H-Scroll-go, Motif-H-Scroll-stop - to demonstrate Motif style horizontal
scroll bars

Motif-Menu-go, Motif-Menu-stop - to demonstrate the Motif style menus

Motif-Menubar-go, Motif-Menubar-stop - to demonstrate the Motif style menubar,
with accelerators

Motif-Option-Button-go, Motif-Option-Button-stop - to demonstrate the Motif
style version of this popup menu gadget, whose button changes labels according to the
menu selection

Motif-Radio-Buttons-go, Motif-Radio-Buttons-stop - to demonstrate Motif style
radio buttons

Motif-Scrolling-Labeled-Box-go, Motif-Scrolling-Labeled-Box-stop - to
demonstrate the Motif style text-type-in field

Motif-Scrolling-Window-With-Bars-go, Motif-Scrolling-Window-With-Bars-

stop - to demonstrate the Motif style scrolling window gadget

Motif-Slider-go, Motif-Slider-stop - to demonstrate the vertical Motif slider

Chapter 10: Demonstration Programs for Garnet 590

Motif-Text-Buttons-go, Motif-Text-Buttons-stop - to demonstrate Motif style
text buttons

Motif-Trill-go, Motif-Trill-stop - to demonstrate the Motif style trill device

Motif-V-Scroll-go, Motif-V-Scroll-stop - to demonstrate the Motif vertical scroll
bar

Mouseline-go, Mouseline-stop - to demonstrate the mouseline and "balloon help"
string

Multifont-Gadget-go, Multifont-Gadget-stop - to demonstrate the gadget which
is a conglomeration of a multifont-text, a focus-multifont-textinter, and a selection-
interactor

Option-Button-go, Option-Button-stop - to demonstrate this kind of popup menu
gadget, whose button label changes according to the menu selection

Popup-Menu-Button-go, Popup-Menu-Button-stop - to demonstrate this kind of
popup menu gadget, whose button label is fixed and may be a bitmap or other object

Prop-Sheet-For-Obj-go, Prop-Sheet-For-Obj-stop - to demonstrate how
prop-sheets can be used to change slot values of Garnet objects

Radio-Buttons-go, Radio-Buttons-stop - to demonstrate radio buttons

Scrolling-Input-String-go, Scrolling-Input-String-stop - to demonstrate the
scrolling input string gadget

Scrolling-Labeled-Box-go, Scrolling-Labeled-Box-stop - to demonstrate the
standard scrolling labeled box

Scrolling-Menu-go, Scrolling-Menu-stop - to demonstrate the scrolling menu gad-
get

Scrolling-Window-go, Scrolling-Window-stop - to demonstrate the standard
scrolling window

Scrolling-Window-With-Bars-go, Scrolling-Window-With-Bars-stop - to demon-
strate the scrolling window with attached vertical and horizontal scroll bars

Text-Buttons-go, Text-Buttons-stop - to demonstrate buttons with labels inside

Trill-go, Trill-stop - to demonstrate the trill-device gadget

V-scroll-go, V-scroll-stop - to demonstrate standard vertical scroll bars

V-slider-go, V-slider-stop - to demonstrate standard vertical sliders

X-Buttons-go, X-Buttons-stop - to demonstrate X buttons

Each of these has its own loader file, named something like xxx-loader for gadget xxx. See
the Gadgets chapter for a table of loader file names.

10.6.20 Real-Time Constraints and Performance

The program demo-manyobjs was written as a test of how fast the system can evaluate
constraints. The do-go procedure takes an optional parameter of how many boxes to
create. Each box is composed of four Opal objects.

10.7 Old Demos

Chapter 10: Demonstration Programs for Garnet 591

10.7.1 Moving and Growing Objects

The best example of moving and growing objects is demo-grow (section [demogrow],
page 586).

In addition, demo-moveline shows how the move-grow-interactor can be used to move
either end of a line.

10.7.2 Menus

Demo-3d shows some menus and buttons where the item itself moves when the user presses
over it, in order to simulate a floating button.

10.8 Demos of Advanced Features

10.8.1 Using Multiple Windows

Demo-multiwin shows how an interactor can be used to move objects from one window to
another. For more information, see the Interactors chapter.

10.8.2 Modes

Demo-mode shows how you can use the :active slot of an interactor to implement different
modes. For more information, see the Interactors chapter.

10.8.3 Using Start-Interactor

Demo-sequence shows how to use the inter:start-interactor function to have one in-
teractor start another interactor without waiting for the second one’s start event. Another
example of the use of inter:start-interactor is in demo-editor (section [demoeditor],
page 586) to start editing the text label after drawing a box. For more information on
start-interactor, see the Interactors chapter.

592

11 A Sample Garnet Program

by Brad A. Myers

14 May 2020

11.1 Abstract

This file contains a sample program written using the Garnet Toolkit. The program is a
simple graphical editor that allows the user to create boxes and arrows.

11.2 Introduction

The program in this file is implemented using the Garnet Toolkit, and is presented as an
example of how to write programs using the toolkit. The program implements a graphical
editor that allows the user to create boxes with textual labels which can be connected by
lines. The lines have arrowheads, and go from the center of one box to the center of another.
The boxes can be moved or changed size, and the arrows stay attached correctly. The boxes
or lines can also be deleted, and the labels can be edited.

The sample program is in the file demo-editor.lisp, and a source and binary (compiled)
version should be available in the demos sub-directory of the Garnet system files.

This graphical editor shows the use of:

Constraints: to keep the arrows centered, to keep the name labels at the tops of boxes,
etc.

Opal objects: roundtangles, cursor-text, windows.

Interactors: to choose which drawing mode (menu-interactor), to edit the text strings
(two text-interactors), and to create new objects (two-point-interactor).

Toolkit widgets: Text-button-panel (a form of menu), graphics-selection (to show
which object is selected and allow it to be moved), and arrow-lines. These widgets
have built in Opal objects and Interactors.

Aggregadgets: to group the roundtangle and label string.

Creating instances from prototypes (creating the new boxes and arrows).

This code is about 365 lines long, including comments, and took me two hours to code and
one hour to debug. I did not use any higher-level Garnet tools to create it (it was all coded
directly in Lisp).

11.3 Loading the Editor

After loading Garnet-loader, either of the following commands will load the editor:

(garnet-load "demos:demo-editor") ; To load the compiled version

or

(garnet-load "demos-src:demo-editor") ; To load the interpreted ver-

sion, which

; may make experimenting/debugging easier

Chapter 11: A Sample Garnet Program 593

11.4 User Interface

A snap shot of the editor in use is shown in Figure [SampleFig], page 593.

Label

Delete

Quit

Brad A. Myers

Roger B. Dannenberg

Dave Kosbie

Andrew Mickish

Brad Vander Zanden

Ed Pervin

Dario Guise

Philippe Marchal

Figure 11.1: A Sample Garnet Application. The code for this application is listed at the
end of this technical report.

Chapter 11: A Sample Garnet Program 594

The user interface is as follows. The menu at the top determines the current mode. When
the roundtangle is outlined, the user can draw new boxes, and when the arrow is outlined,
the user can draw new arrows. Press with either the left or right mouse buttons over one
to change modes.

To create a new roundtangle, press with the right button in the workspace window (on the
right) and hold down. Drag to the desired size and then release. Next, type in the new
name. Various editing characters are supported during typing, including:

^h, delete, backspace: delete previous character.

^d: delete next character.

^u: delete entire string.

^b, left-arrow: go back one character.

^f, right-arrow: go forward one character.

^a, home: go to the beginning of the string.

^e, end: go to the end of the string.

^y, insert: insert the contents of the X cut buffer into the string at the current
point.

When finished typing, press RETURN or any mouse button to stop.

To create a new arrow, when in arrow mode, press with the right button over a roundtangle
and release over a different roundtangle. An arrow will be drawn starting at the center of
the first roundtangle and going to the center of the other one.

Press with the left button on a roundtangle or an arrow to select it. Press on the background
to cause there to be no selection. Press and release on the “Delete” button to delete the
selected object.

If a roundtangle is selected, you can move it by pressing on a small white square with the
left button and dragging to the new position and releasing. You can change its size by
pressing with the left button on a black square. While the dotted outline box is displayed,
you can abort the operation by moving outside the window and releasing, or by hitting ^G
(control-G).

To change the string of a label, press on the label with the left button and begin typing.
When finished typing, press RETURN or any mouse button to stop, or press ^G to abort
the editing and return to the original string.

11.5 Overview of How the Code Works

The next section contains the actual code for the demo editor. This section presents some
the parts of the design and serves as a guide to the code.

The standard “Garnet style” is to USE-PACKAGE the KR package, and directly reference
all the other Garnet packages, so this is how the code is written. Functions such as
create-instance, s-value, o-formula, formula, gv, and gvl are defined in KR.

The first part of the code creates prototypes of the basic items that the user will create:
arrow lines and labeled boxes. When the editor is running, the code will create an instance
of one of these prototypes to get a new set of objects to be displayed. The arrow line object is
composed of one arrow-line from the Garnet-Gadget set, with some special constraints on

Chapter 11: A Sample Garnet Program 595

its end-points. The arrow-line is parameterized by the two objects it is connected to. These
two objects are kept in slots of the arrow-line: :from-obj and :to-obj. The constraints
on the end-points of the arrow-line are expressed as formulas that cause the arrow to go
from the center of the object stored in the :from-obj slot of the arrowline, to the center of
the object in the :to-obj slot.

The labeled box is more complicated. It is composed of two parts: a rounded-rectangle
(“roundtangle”) and a label. An AggreGadget is used to compose these together. The
boundaries of the roundtangle are defined by the values in the :box slot, since the standard
Move-Grow-Interactor modifies objects by setting this slot. The label string is constrained
to be centered at the top of the roundtangle. The actual string used is stored both at the
top level AggreGadget, and in the text object, so formulas are set up to keep these two
:string slots having the same value.

The next function (create-mode-menu) creates the top menu that contains a label object
and an arrow object. A feedback rectangle is also created to show what the current mode
is. This feedback rectangle has formulas that keep it over whatever mode object is selected.
An interactor is then created to allow the user to choose the mode.

The main command menu is created using create-menu, which simply creates an instance
of a garnet-gadget:text-button-panel in the correct place. The functions to be executed
are delete-object and do-quit, and these are defined next. The only trick here is that
if a labeled box is deleted, the lines to it are also deleted. For quit, destroying a window
automatically destroys all of its contents.

Creating a new object is fairly straightforward. The interactor is queried to find out whether
to create a line or a box, and the appropriate kind of object is then created. Lines can only
start or end in boxes, so the appropriate boxes are found. To appear in a window, the newly
created objects must be added to an aggregate which is attached to the window, Here, the
aggregate found by looking in the :objs-aggregate slot of the interactor.

Another important feature of the Create-New-Obj procedure is that if the object being
created is a box, then it starts an interactor to allow the user to type the text label.

The top-level, exported procedure, do-go, starts everything up by creating a window, a
sub-window to be the work area, and top-level aggregates for both windows. Another
aggregate will hold the user-created objects. The selection object will show which object
is selected, and also allow that object to be moved or grown (if it is not a line). Two text
editing interactors are then created. One is used when a new object is created to have the
user type in the initial name. This one is started explicitly using Start-interactor in
Create-New-Object. The other interactor is used when the user presses on the text label
of an object to edit the name.

Finally, the interactor to create new objects is defined. This one is a little complex, because
it needs to decide whether to use a line or rectangle feedback based on the current mode.

The last step is to add the top level aggregates to the windows and call update to get
the objects to appear. If you are running Allegro, Lucid, Lispworks, CMUCL, or MCL
Common Lisp, they will begin operating by themselves, but under other Common Lisps,
the Main-Event-Loop call is needed to get the interactors to run. The Exit-Main-Event-
Loop function in Do-Quit causes Main-Event-Loop to exit.

Chapter 11: A Sample Garnet Program 596

11.6 The Code

;;; [-*- Mode: LISP; Syntax: Common-Lisp; Package: DEMO-EDITOR; Base: 10 -*-]

;;;

;;; [The Garnet User Interface Development Environment.]

;;;

;;; [This code was written as part of the Garnet project at]

;;; [Carnegie Mellon University, and has been placed in the public]

;;; [domain. If you are using this code or any part of Garnet,]

;;; [please contact garnet@cs.cmu.edu to be put on the mailing list.]

;;;

;;;This file is a sample of a graphics editor created with Garnet. It is

;;;designed to be a model for other code development, and therefore uses

;;;all the most up-to-date Garnet features.

;;;

;;;** Call (demo-editor:Do-Go) to start and (demo-editor:Do-Stop) to stop **

;;;

;;;Designed and implemented by Brad A. Myers

(in-package :DEMO-EDITOR)

;;; Load text-buttons-loader, graphics-loader, and arrow-line-loader unless

;;; already loaded

;;;

(dolist (pair ’((:text-buttons "text-buttons-loader")

(:graphics-selection "graphics-loader")

(:arrow-line "arrow-line-loader")))

(when (not (get :garnet-modules (car pair)))

(user::garnet-load (concatenate ’string "gadgets:" (cadr pair)))))

;; Eliminate compile warnings for named objects

;;

(declaim (special MYARROWLINE MYLABELEDBOX))

Chapter 11: A Sample Garnet Program 597

;;;--

;;;First create the prototypes for the box and lines

;;;--

(create-instance ’myarrowline garnet-gadgets:arrow-line

(:from-obj NIL) ;set this with the object this arrow is from

(:to-obj NIL) ;set this with the object this arrow is from

(:x1 (o-formula (opal:gv-center-x (gvl :from-obj))))

(:y1 (o-formula (opal:gv-center-y (gvl :from-obj))))

(:x2 (o-formula (opal:gv-center-x (gvl :to-obj))))

(:y2 (o-formula (opal:gv-center-y (gvl :to-obj))))

(:open-p NIL)

(:visible (o-formula (and (gvl :from-obj)(gvl :to-obj))))

(:line-p T) ;so that the selection object will know what kind this is

)

(create-instance ’mylabeledbox opal:aggregadget

(:box (list 20 20 40 20)) ;this will be set by the

;interactors with the size of this box.

(:lines-at-this-box NIL) ;Keep track of lines pointing

;to me, in case I am deleted.

;;Set up a circular constraint between this string slot and the

;;string slot in the label. If either is changed, the other is

;;automatically updated. For circular constraints, it is

;;important to have an initial value, here it is the empty string.

(:string (o-formula (gvl :label :string) ""))

(:line-p NIL) ;so that the selection object will know what kind this is

(:parts

‘((:frame ,opal:roundtangle

(:radius 15)

(:left ,(o-formula (first (gvl :parent :box))))

(:top ,(o-formula (second (gvl :parent :box))))

(:width ,(o-formula (third (gvl :parent :box))))

(:height ,(o-formula (fourth (gvl :parent :box)))))

(:label ,opal:text

(:string ,(o-formula (gvl :parent :string) ""))

(:cursor-index NIL)

;;center me horizontally with respect to the frame

(:left ,(o-formula (- (opal:gv-center-x (gvl :parent :frame))

(floor (gvl :width) 2))))

(:top ,(o-formula (+ (gvl :parent :frame :top) 5)))))))

Chapter 11: A Sample Garnet Program 598

Chapter 11: A Sample Garnet Program 599

;;;--

;;;Create main menu object

;;;--

;;Create an arrow and a box menu object, and put them in a menu, with an

;;interactor and feedback object to show which is selected.

;;Agg is the top level aggregate to put the menu in, and window is the window.

;;The :line-p slot of the agg is set with a formula to tell whether in line mode

;;or not.

(defun create-mode-menu (agg window)

(let (feedback boxitem arrowitem)

(setf boxitem (create-instance NIL mylabeledbox

(:box (list 20 20 80 40))

(:string "Label")))

;;the arrow will be inside a box.

(setf arrowitem

(create-instance NIL opal:aggregadget

(:parts

‘((:frame ,opal:rectangle

(:left 20)(:top 80)(:width 80)(:height 40))

(:line ,garnet-gadgets:arrow-line

(:open-p NIL)

(:x1 ,(o-formula (+ (gvl :parent :frame :left) 2)))

(:y1 ,(o-formula (opal:gv-center-y (gvl :parent :frame))))

(:x2 ,(o-formula (+ (gvl :parent :frame :left) 76)))

(:y2 ,(o-formula (gvl :y1))))))))

;;The interactor (defined below) will set the :selected slot of the aggregate.

;;Use this to determine where the feedback should be.

;;We need to use formula rather than o-formula here so we can have a direct

;;reference to agg (use formula whenever you need to reference an ob-

ject that

;;is not stored in a slot of the current object). Notice the use of

;;back-quote and comma to get a reference to the agg object.

(setf feedback (create-instance NIL opal:rectangle

(:line-style opal:line-4)

(:filling-style NIL)

(:left (o-formula (- (gvl :parent :selected :left) 6)))

(:top (o-formula (- (gvl :parent :selected :top) 6)))

(:width (o-formula (+ (gvl :parent :selected :width) 12)))

(:height (o-formula (+ (gvl :parent :selected :height) 12)))

(:visible (o-formula (gvl :parent :selected)))

(:draw-function :xor)

(:fast-redraw-p T)))

(opal:add-components agg boxitem arrowitem feedback)

Chapter 11: A Sample Garnet Program 600

;;use the :menuobjs slot to hold the items that can be selected

(s-value agg :menuobjs (list boxitem arrowitem))

;;default mode is the rectangle

(s-value agg :selected boxitem)

;;The :line-p slot of the agg is set with a formula to tell whether in line mode or not.

(s-value agg :line-p (o-formula (eq (gvl :selected) (second (gvl :menuobjs)))))

;;now create an interactor to choose which mode

(create-instance NIL inter:menu-interactor

(:window window)

(:start-event ’(:leftdown :rightdown)) ;either one

(:start-where ‘(:list-element-of ,agg :menuobjs)))))

Chapter 11: A Sample Garnet Program 601

;;This creates the menu of commands. For now, it only has "delete" and "quit" in it.

;;The menu is stored into the aggregate agg. Returns the menu created.

(defun create-menu (agg)

(let ((menu (create-instance NIL Garnet-gadgets:Text-Button-Panel

(:constant T)

(:items ’(("Delete" Delete-Object) ("Quit" Do-Quit)))

(:left 20)

(:top 200)

(:font Opal:Default-font)

(:shadow-offset 5)

(:final-feedback-p NIL))))

(opal:add-components agg menu)

menu))

;;;**

;;;Procedures to do the work

;;;**

;;;Delete-Line is called from delete object to delete lines

(defun Delete-Line(line-obj)

(let ((from-obj (g-value line-obj :from-obj))

(to-obj (g-value line-obj :to-obj)))

;;remove this line from the boxes’ lists

(s-value from-obj :lines-at-this-box

(delete line-obj (g-value from-obj :lines-at-this-box)))

(s-value to-obj :lines-at-this-box

(delete line-obj (g-value to-obj :lines-at-this-box)))

(opal:destroy line-obj)))

;;;Delete-object is called from the main menu routine

(defun Delete-Object (toolkit-obj menu-item)

(declare (ignore menu-item))

(let ((selected-obj (g-value toolkit-obj :selection-obj :value)))

(if selected-obj

(progn

;;first turn off selection

(s-value (g-value toolkit-obj :selection-obj) :value NIL)

;;now delete object

(if (g-value selected-obj :line-p)

;;then deleting a line

(Delete-Line selected-obj)

;;else deleting a box

(progn

;;first delete all lines to this box

(dolist (line-at-box (g-value selected-obj :lines-at-this-box))

(delete-line line-at-box))

Chapter 11: A Sample Garnet Program 602

;;now delete the box

(opal:destroy selected-obj))))

;;else nothing selected

(inter:beep))))

(defun Do-Quit (toolkit-obj menu-item)

(declare (ignore menu-item))

(opal:destroy (g-value toolkit-obj :window))

;;for demo-controller

(unless (and (fboundp ’User::Garnet-Note-Quitted)

(User::Garnet-Note-Quitted "DEMO-EDITOR")))

)

Chapter 11: A Sample Garnet Program 603

;;;Create a new object. Get the type of object to create from the interactor.

;;;This procedure is called as the final-function of the two-point interactor.

(defun Create-New-Obj (inter point-list)

(let ((agg (g-value inter :objs-aggregate))

(line-p (g-value inter :line-p))) ;create a line or rectangle

(if line-p

;;then create a line, first have to find the objects where the line is drawn

(let ((from-box (opal:point-to-component agg (first point-list)

(second point-list) :type mylabeledbox))

(to-box (opal:point-to-component agg (third point-list)

(fourth point-list) :type mylabeledbox))

new-line)

;;If one end of the arrow is not inside a box, or is from and to the same box, then beep.

(if (or (null from-box)(null to-box) (eq from-box to-box))

(inter:beep)

;; else draw the arrow.

(progn

(setf new-line (create-instance NIL myarrowline

(:from-obj from-box)

(:to-obj to-box)))

;;keep track in case boxes are deleted so can delete this line.

(push new-line (g-value from-box :lines-at-this-box))

(push new-line (g-value to-box :lines-at-this-box))

(opal:add-component agg new-line))))

;;else, create a new box

(let ((textinter (g-value inter :textinter))

(new-box (create-instance NIL mylabeledbox

(:box (copy-list point-list))))) ;have to make a copy of list since

;the interactor re-uses the same list

(opal:add-component agg new-box)

;;now start the interactor to allow the user to type the label.

;;Obj-to-change is the label object of the new box.

(s-value textinter :obj-to-change (g-value new-box :label))

(inter:start-interactor textinter)))))

;;;

Chapter 11: A Sample Garnet Program 604

;;;**

;;;Main procedures

;;;**

(defparameter current-window NIL) ;this global variable is only used for the de-

bugging function below: do-stop

(defun Do-Go (&key dont-enter-main-event-loop double-buffered-p)

(let (top-win work-win top-agg work-agg selection objs-agg menu edit-text)

;;;create top-level window

(setf top-win (create-instance NIL inter:interactor-window

(:left 20) (:top 45)

(:double-buffered-p double-buffered-p)

(:width 700) (:height 400)(:title "GARNET Sample Editor")

(:icon-title "Graphics Editor")))

(setf current-window top-win)

;;;create window for the work area

(setf work-win (create-instance NIL inter:interactor-window

(:left 150)

(:top -2) ;no extra border at the top

(:width (o-formula (- (gvl :parent :width) 150)))

(:height (o-formula (gvl :parent :height)))

(:double-buffered-p double-buffered-p)

(:border-width 2)

(:parent top-win)))

;;;create the top level aggregate in the windows

(setq top-agg (create-instance NIL opal:aggregate

(:left 0)(:top 0)

(:width (o-formula (gvl :window :width)))

(:height (o-formula (gvl :window :height)))))

(setq work-agg (create-instance NIL opal:aggregate

(:left 0)(:top 0)

(:width (o-formula (gvl :window :width)))

(:height (o-formula (gvl :window :height)))))

;;;create an aggregate to hold the user-created objects

(setq objs-agg (create-instance NIL opal:aggregate

(:left 0)(:top 0)

(:width (o-formula (gvl :window :width)))

(:height (o-formula (gvl :window :height)))))

(opal:add-component work-agg objs-agg)

;;;create menus

(create-mode-menu top-agg top-win)

Chapter 11: A Sample Garnet Program 605

(setf menu (create-menu top-agg))

;;;create a graphics selection object

(setq selection (create-instance NIL Garnet-Gadgets:graphics-selection

(:start-where (list :element-of-or-none objs-agg))

(:movegrow-lines-p NIL) ;can’t move lines

;;move objects while cursor in the work window

(:running-where (list :in work-win))))

(opal:add-component work-agg selection)

;;store the selection object in a new slot of the menu so that the delete

;;function can find which object is selected.

(s-value menu :selection-obj selection)

;;;Create an interactor to edit the text of the labels when they are first

;;;created. This interactor will never start by itself, but is started

;;;explicitly using Inter:Start-Interactor in the Create-New-Object function.

(setf edit-text (create-instance NIL Inter:Text-Interactor

(:obj-to-change NIL) ;this is set when the interactor is started

(:start-event NIL) ;won’t start by itself

(:start-where NIL) ;won’t start by itself

(:stop-event ’(#\return :any-mousedown)) ;either stops it

(:window work-win)))

;;cont., next page...

Chapter 11: A Sample Garnet Program 606

;;The next interactor edits the text when the user presses on a string.

(create-instance NIL Inter:Text-Interactor

(:stop-event ’(#\return :any-mousedown)) ;either stops it

(:start-where (list :leaf-element-of objs-agg :type opal:text))

;;high priority so that if this one runs, the object

;;underneath will not become selected.

(:waiting-priority inter:high-priority-level)

(:window work-win))

;;;create an interactor to create the new objects

(create-instance NIL Inter:Two-Point-Interactor

(:start-event :rightdown)

(:start-where T)

(:running-where (list :in work-win))

(:window work-win)

(:abort-event ’(:control-g :control-\g))

(:line-p (o-formula (gvl :window :parent :aggregate :line-p)))

;The next 2 slots are used by the Create-New-Obj procedure,

;not by this interactor itself.

(:objs-aggregate objs-agg)

(:textinter edit-text)

(:selection selection)

(:feedback-obj

;;use the feedback objects in the graphics-selection object

;;pick which feedback depending on whether drawing line or box

(o-formula

(if (gvl :line-p)

(gvl :selection :line-movegrow-feedback)

(gvl :selection :rect-movegrow-feedback))))

(:final-function #’Create-New-Obj))

;;;Now, add the aggregates to the window and update

(s-value top-win :aggregate top-agg)

(s-value work-win :aggregate work-agg)

(opal:update top-win) ;;will also update work-win

;;** Do-Go **

(Format T "~%Demo-Editor:

Press with left button on top menu to change modes (box or line).

Press with left button on bottom menu to execute a command.

Press with right button in work window to create a new object

of the current mode.

Boxes can be created anywhere, but lines must start and stop inside boxes.

After creating a box, you should type the new label.

Press with left button on text string to start editing that string.

607

While editing a string, type RETURN or press a mouse button to stop.

Press with left button in work window to select an object.

Press with left button on white selection square to move an object.

Press with left button on black selection square to change object size.

While creating, moving, or growing a box, move outside window and release or

hit ^G or ^g to abort.

~%")

(unless dont-enter-main-event-loop #-cmu (inter:main-event-loop))

;;return top window

top-win))

;;** This is mainly for debugging, since usually the quit button in the menu will be used.

(defun Do-Stop ()

(opal:destroy current-window))

608

12 Gilt Reference: A Simple Interface Builder for
Garnet

by Brad A. Myers

14 May 2020

12.1 Abstract

Gilt is a simple interface layout tool that helps the user design dialog boxes. It allows the
user to place pre-defined Garnet gadgets in a window and then save them to a file. There are
two versions: one for Garnet look-and-feel gadgets and one for Motif look-and-feel gadgets.

12.2 Introduction

This document is the reference chapter for the Gilt tool, which is part of the Garnet User
Interface Development System GarnetIEEE. Gilt stands for the Garnet Interface Layout
Tool, and is a simple interface builder for constructing dialog boxes. A dialog box is
a collection of gadgets, such as menus, scroll bars, sliders, etc. Gilt supplies a window
containing many of the built-in Garnet gadgets (see Figure 〈undefined〉 [gadgetwindow],
page 〈undefined〉), from which the user can select the desired gadgets and place them in the
work window. Gilt does not allow constraints to be placed on objects or for new gadgets
or application-specific objects to be created.

There are two sets of gadgets in Gilt. Each allows you to create dialog boxes
with a consistent look-and-feel. The standard Garnet gadgets are shown in Figure
〈undefined〉 [gadgetwindow], page 〈undefined〉, and the Motif style gadgets are in Figure
[motifgadgetwindow], page 610). Both versions operate the same way. You can toggle
between the standard and Motif gadget palettes by selecting "Load Other Gadgets" from
the main Gilt menubar.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 609

Gilt Gadgets

Garnet Gadgets

Label1

Label2

Label3

Label1

Label2

Label3

Label1

Label2

Label3

Title: String

Title: long st... ...

Label MultiFont,
multi-line text

Figure 12.1: The Gilt gadget window for the Garnet look and feel. All of the gadgets that
can be put into the window are shown. The check boxes are selected.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 610

Gilt Motif Gadgets

File Edit Other

Motif Gadgets

Label1

Label2

Label3

Label1

Label2

Label3

Item 1

Item 2

Item 3

Item 4

Item 5

Label1

Label2

Label3

Label1

Label2

Label3

0 20

10

8

64

2

0

Title

Title: Field

OK Cancel

OK Apply Cancel

Option button: Item 1

Text MultiFont,
multi-line text

Motif-Background

Figure 12.2: The Gilt gadget window for the Motif look and feel.

There is a more powerful interactive design tool in Garnet called Lapidary garnetLapidary.
Lapidary allows new gadgets to be constructed from scratch, and allows application-specific
graphics to be created without programming. However, Lapidary does not support the
placement of the existing Garnet gadgets.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 611

12.3 Loading Gilt

Gilt is not automatically loaded when you load Garnet. After Garnet is loaded, to load
Gilt do:

(load Garnet-Gilt-Loader)

There is only one version of Gilt, but you can specify what set of gadgets should appear
in the palette when the windows appear. This is determined by a required parameter to
do-go. To start Gilt, do:

(gilt:do-go :motif)

(or)
(gilt:do-go :garnet)

Gilt can be stopped by selecting "Quit" from the menubar, or by executing
(gilt:do-stop).

12.4 User Interface

Gilt displays three windows: The gadgets window, the main command window, and the work
window. The main command window is shown in Figure 〈undefined〉 [commandwindow],
page 〈undefined〉. Figure 〈undefined〉 [workwindow], page 〈undefined〉, shows an example
session where the work window contains gadgets with the Garnet look-and-feel. The two
types of gadget palette windows are shown in Figures 〈undefined〉 [gadgetwindow], page 〈un-
defined〉, and [motifgadgetwindow], page 610.

For the Garnet look and feel, examples are in Figures [GadgetWindow], page 609,
[CommandWindow], page 612, and [WorkWindow], page 613. Figure [motifgadgetwindow],
page 610, shows the Gadget window for the Motif look and feel.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 612

Gilt Commands

Build

Run

File Edit Control

 LEFT 100

 TOP 50

 WIDTH 71

HEIGHT 85

Selected Object: KR-DEBUG:X-BUTTON-PANEL-10253

Figure 12.3: The Gilt Command window. The "Edit" menu from the menubar provides
control over all properties of the gadgets in the work window and provides dialog boxes for
precise positioning. Switching between "Build" and "Run" mode allows you to test the
gadgets as you build the interface. Text boxes display the position and dimension of the
selected gadget, whose name appears at the bottom of the command window.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 613

Gilt Work Window

Properties: ⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

OK
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Cancel

Object Name: short string

Filename: very long strin ...

Debug Level: 4

0

2

4

6

8

10

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

Bold

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

Italic

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

Underline

Figure 12.4: The Gilt Work window showing a sample dialog box being created using the
Garnet look and feel.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 614

12.4.1 Gadget Palettes

The single version of Gilt allows you to place Motif or Garnet look-and-feel gadgets into
your window (you can mix and match if you want). To switch back and forth, use the "Load
Other Gadgets" command in the "File" menu of the Gilt menubar. You can only see one
gadget window at a time. The dialog boxes for Gilt itself use only the Motif look and feel.

12.4.2 Placing Gadgets

When you press with any mouse button on a gadget in the gadgets palette window (see
Figures [GadgetWindow], page 609, or [motifgadgetwindow], page 610), that gadget be-
comes selected. Then, when you press with the right mouse button in the work window,
an instance of that gadget will be created. Some gadgets, such as the scroll bars, have a
variable size in one or more dimensions, so for those you need to press the right button
down, drag out a region, and release the button.

The gadgets supplied for the Garnet look and feel are (from top to bottom, left to right in
Figure [GadgetWindow], page 609):

Menubar: a pull-down menu,

Text-button-panel: for commands,

Scrolling-menu: when there are many items to choose from,

Option-button: a popup-menu which changes the label of the button according to the
selected item,

Popup-menu-button: a popup-menu which does not change labels,

OK-Cancel: A special gadget to be used when you want the standard OK and Cancel
behavior (see section [okcancel], page 630),

X-button-panel: for settings where more than one is allowed,

Radio-button-panel: for settings where only one is allowed,

Menu: a menu with an optional title,

H-scroll-bar: for scrolling horizontally,

H-slider: for entering a number in a range,

V-scroll-bar: for scrolling vertically,

V-slider: for entering a number in a range,

OK-Apply-Cancel: Similar to OK-Cancel, but supports Apply (like OK, but don’t
remove window),

Gauge: another way to enter a number in a range,

Trill-device: enter a number either in a range or not,

Labeled-box: enter any string; box grows if string is bigger,

Scrolling-labeled-box: enter a string; box has a fixed size and string scrolls if too big,

Text: for decoration,

Multifont-text: for decoration,

Rectangle: for decoration,

Line: for decoration,

Bitmap: for decoration,

Pixmap: for decoration.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 615

The gadgets supplied for the Motif look and feel are (from top to bottom, left to right in
Figure [motifgadgetwindow], page 610):

Motif-Menubar: a pull-down menu

Motif-Text-button-panel: for commands,

Motif-Menu: a menu with an optional title,

Motif-Scrolling-Menu: when there are many items to select from,

Motif-Check-button-panel: for settings where more than one is allowed,

Motif-Radio-button-panel: for settings where only one is allowed,

Motif-OK-Cancel: A special gadget to be used when you want the standard OK and
Cancel behavior (see section [okcancel], page 630),

Motif-OK-Apply-Cancel: similar to OK-Cancel, but supports Apply,

Motif-Option-Buton: a popup-menu whose button’s label changes according to the
selection

Motif-V-scroll-bar: for scrolling vertically,

Motif-V-slider: for entering a number in a range,

Motif-H-scroll-bar: for scrolling horizontally,

Motif-trill-device: for selecting from a range of numbers,

Motif-Gauge: another way to enter a number in a range,

Motif-Scrolling-labeled-box: enter a string; box has a fixed size and string scrolls if too
big,

Pixmap: for decoration

Bitmap: for decoration

Rectangle: for decoration,

Line: for decoration,

Motif-Box: A gadget that resembles a raised (or depressed) rectangle, used to achieve
a Motif style effect. Set the :depressed-p parameter.

Text: for decoration,

Multifont-text: for decoration,

Motif-Background: a special rectangle that helps achieve the Motif effect. It always
moves to the back of the window, and can only be selected at the edges.

In addition to the standard gadgets, Gilt supplies a text string, a line, a rectangle and a
bitmap. These are intended to be used as decorations and global labels in your dialog boxes.
They have no interactive behavior.

The Motif version also provides a background rectangle. This is a special rectangle which
you should put behind your objects to make the window be the correct color. Note: to
select the motif-background rectangle, press at the edge of the window (the edge of the
background rectangle). You might want to select the rectangle to delete it or change its
color (using the properties menu).

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 616

12.4.3 Selecting and Editing Gadgets

When you press with the left mouse button on a gadget in the work window, it will become
selected, and will show four or twelve selection handles. The objects that can change size
(such as rectangles and scroll bars) display black and white selection handles, and the objects
that cannot change size (such as buttons) only show white selection handles.1 If you press
on a white handle and drag, you can change the object’s position. If you press on a black
handle, you can change it’s size (see Figure 〈undefined〉 [handlesfig], page 〈undefined〉).

1 You can indirectly change the size of buttons by setting offsets and sizes in the property sheet, however.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 617

Figure 12.5: Pressing on a black selection handle causes the object to grow, and pressing
on a white one causes it to move.

If you press over an object with either the middle mouse button or hold down the keyboard
shift key while hitting the left button, then that object is added to the selection set (so you
can get multiple items selected). If you press with middle or shift-left over an item that is

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 618

already selected, then just that item becomes de-selected. If you press with the left button
in the background (over no objects), all objects are deselected. While multiple objects are
selected, you can move them all as a group by pressing on the selection handle of any of
them. Since Gilt uses the multi-selection gadget, it supports selecting all objects in a region
(hold down the left button and sweep out a region), and growing multiple selected objects
(if they are growable, then press on a black handle at the outside of the set of objects).

To explicitly set the size or position of the selected object (when only one is selected),
you can use the number fields in the Command Window (see Figure [CommandWindow],
page 612). Simply press with the left button in one of these fields and type a new number.
When you hit return, the object will be updated. These fields are a handy way to get
objects to be evenly lined up (but also see the "Align" command).

12.5 Editing Strings

Editing the strings of most gadgets is straightforward: select the gadget (to get the selection
handles around it) and then click in a string to get the string cursor, and then type the
new string, and hit return when done. If you make the string empty (e.g., by typing
control-u), and hit return, that button of the gadget will be removed. If you edit the last
item of the gadget and hit control-n instead of return, then a new item will be added to
the gadget. The strings can also be edited by editing the :items property in the property
sheet that appears from the Properties command.

To edit string labels, simply click to select them, and then click again with the left button
to begin editing. The fonts of multifont strings can be edited using the keyboard commands
described in the "Multifont" section of the Opal Chapter.

To edit the strings in a pop-up menu, like a menubar or an option button, click once with
the left button to select the gadget, and then click again to pop-up the submenu. You can
now click in the submenu to edit any of the items. Use control-n in the last item to add new
items or control-u and return to remove items. To edit the top-level labels of a menubar,
you need to click the left button three times: once to select the gadget, once to bring up
the submenu, and a third time to begin editing. Click outside to make the popped-up menu
disappear.

The editing operations supported for regular text (and labels) are:

^h, delete, backspace: delete previous character.

^w, ^backspace, ^delete: delete previous word.

^d: delete next character.

^u: delete entire string.

^b, left-arrow: go back one character.

^f, right-arrow: go forward one character.

^a: go to beginning of the current line.

^e: go to end of the current line.

^y: insert the contents of the X cut buffer into the string at the current point.

^c: copy the current string to the X cut buffer.

enter, return, ^j, ^J: Finished.

^n: Finished, but add a new item (if a list).

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 619

line-feed: Start a new line (if editing a multi-line text).

^g: Abort the edits and return the string to the way it was before editing
started.

If the item is a member of a list, such as a menu item or a radio button, then if the string
is empty, that item will be removed. If the string is terminated by a ^n (control-n) instead
of by a return, and if this is the last item, then a new item will be added. The items can
also be changed in the properties dialog box for the gadget (see below).

Some strings cannot be edited directly, however. This includes the labels of sliders and
gauges, and the indicators in scroll bars. To change these values, you have to use the
property sheets. Also, for gadgets that have strings as their values, such as the text input
field and scrolling-text input field, you can only set the value strings by going into Run mode.
Note, however, that the values are not saved with the gadget (see section [usinggiltdbs],
page 629).

To change the bitmap picture of a bitmap object, specify the name of the new bitmap using
the "Properties..." command.

12.6 Commands

There are many commands in Gilt, and the command menu is a menubar at the top of the
main window. The menubar implementation allows you to give commands using keyboard
shortcuts when the mouse is in the main Work Window. The particular shortcuts are listed
on the sub-menus of the main menubar.

The commands are:

Cut — remove the selected item(s) but save them in the clipboard so they can
later be pasted.

Copy — copy the selected item(s) to the clipboard so they can later be pasted.

Paste — place a copy of the items in the clipboard onto the window.

Duplicate — place a duplicate of the selected items onto the window. (See
section [duplicating-objects], page 620.)

Delete — delete the selected objects and don’t put them into clipboard. This
operation can be undone with the Undo Last Delete command. (See section
[deleting-objects], page 622.)

Delete All — delete all the objects in the window. This operation can be
undone with the Undo Last Delete command. (See section [deleting-objects],
page 622.)

Undo Last Delete — undoes the last delete. All the deletes are saved, so this
command can be executed multiple times to bring back objects deleted earlier.
(See section [deleting-objects], page 622.)

Select All — select all the objects in the window (including the background
object).

To Top — make the selected objects not be covered by any other objects. (See
section [to-top], page 620.)

To Bottom — make the selected objects be covered by all other objects. (See
section [to-top], page 620.)

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 620

Properties... — bring up the properties window. (See section
[giltpropertiessec], page 622).

Align — bring up the dialog box to allow aligning of the selected objects with
respect to the first of the objects selected. (See section [align], page 620.)

Many of these commands are now implemented with the functions in the Standard-Edit

mechanism, described in the Gadgets Chapter.

12.6.1 To-Top and To-Bottom

The selected object or objects can be made so they are not covered by any objects using
the "To Top" command in the Gilt Command Window. The objects can be made to be
covered by all other objects by selecting the "To Bottom" command.

12.6.2 Copying Objects

The "Duplicate" command in the Command Window causes the selected object or objects
to be duplicated. The new object or objects will have all the same properties as the original,
but the original and new objects can be subsequently edited independently without affecting
the other object (the new object is a copy, not an instance of the original). The copy is
placed at a fixed offset below and to the right of the original, and is selected, so it can
subsequently be moved.

12.6.3 Aligning Objects

The Align function allows you to neatly line up a set of objects, and to adjust their sizes
to be the same. Figure [alignfig], page 621, shows the dialog box that appears when the
"Align..." command is selected. Align adjusts the present positions of objects only; it
does not set up constraints. Therefore, you can freely move objects after aligning them.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 621

Align Objects

Column

Row

Left

Centered

Right

Top

Centered

Bottom

Same Width

Same Height

OK

Apply

Cancel

Figure 12.6: The Align dialog box, after the user has specified that the selected objects
should be aligned and centered in a column and be adjusted to be the same width.

To use Align, you first select two or more objects in the workspace window (remember,
to select more than one object, press on the objects with the middle mouse button or
hold down the shift key while hitting the left button). The first object you select is the

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 622

reference object, and the other objects will be adjusted with respect to that first object.
For example, if you want to make objects be the same width, then the width will be that
of the first selected object. You should not change the selection while the Align dialog box
is visible.

Aligning in a column or row also adjusts the spacing between objects to be all the same.
The spacing used between the objects is the average space between the objects before the
command is given.

If a line is selected, then it is made to be exactly horizontal if "Column" is specified, or
vertical if "Row" is selected. The size of lines can also be adjusted using the width and
height buttons. If both "Same Width" and "Same Height" are selected for a line, then an
error message is given.

If the "Same Width" and/or "Same Height" buttons are pressed, and one of the selected
objects other than the first cannot change size, then an error message is presented. All
other selected objects are still adjusted, however.

12.6.4 Deleting Objects

Choosing the "Delete Selected" command in the Gilt Command Window will remove
the selected object or objects from the work window. Selecting the "Undo Last Delete"

command will bring the object back. Selecting "Delete All" removes all the objects from
the work window. "Undo Last Delete" will bring all of the objects back. All of the deleted
objects are kept in a queue, so the undo command can be executed repeatedly. Note that
this is not a general Undo; only undoing of deletes is supported.

12.6.5 Properties

Each type of gadget has a number of properties. First select the object in the workspace
window, and then select the "Properties..." command (in the Gilt Command Window).
The window for the properties will appear below the selected object, but then can be moved.
You should not change the selection while the properties dialog box is visible.

If the selected object is a rectangle, line or string, then special dialog boxes are available so
you can change the color, filling-style, font, etc. These were created using Gilt.

The general property sheet lists all of the properties that you can change, and will look
something like Figure [propsheet], page 624. You can press in the value (right) side of
any entry and then type a new value (using the same editing commands as in section
[editingcommands], page 618). You can move from field to field using the tab key (after
pressing with the left mouse button in a field to start with). When finished setting values,
hit the "OK" button to cause the values to be used and the property sheet to disappear,
or hit the "Apply" button to see the results and leave the property sheet visible. If you hit
"Cancel", the changes will not affect the object, and the property sheet will go away.

You can select multiple items and bring up a property sheet on all of them. The property
sheet will show the union of all properties of all objects. If multiple objects have the same
property name, then the value of the property for the first object selected is shown.

When you edit the value of a property and then hit return (or when you hit OK for properties
that pop up dialog boxes), the property sheet will immediately set that property into all
objects for which the property is defined. Thus, you can change the :foreground-color of
all the objects by executing Select All, bringing up the Properties..., and then editing

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 623

the foreground-color property. If you start to edit a property but change your mind, hit
Control-G if text editing or Cancel in a dialog box. The Done button hides the property
sheet.

The left, top, width and height number boxes displayed in the main Gilt window will now
also work on multiple objects. When multiple objects are selected, they show the values for
the bounding box of all the objects, and when you edit one and hit RETURN, that value
is applied to all objects for which it is settable.

For a complete explanation of what the fields of each gadget do, see the Gadgets Chapter.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 624

X BUTTON PANEL

Done

VISIBLE:
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷T NIL

INDENT: 0
RANK-MARGIN: NIL
FIXED-HEIGHT-SIZE: NIL

FIXED-HEIGHT-P:
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷T NIL

H-SPACING: 5

DIRECTION:
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷:VERTICAL :HORIZONTAL

ITEMS: ("Bold" "Italic" "Underline")

TEXT-ON-LEFT-P:
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷T NIL

TEXT-OFFSET: 5
BUTTON-HEIGHT: 20
SELECT-FUNCTION: NIL
KNOWN-AS [keyword]: NIL
BUTTON-WIDTH: 20
SHADOW-OFFSET: 5
GRAY-WIDTH: 3
FONT:
VALUE: NIL
V-SPACING: 5

FIXED-WIDTH-P:
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

T NIL
FIXED-WIDTH-SIZE: 72

H-ALIGN:
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

:LEFT :CENTER :RIGHT
PIXEL-MARGIN: NIL

Figure 12.7: The property sheet that appears for a particular X-Button-Panel.

Some of the fields of these property sheets are edited in a special way. The DIRECTION

field must be either :VERTICAL or :HORIZONTAL, so the field shows these names, and you
can press with the left button to pick the desired value. Fields that represent fonts show
a special icon, and if you click on it, the special font dialog box will appear. However, the

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 625

font is not changed in the object until the "OK" or "Apply" buttons are hit on both the
font dialog box and the main property sheet.

The field named KNOWN-AS should be set for all gadgets that programs will want to know
the values of, and will be the name of the slot that holds the object (so it should be a
keyword, e.g., :myvalue). The SELECT-FUNCTION slot can contain a function to be called
at run time when the gadget is used. Note that you might want to specify the package
name on the front of the function name. However, if you are going to have OK-Cancel or
OK-Apply-Cancel in the dialog box, you probably do not want to supply selection functions,
since selection functions are called when the gadget is used, not when OK is hit (see section
[using], page 631).

If the property sheet thinks any value is illegal, the value will be displayed in italics after a
return or tab is hit, and Gilt will beep. You can edit the value, or just leave it if the value
will become defined later (e.g., if the package is not yet defined).

Unfortunately, however, the error checking of the values typed into the property sheets is
not perfect, so be careful to check all the values before hitting OK or Apply. If a bad value
is set into the gadget, Gilt will crash. You can usually recover from this by setting the field
back to a legal value in the Lisp window. For example, if :gray-width got a bad value,
you might type:

(kr:s-value user::*gilt-obj* :gray-width 3)

(opal:update-all)

(inter:main-event-loop)

12.6.6 Saving to a file

When the "Save..." command is selected from the Command window, Gilt pops up the
dialog box shown in Figure [Savedialogbox], page 626.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 626

Save File

Saving...

Filename:

Top-level Gadget name: TEMP-GADGET

Window Title: TEMP WINDOW

Package name: USER

Function-for-OK name:

OK Cancel

Export Top-level Gadget?

Figure 12.8: The dialog box that appears when the Save command is chosen.

The only field you need to fill in is the "Filename" field, which tells the name of the file
that should be written. Simply press with the left button in the field and begin typing.
This is a scrollable field, so if the name gets too long, the text will scroll left and right. You
might also want to use the window manager’s cut buffer (^Y) if you can select the string for

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 627

the file in a different window. Pressing with the mouse button again will move the cursor,
so you need to hit return or ^G to stop editing the text field.

All the objects in the work window will be collected together in a single Garnet “aggregad-
get” when written to the file. The "Top-level Gadget name" field allows you to give this
gadget a name. This is usually important if you want to use the gadget in some interface,
so you can have a name for it. If you press the "Export Top-level Gadget" button, then
an export line will be added to the output file.

As described below in section 〈undefined〉 [Using], page 〈undefined〉, there is a simple func-
tion for displaying the created gadget in a window. If you want this window to have a
special title, you can fill this into the "Window Title" field. The current position and size
of the workspace window is used to determine the default size and position of the dialog
box window when it is popped up, so you should change the workspace window’s size and
position (using the standard window manager mechanisms) before hitting OK in the Save
dialog box.

If you want the gadget to be defined in a Lisp package other than USER, then you can fill
this into the "Package name" field.

Finally, if you have included the special OK-Cancel gadget in your workspace window, then
the "Function-for-OK name" field will be available. Type here the name of the function
you want to have called when the OK button is hit. The parameters to this function are
described in section 〈undefined〉 [Using], page 〈undefined〉.

After filling in all the fields, hit "OK" to actually save the file, or "Cancel" to abort and
not do the save.

If you have already read or saved a file, then the values in the Save dialog box will be based
on the previous values. Otherwise, the system defaults will be shown.

Note: There is no protection or confirmation required before overwriting an existing file.

12.6.7 Reading from a file

You can read files back into Gilt using the "Read..." command. This displays the dialog
box shown in Figure [readdialogbox], page 628. Press with the left mouse button in the
"Filename" field and type the name of the file to be read, then hit return.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 628

Read File

Reading...

Filename: /usr/bam/garnet/gilt/test1.lis

OK Cancel

Add to existing objects

Replace existing objects

Figure 12.9: The dialog box that appears when the Read command is hit.

If there are objects already in the workspace window, then you have the option of adding
the objects in the file to the ones already in the work window using the "Add to existing

objects" option, or else you can have the contents of the workspace window deleted first
using the "Replace existing objects" option. If you use the "Replace" option, then the

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 629

window size is adjusted to the size specified when the file was written. Also, reading a file
using the replace option puts the previous contents of the workspace window in the delete
stack so that they can be retrieved using the "Undo Last Delete" command.

Output produced from the GarnetDraw utility program can be read into Gilt, which would
allow more elaborate decorations to be added to a dialog box. But in general, only files
written with Gilt can be read with Gilt.

12.6.8 Value and Enable Control

A sophisticated module for modifying the values of gadgets in the Gilt work-window has
been added, along with a corresponding module to modify when a gadget should be active
(or grayed-out). These are called the Value Control and Enable Control modules, and
can be invoked from the "Control" submenu in the Gilt menubar.

These modules implement the ideas discussed in [GiltDemo]. The paper includes examples
of how to use this feature, but a full set of documentation is still pending. If there is
sufficient demand for documentation of this module, we will supply an addendum to this
chapter (direct requests to garnet@cs.cmu.edu).

12.7 Run Mode

To try out the interface, just click on the button in the command window labeled "Run".
This will grey out most of the commands, and allow the gadgets in the work window to
execute as they will for the end user (except that application functions will not be called).
To leave run mode, simply press on the "Build" button.

12.8 Hacking Objects

Gilt does not provide all options for all objects and gadgets. If you want to change other
properties of objects that are not available from the property sheets, you could hit the
HELP key while the mouse is positioned over the object to bring up the Inspector (see the
Debugging chapter, starting on page [No value for “debug”] for details).

You can also access the selected object directly from Lisp. If one object is selected, its
name is printed in the command window. Also the variable user::*gilt-obj* is set
with the single selected object. If multiple objects are selected, then user::*gilt-obj*

is set with the list of objects selected. You can go into the Lisp listener window, and
type Garnet commands to affect the selected object (e.g., s-value some slots), and call
(opal:update-all). This technique can also be used to add extra slots to objects. The
changes you make will be saved with the object when it is written.

12.9 Using Gilt-Created Dialog Boxes

There are various ways to use Gilt-created collections of gadgets in an application.

The file that Gilt creates is a normal Lisp text file that creates the appropriate Garnet
objects when loaded. The file should be compiled along with your other application files,
in order to provide better performance.

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 630

12.9.1 Pop-up dialog box

Probably the easiest way to use a set of gadgets is as a pop-up dialog box. The application
should be sure to load the file that Gilt created before calling the functions below.

When Gilt writes out the gadgets, it does not save the values as the initial defaults. There-
fore, if you want to have default values for any gadgets, you need to set them from your
program. This should be done before the window is displayed using the function:

gilt:Set-Initial-Value top-gadget gadget-name value[function], page 90

The top-gadget is the top-level gadget name specified in the "Top-level Gadget name"

field of the Save dialog box. The gadget-name is the name of the particular gadget to be
initialized. This name will be a keyword, and will have been specified as the KNOWN-AS

property of the gadget using the gadget’s property sheet (which appears when you hit the
"Properties..." command). The value is the value to be used as the default, in the
appropriate format for that gadget.

Next, the Gilt function show-in-window can be used to display the dialog box in a window:

gilt:Show-In-Window top-gadget &optional x y modal-p[function], page 90

The top-gadget is the gadget name used in the Save dialog box. The size of the window is
determined by the size of the workspace window when the file was written. The position
of the window will either be the position when written, or it can be specified as the x
and y parameters, which are relative to the screen’s upper-left corner. When the modal-p
parameter is T, then interaction in all other Garnet windows will be suspended until the
window goes away (e.g., when the user clicks the "OK" button). If you want the window
relative to a position in another window, the function opal:convert-coordinates is useful.

The function show-in-window-and-wait performs the same function as show-in-window,
but it waits for the user to click on an OK or Cancel button before returning (show-in-
window returns immediately after bringing up the window).

gilt:Show-In-Window-And-Wait top-gadget &optional x y modal-p[function],

page 90

When the user clicks on the OK button, this function will return the values of all the gadgets
in the dialog box in the form of gilt:gadgets-values, which is:

((:FILENAME "/usr/bam/garnet/t1.lisp") (:VAL 49) (:BUTTON "Start"))

where the keywords are the names (:known-as slot) of the gadgets. If the user hits Cancel,
then show-in-window-and-wait returns nil. Apply does not cause the dialog box to go
away, so you might want to supply an OK-Function for the dialog box.

If selection functions were specified in the gadget’s select-function slot using the
"Properties..." command, then these functions are called immediately when the gadgets
are used.

If the dialog box has an OK-Cancel or OK-Apply-Cancel gadget in it, then the function
specified in the "Function-For-OK name" field of the Save dialog box will be called when
the user hits the OK or Apply buttons. This function is parameterized as:

(lambda (top-gadget values)

The top-gadget is the same as above. The values parameter will be a list containing pairs
of all the gadget names of gadgets which have names, and the value of that gadget. Again,

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 631

the names are the keywords supplied to the KNOWN-AS property. For example, values might
contain:

((:FILENAME "/usr/bam/garnet/test1") (:REINITIALIZE NIL))

The function

gilt:Value-Of gadget-name values[function], page 90

can be used to return the value of the specific gadget named gadget-name from the values
list values. For example, if v is the above list, then (gilt:value-of :filename v) would
return "/usr/bam/garnet/test1".

After the Function-For-OK is called, the dialog box window is made invisible if OK was
hit, and left in place if Apply was hit. If Cancel was hit, then the window is simply made
invisible. If show-in-window is called again on the same dialog box, the old window is
reused, saving time and space.

To destroy the window associated with a gadget, use the function:

gilt:Destroy-Gadget-Window top-gadget[function], page 90

This does not destroy the top-gadget itself. Note that destroying the top-gadget while the
window is displayed will not destroy the window. However, destroying the window explicitly
(using opal:destroy) will destroy both the window and the gadget.

12.10 Using Gilt-Created Objects in Windows

If you want to use the gilt-created gadgets inside of an application window, you only need
to create an instance of the top-gadget, which is the top-level gadget name specified in the
"Top-level Gadget name" field of the Save dialog box. The instance will have the same
position in the application window as it had in the Gilt workspace window. If you use the
standard Gilt OK-Cancel gadget, it will make the application window be invisible when the
OK or Cancel buttons are hit. If you do not want this behavior, then you need to create
your own OK-Cancel buttons.

The set-initial-value described above can still be used for gilt gadgets in application
windows. In addition, the function

gilt:Gadget-Values top-gadget[function], page 90

can be used to return the values list of all gadgets with names. The return value is in the
form of the values parameter passed to the Ok-Function.

12.11 Hacking Gilt-Created Files

Since the file that Gilt creates is a normal text file, it is possible to edit it with a normal
text editor. Some care must be taken when doing this, however, if you want Gilt to be able
to read the file back in for further editing. (If you do not care about reading the files back
in, then you can edit the file however you like.)

The simplest changes are to edit the values of slots of the objects. These edits will be
preserved when the file is read in and written back out. Be sure not to change the value of
the :gilt-ref slot.

When Gilt saves objects to a file, it sets the :constant slot of all the gadgets to T. If you
expect to ever change any properties of widgets in the dialog boxes when they are being
used by an application, then you should hand-edit the Gilt-generated file to change the

Chapter 12: Gilt Reference: A Simple Interface Builder for Garnet 632

constant value (typically by :excepting the slots you plan to change dynamically). (Gilt
reads in the file using with-constants-disabled, so the defined constant slots will not
bother Gilt.)

If you want to create new objects, then these can be put into the top level aggregadget
definition. You should follow the convention of having a :box (or :points) slot and putting
the standard constraints into the :left and :top fields (or :x1, :y1, :x2 and :y2). For
example, to add a circle, the following code might be added into the top-level aggregadget’s
:parts list:

(:mycircle ,opal:circle

(:box (50 67 30 30))

(:left ,(o-formula (first (kr:gvl :box))))

(:top ,(o-formula (second (kr:gvl :box))))

(:width 30)

(:height 30))

If you do not supply a :gilt-ref field, Gilt will allow the user to move the object around,
but not change its size or any other properties. For some objects, it might work to specify
the :gilt-ref slot as "TYPE-RECTANGLE", "TYPE-LINE" or "TYPE-TEXT".

If you add extra functions or comments to the file, they will not be preserved if the file is
written out and read in. Similarly, interactors added to the top level gadget will not be
preserved.

〈undefined〉 [References], page 〈undefined〉,

633

13 C32 Reference: A Constraint Editor

by Dario Giuse

14 May 2020

13.1 Abstract

C32 is an object and constraint editor for Garnet objects. It allows Garnet objects to be
viewed and edited using a spreadsheet-like interface. New values can be installed in the
slots of an object directly, or constraints can be defined among the objects.

13.2 Overview of C32

C32 [C32] is an object and constraint editor for Garnet objects. It allows Garnet objects to
be viewed and edited using a spreadsheet-like interface. Each object is viewed in a panel,
where each row corresponds to a slot in the object. The value of a slot can be changed
directly, by editing the value shown in the corresponding row. Constraints can be edited
textually in separate formula-editing windows.

C32 can be used as a stand-alone tool to create and edit Garnet objects. It is possible,
for example, to edit an existing object by typing its name in the title of a C32 panel, or
by pointing and clicking on an object with the mouse. In addition, C32 is integrated with
Lapidary, which uses it for several editing tasks that used to be handled specially.

Because it uses the spreadsheet paradigm, C32 is highly structured. Each object is repre-
sented as a panel, and all panels are organized horizontally in one long window. A horizontal
scroll bar allows different panels to be displayed in the window. Panels that contain more
than 12 slots are displayed with a vertical scroll bar, so more slots can be made visible as
desired.

C32 keeps the display of each panel up to date. When a slot is modified using C32, the values
displayed for other dependent slots are modified accordingly. Even if objects are changed
from outside C32 (using the Lisp listener or the mouse, for example), their corresponding
panels are always kept up to date.

13.3 Loading C32

To load C32, you load the file "garnet-c32-loader" and then type

(c32:do-go)

Note that if you are using Lapidary, you do not need to load C32 explicitly; Lapidary does
it automatically.

The function (c32:do-go) creates two windows: the C32 Commands window, which con-
tains the main commands used to control C32, and the spreadsheet window. Initially, the
spreadsheet window contains a single, empty panel whose title reads "Object name:". The
title of this panel can be edited to the name of an object, which is then displayed in the
panel.

The full syntax for do-go is as follows:

Chapter 13: C32 Reference: A Constraint Editor 634

[Function]c32:do-go &key (startup-objects nil) (test-p nil) (start-event-loop-p
t)

If <startup-objects> is specified, it should be a list of Garnet objects. When C32 is
started, it creates a panel for each object in the list, plus the empty panel. If <test-p>
is specified, a little test window is created with a few objects in it. C32 can then
be used to edit the objects in the window. Setting <start-event-loop-p> to nil cause
C32 to start up with the main-event loop not running.

13.4 The Spreadsheet Window

The spreadsheet window contains a list of panels, each displaying a Garnet object. Figure
[c32-spreadsheet], page 635, shows the spreadsheet window with a panel for a label-text

object and the empty panel. Each panel consists of a vertical scroller (using for displaying
more slots), a title, and up to 12 rows. Each row displays the contents of a slot.

Chapter 13: C32 Reference: A Constraint Editor 635

KR-DEBUG:LABEL-TEXT-15930

:String "Current packag ...

:Font KR-DEBUG:FONT-9 ...

:Left 10
:Top 172
:Width 109
:Height 14
:Visible T
:Line-Style OPAL:DEFAULT-LI ...

:Fill-Backgrou NIL
:Actual-Height NIL
:Draw-Function :COPY
:Window KR-DEBUG:INTERA ...

Object name:

Figure 13.1: C32 Spreadsheet Window with two panels.

The title of each panel shows the name of the object displayed in the panel. The title can
be edited by clicking the left mouse button over it, and then using the normal Garnet text
editing commands. Type Return to go ahead, and ^G if you do not want to make the
change. Entering the name of a different object in a panel’s title causes the panel to display

Chapter 13: C32 Reference: A Constraint Editor 636

the new object. If the object does not exist, C32 will ask you if you wish to actually create
a new object. Setting the title of a panel to be empty causes the panel to be removed from
the spreadsheet window; the object being displayed is unaffected, however. Setting the title
of the empty panel to an object’s name causes a new panel to be created for the object.

The left half of each row displays the name of the slot. The names of local slots are shown in
a roman face; the names of inherited slots are shown in italics. Slots that contain a formula
are indicated by an "F" on a dark circle. If the formula was inherited, this is indicated by
an "I" inside a circle, next to the formula symbol. The right half of each row displays the
value of the slot. If the value is inherited, an "I" inside a circle is shown at the far right of
the row.

At any time, you can have a primary selection and a secondary selection. The primary
selection is shown by a dark background, and is used for the majority of C32 operations
that require a slot or an object. You may change the primary selection by clicking the left
mouse button over a slot name, i.e., in the left side of a row. The secondary selection is
shown by a gray outline around a slot, and is used for operations that require two slots. You
may change the secondary selection by clicking the middle mouse button over a slot name.
Both primary and secondary selections are toggles, and can be eliminated by clicking over
them.

Panels allow you to modify objects, as well as displaying them. The value of a slot can be
edited by editing its text: first click on the value (in the right half of the row) to get a text
cursor, and then use the normal Garnet text editing commands. When you type Return,
the slot is set to the new value and the object is modified (type ^G if you do not want to
make the change). Note that the package shown in the Commands Window is used when
reading the value you type in. Setting the package appropriately ensures that you do not
have to type package qualifiers for every function and symbol.

The last row of a panel is always empty. Clicking in its left-hand half allows you to add
a slot to the object, or to display a slot that is currently not shown. When you click, you
start editing an (initially empty) slot name. If the slot is currently not shown, its current
value is displayed. If the slot is not present, it is created. Its initial value is inherited, if
possible; otherwise, it is set to nil. You may then edit the value (in the right-hand side).
As a special shortcut, it is also possible to enter a slot name and a value together; just type
the slot name, a space, and then the value.

The formula associated with a slot can also be edited using the spreadsheet window. Click
on the "F" symbol; this pops up a window that allows the formula to be edited, as explained
below. This mechanism also let you create formulas for slots that do not yet contain one:
simply click on the place where the "F" symbol would be, and a new formula window will
appear. You may then type the text for the new formula. Note that editing the value of
a slot that contains a formula is equivalent to doing an s-value on the slot with the new
value: the old value is temporarily replaced, but the formula is unaffected.

13.5 Editing Formulas

Formulas can be edited in special editing windows. When you click on the "F" symbol of
a slot in the spreadsheet window, a window is created in which you can edit the textual
representation of the formula. If you click on the "F" symbol and a window already displays
that formula, the window is simply moved to the front. If you click on the "F" symbol of a

Chapter 13: C32 Reference: A Constraint Editor 637

slot that contains a value, the value is shown as the initial text for the (yet to be created)
formula.

Figure [c32-formula], page 638, shows the C32 formula window for the :left slot of the
object shown in Figure [c32-spreadsheet], page 635. A formula window contains a header,
a vertical scroller, and a text window. The header displays the name of the object and the
slot upon which the formula is installed, and contains five buttons. The scroller allows you
to examine different portions of long formulas.

Chapter 13: C32 Reference: A Constraint Editor 638

KR-DEBUG:LABEL-TEXT-15930
slot :Left

OK Cancel

Insert Function Insert From Spread Insert From Mouse

 (KR:GVL :PARENT :LEFT)

Figure 13.2: The C32 formula window for the :left slot.

When the formula window is created, the text cursor is initially positioned at the top left
of the text. The cursor can be moved, and the text can be edited, using the normal Garnet
text editing operations. Note that typing the abort character (^G) in a formula window

Chapter 13: C32 Reference: A Constraint Editor 639

has no effect; click the Cancel button if you really want to abort the current changes to the
formula’s text.

The five buttons in the header include the OK and Cancel button, plus three buttons that
can be used to reduce typing when the formula is being edited. The "OK" button installs
the expression currently displayed in the formula window into the slot of the object, and
hides the formula window. If errors are detected (for example, because the syntax in the
formula expression is illegal), you will see an error message and the formula window will
remain on the screen. The "Cancel" button removes the window without modifying the
formula that is currently installed on the slot.

The "Insert Function" button pops up a menu with the names of functions that are com-
monly used in formulas. In addition to floor, max, and the like, the menu includes the
functions from the opal:gv- family. Select a function from the menu by clicking the left
mouse button over it; this will show the function’s name in reverse video. Clicking on the
"Insert Function" button will now insert the selected function, enclosed in parentheses, at
the cursor position in the formula window.

The "Insert From Spread" button inserts a reference to the object and slot that are currently
selected in the spreadsheet window into the formula being edited. C32 detects whether the
selected object is the same as the one that contains the formula, and if so, it generates a
simple reference using gvl.

The "Insert From Mouse" button is similar, except that it allows you to select the target
object using the control-left mouse button. The button pops up a dialog box through
which you may select an object. C32 will attempt to guess a slot; for example, if you click
control-left on the left part of a string, it will insert the :left slot. If C32 cannot guess
any slot, it leaves the slot name blank. When the appropriate object (and possibly slot) is
shown in the dialog box, clicking the "Apply" button will insert a reference into the formula
window. Clicking the "OK" button will do the same, and hide the dialog box as well.

13.6 The Commands Window

This window contains a menu with C32 commands that apply to the spreadsheet window,
and is shown in Figure [c32-commands], page 640. Many of the buttons in the Commands
Window operate on the slot that is currently selected in the spreadsheet window. The
window also displays the current package that is used by C32 to interpret Lisp values and
expressions (for example, when you type a value or a formula). The package can be changed
by editing the string in the box.

Chapter 13: C32 Reference: A Constraint Editor 640

Point To Object...

Slots Using Me

Slots I Use

Clear References

Delete Slot

Hide Slot

Show All Slots

Copy Formula

Quit

Current package: USER

Figure 13.3: The C32 Commands Window.

The meaning of each group of buttons is explained below.

Chapter 13: C32 Reference: A Constraint Editor 641

13.7 [Point To Object]

This button pops up a dialog box that allows an object to be added to the spreadsheet
window by pointing and clicking with the mouse. The dialog box explains how to select
objects (by clicking control-left) and how to move from one object to another underneath
it. Clicking control-left on any Garnet object inserts the name of the object in the dialog
box.

Once the name of the desired object is displayed in the dialog box, you can click the Apply
button (which creates a new panel displaying the object), the OK button (which does the
same thing and then hides the dialog box), or the Cancel button.

13.8 [Showing references to other slots]

Three buttons are used to show references, i.e., dependencies among slots. Clicking on
the "Slots Using Me" button displays green arrows that indicate what formulas (in objects
currently shown in C32) use the selected slot. The arrows originate on the Formula symbol
of the dependent slots, and point to the value portion of the selected slot. If a dependent
slot belongs to another object, and that object is shown in a panel, the arrow is drawn to
the other panel.

Clicking on the "Slots I Use" button of a slot that contains a formula shows red arrows
from the formula symbol to all the slots (currently shown in C32) upon which the formula
depends. These arrows are heavier than the ones discussed previously, and they point to
the slot side, rather than the value side.

Clicking on the "Clear References" button eliminates all currently displayed reference ar-
rows. This operation does not alter any internal value, of course.

13.9 [Deleting, hiding, and showing slots]

The "Hide Slot" button causes the selected slot to be eliminated from the C32 panel. The
value of the slot in the object is unaffected. The "Show All Slots" button causes all slots
in the selected object to be displayed in the panel.

The "Delete Slot" is used to delete the currently selected slot from the actual object. Care
should be taken, because this is a destructive operation. Trying to delete some of the most
important slots prompts for confirmation.

13.10 [Copy Formula]

The "Generalize Formula" button allows a function to be created by generalizing the formula
associated with the current slot. Generalizing a formula means that a function is created in
which hard-wired references to objects and slots are replaced by parameters. The function
can then be used as a more general expression, for example inside other formulas. This
button pops up a dialog box that allows you to type the name of the function to be created,
and to select names for object and slot references. When you click OK, the definition of
the new function is printed in the Lisp listener window.

The "Copy Formula" button copies the formula installed on the secondary-selected slot to
the slot that corresponds to the primary selection. A box pops up to make sure this is what
you want to do.

Chapter 13: C32 Reference: A Constraint Editor 642

13.11 [Quit]

This button causes C32 to destroy all its windows and exit. If C32 was started up from
Lapidary, however, the windows are simply temporarily hidden, so that C32 can start up
faster the next time.

13.12 C32 Internals

The list of slots to be displayed in a panel is kept in the :slots-to-show slot of Garnet
objects. In most cases, this slot is inherited. If you are creating new types of objects, you
may want to set the :slots-to-show slot appropriately in the prototype, so that C32 will
display only relevant slots when it shows an instance in a panel.

It is probably a good idea not to try to edit the contents of the :slots-to-show slot using
C32 itself.

The current version of C32 is not very optimized; redisplaying and scrolling panels, in
particular, is rather inefficient. We hope to make its performance better in the next release.

〈undefined〉 [References], page 〈undefined〉,

643

14 Lapidary Reference

by Brad T. Vander Zanden, David Bolt

14 May 2020

14.1 Abstract

This document describes the features and operations provided by Lapidary, a graphical
interface builder that allows a user to pictorially specify all graphical aspects of an ap-
plication and interactively create much of the behavior. Lapidary allows a user to draw
most of Opal’s objects, combine them into aggregadgets, align them using iconic constraint
menus or custom constraints, and create behaviors by entering appropriate parameters in
dialog boxes representing each of Garnet’s interactors, or by demonstrating the appropriate
behavior for feedback objects.

14.2 Getting Started

To load Lapidary, type ((load garnet-lapidary-loader)) after Garnet has been loaded, or
type ((defvar load-lapidary-p t)) before Garnet is loaded, and Garnet will automatically
load Lapidary when the Garnet loader file is invoked. To start Lapidary, type ((lapidary:do-
go)). This will cause Lapidary to come up in its initial state with the following windows:

editor-menu: This menu contains a set of functions that deal with aggregadgets, con-
straints, saving and restoring objects, deleting objects, and setting properties of objects.

shapes menu: This menu allows the designer to create opal graphical objects and
windows.

box-constraint menu: This menu allows the designer to attach constraints to an object
that control its left, top, width, and height.

drawing window: This window allows the designer to create new objects or load objects
from existing files.

14.3 Object Creation

Lapidary allows new objects to be created from scratch, loaded from pre-defined gadgets
files, or created directly in Garnet and then linked to a Lapidary window. The shapes menu
displays the primitive graphical objects that can be created in Lapidary.

Chapter 14: Lapidary Reference 644

text

multi-text

window

bitmap

horizontal list

vertical list

Figure 14.1: Shapes menu

The first six geometric shapes can be created by selecting the appropriate menu-item and
sweeping out the item in a drawing window with the right mouse button down. Feedback
corresponding to the selected shape will be shown as the object is swept out. Properties

Chapter 14: Lapidary Reference 645

such as line-style, filling-style, and draw-function can be set from the corresponding property
menus (see section Section 14.10 [Properties], page 672).

To create a single line of text, select text and then click where you want the text to start.
A cursor will appear and one line of text can be entered from the keyboard. For more than
one line of text use multi-text. Single-line text can be terminated with either a mouse click
or by hitting RETURN but, multi-line text can only be terminated by a mouse click.

To create a window, select the (window) menu-item and Lapidary will create a new window.
Since, new windows initially have the same size and location as the draw window, they must
be moved in order to expose the original draw window.

Bitmaps can be loaded by selecting the (bitmap) menu-item. Lapidary brings up a dialog
box that allows the user to enter the name of an image file and the window that the bitmap
should be placed in. The window name is obtained from the title border that surrounds a
window or the name that appears in the icon for the window.

To create a horizontal or vertical list, first select a prototype object. Then select horizontal
or vertical list and sweep out the list. A property sheet will appear that can be used to
set parameters that control the list’s appearance. A description of the parameters can be
found in the chapter on aggregadgets and aggrelists.

14.4 Selecting Objects

Lapidary permits two types of selections: primary selections and secondary selections. Pri-
mary selections are denoted by black grow boxes that sprout around the perimeter of an
object; secondary selections are denoted by white grow boxes. Most operations do not
distinguish between these two types of selections and will operate in the same way on
both types of selections. However, two operations, attaching a constraint to an object and
defining parameters for an object, do make this distinction.

Lapidary provides two types of selection modes (Figure [lapidary-editor-menu], page 646):
a “leaves” mode which causes Lapidary to select leaf elements of an aggregate, and a “top-
level objects” mode which causes Lapidary to select top-level aggregates (objects that do
not belong to an aggregate will be selected in either mode). To aid the user in determining
whether they have selected a leaf or aggregate element, Lapidary uses different types of
selection handles, rectangular handles for leaf elements and circular handles for aggregates
(Figure [selection], page 650). If the object is too small to accomodate 8 selection handles,
either a thin or thick-lined arrow is used to highlight the selection, depending on whether
the object is a leaf or aggregate object (Figure [selection], page 650).

In either mode, additional clicks over the selected object will cause Lapidary to cycle through
the aggregate hierarchy. For example, when the user clicks on the label shown in Figure
[aggregate-hierarchy], page 647.a, and Lapidary is in “top-level objects” mode, the entire
list element is selected (Figure [selection-techniques], page 648.a). If the user clicks on the
label again, the label is selected (Figure [selection-techniques], page 648.b). Clicking once
more with the mouse causes the key-box to become selected (Figure [selection-techniques],
page 648.c). Finally, one more click causes the list element to be selected, at which point
the cycle repeats itself. In “leaves” mode, the label would be the first object selected, then
the key box, and finally the list element.

Chapter 14: Lapidary Reference 646

editor menu
File Edit Properties Arrange Constraints Other

Test/Build Mode:

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

test

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

build

Selection Mode:

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

leaves

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

top-level objects

Figure 14.2:

The user can cause Lapidary to select leaves of aggregates or top-level aggregates by choosing
the appropriate selection mode in the editor menu window.

Chapter 14: Lapidary Reference 647

24

list element

key-box

 pointer-box

frame pointerframe label

24
line arrowhead

(a) (b)

Figure 14.3:

A list element (a) and the objects used to build this list element (b).

Chapter 14: Lapidary Reference 648

24 24 24

(a) (b) (c)

Figure 14.4:

As the user repeatedly clicks the mouse button over an object, the selection cycles through
the aggregate hierarchy shown in Figure [aggregate-hierarchy], page 647. If Lapidary is
in “top-level objects” mode, then the list element is initially selected (a). A second click
selects the label (b), and a third click selects the key-box (c).

Chapter 14: Lapidary Reference 649

Lapidary provides the usual range of selection operations found in drawing editors, select,
add to selection, deselect, remove from selection, select/deselect in region. These operations
are supported for both primary and secondary selections. In addition, Lapidary allows the
user to select covered objects by pointing at an already selected object and requesting that
the object directly covered by the selected object be selected.

Section [mouse-commands], page 651, provides specific details on each of the selection op-
erations.

Chapter 14: Lapidary Reference 650

Figure 14.5: Different types of selection objects. Squares are for primitive graphical objects,
circles are for aggregadgets, and arrows are for objects too small to accommodate grow
boxes.

Chapter 14: Lapidary Reference 651

14.5 Mouse-Based Commands

Lapidary is primarily a mouse-based system so it is important to know which mouse buttons
correspond to which operation. These bindings are set in the file mouse-bindings.lisp and
may be edited. Currently the following operations can be bound to mouse buttons (the pair
following each entry shows the default and the variable that must be changed to modify the
default):

Primary Selection (leftdown, *prim-select-one-obj*): The user can either point at a
particular object and make it the primary selection, or sweep out a rectangular region
of the screen and make all objects that intersect the region be primary selections.
This operation causes the previous primary selections to be deselected. If the mouse
is not pointing at any objects, all primary selections are deselected. Each successive
mouse click over the same object moves the selection one level higher in the aggregate
hierarchy, until the top-most level is reached, at which point the selection process cycles
back to a leaf (if the selection is initially a top-level object, the next click cycles to the
leaf).

Secondary Selection (middledown, *sec-select-one-obj*): Same as primary selection but
makes a secondary selection.

Deselect Primary Selection (control-leftdown, *primary-deselection-button*): This op-
eration allows the user to deselect primary selections. The user can either point at a
specific object or sweep out a rectangular region, in which case all objects that intersect
this region will be deselected (if they are primary selections).

Deselect Secondary Selection (control-middledown, *secondary-deselection-button*):
Same as Deselect Primary Selection except secondary selections are deselected.

Primary Select Covered Object (shift-control-leftdown, *prim-push-sel-under-button*):
This operation allows the user to select covered objects. When the user points at a
particular area of the screen, Lapidary determines which object is currently selected,
and then deselects it and primary selects the first object that it covers. If no object
under the mouse is selected, Lapidary primary selects the top object. If multiple objects
under the mouse are selected, Lapidary finds the first unselected object which is under a
selected object, selects the unselected object, and deselects the topmost selected object.

Secondary Select Covered Object (shift-control-middledown, *sec-push-sel-under-
button*): Same as Primary Select Covered Object except a secondary selection is
made.

Add to Primary Selection (shift-leftdown, *prim-add-to-select*): Same as Primary
Selection except previously selected objects remain selected. Covered objects that are
selected are automatically added to a selection, rather than causing previously selected
objects to be deselected. Multiple clicks with the (Add to Primary Selection) button
over the selection handles of a covered object will cause the selection to cycle through
the aggregate hierarchy (Figure [covered-selection], page 653).

Add to Secondary Selection (shift-middledown, *sec-add-to-select*): Same as add to
primary selection but adds to secondary selection.

Move Object (leftdown, *move-button*): This operation allows the user to move an
object around the window. The user must point at one of the eight “grow” boxes
around the perimeter of box objects, or one of the three “grow” boxes attached to line

Chapter 14: Lapidary Reference 652

objects or the arrow if the object is too small to contain grow boxes. If the object is
a box object and the user points at one of the corner boxes, the object can move in
any direction, if the user points at one of the side boxes, the object can move in only
one direction (along the x-axis if the left or right side is chosen and along the y-axis if
the top or bottom side is chosen). If the object is a line object, Lapidary will attach
the mouse cursor to the point designated by the grow box (either an endpoint of the
line or its midpoint) and move the line in any direction. If the object is undersized so
that the object does not have grow boxes but instead is pointed at by an arrow, then
pointing at the arrow will cause the cursor to be attached to the northwest corner of
the object and the object can be moved in any direction.

Grow Object (middledown, *grow-button*): This operation allows the user to resize
an object. The user must point at one of the eight “grow” boxes around the perimeter
of the object if the object is a box, one of the endpoint “grow” boxes attached to the
object if the object is a line, or the arrow that points at the object if the object is too
small to contain the grow boxes. If the object is a box object and the user points at one
of the corner boxes, both the object’s width and height can change, if the user points
at one of the side boxes, only one of the object’s dimensions will change (the width if
the left or right side is chosen, the height if the top or bottom side is chosen). If the
object is a line object, Lapidary will attach the mouse cursor to the point designated
by the grow box and move that endpoint while holding the other endpoint fixed. If the
object is undersized so that the object does not have grow boxes but instead is pointed
at by an arrow, then pointing at the arrow will cause the cursor to be attached to the
northwest corner of the object and the object’s width and height will both change.

Object Creation (rightdown, *obj-creation-button*): The user sweeps out a region of
the screen and Lapidary creates the object selected in the shapes menu.

Copy Object (shift-rightdown, *copy-button*): This operation allows the user to create
a copy of an object and position it in a window (copies of an object can also be
created using the (make copy) command in the editor menu window, see Section [edit-
commands], page 660, for details). The user must point at one of the eight “grow”
boxes around the perimeter of box objects, or one of the three “grow” boxes attached
to line objects or the arrow if the object is too small to contain grow boxes. The selected
“grow” box constrains the initial movement of the new object (see (Move Object) for
a description of how the “grow” boxes constrain movement).

Instance Object (control-rightdown, *instance-button*): This operation allows the user
to create an instance of an object and position it in a window (instances of an object
can also be created using the (make instance) command in the editor menu window,
see Section [edit-commands], page 660, for details). The user must point at one of the
eight “grow” boxes around the perimeter of box objects, or one of the three “grow”
boxes attached to line objects or the arrow if the object is too small to contain grow
boxes. The selected “grow” box constrains the initial movement of the new object (see
(Move Object) for a description of how the “grow” boxes constrain movement).

Text Editing (rightdown, *obj-creation-button*): The user can edit a selected text
object by pointing at it and clicking with the object creation button. The user can use
any text editing command described in the interactors chapter and clicks down on the
mouse button to indicate that editing is complete.

Chapter 14: Lapidary Reference 653

24 24 24⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

(a) (b) (c)

Figure 14.6: Selecting a covered object in “leaves” mode. The label is covered by an
xor feedback object, so the feedback object is the initial selection (a). Clicking the (shift-
control-leftdown) mouse button pushes the selection down to the covered label (b). Clicking
the add to selection button ((shift-leftdown) over the feedback arrow causes the selection
to cycle up to the next level in the aggregate hierarchy, in this case, the key-box (c).

Chapter 14: Lapidary Reference 654

Drawing Window 4

24

Drawing Window 4

24

Drawing Window 4

24 24

(a) (b) (c)

Figure 14.7:

Objects can be duplicated or instanced by clicking on one of the selection handles (a),
dragging the new object to the appropriate location (b), and dropping it (c).

Chapter 14: Lapidary Reference 655

14.6 Editor Menu Commands

The commands in Lapidary’s pull down menu (Figure [lapidary-editor-menu], page 646)
provide a set of commands for saving and restoring objects, manipulating aggregadgets,
applying constraints, and editing properties.

14.7 File

(Save Gadget:) Objects are written out using (opal:write-gadget), so the file contains
a series of create-instance calls. The value in the object’s (:known-as) slot is passed as
the name parameter to create-instance. For example, if the object’s (:known-as) slot
is (:white-rect) and the object is a rectangle, the first line of the create-instance would
be

(create-instance ’white-rect opal:rectangle)

Primary selections are saved before secondary selections, so it is best to make prototypes
primary selections and instances of these prototypes secondary selections. The user can
also save an entire window by having no objects selected and typing in the string that
appears in a window’s title bar or icon in the corresponding area of the dialog box.

Lapidary looks at each saved object to determine if the object has any links which Lap-
idary thinks should be parameters. If Lapidary finds any such links, it pops up the link
parameters dialog box and asks the user if these links should be made into parameters
(see Section [parameters], page 665). Pressing either the (OK) or (CANCEL) buttons
in the link parameters dialog box allows Lapidary to continue. The (CANCEL) but-
ton in the link parameters dialog box will not cause Lapidary to discontinue the save
operation, it will simply cause Lapidary to proceed to the next object.

Chapter 14: Lapidary Reference 656

Saving...

Filename:

Top-level Gadget name: TEMP-GADGET

Window Title:

Package name: USER

OK Cancel

Export Gadgets?

Figure 14.8: Save file dialog box

(Load Gadget:) Requests the name of a file and then loads it (Figure [load-dialog-box],
page 657). Lapidary expects a variable named *Garnet-Objects-Just-Created* to be
initialized in the user package which contains the names of the created objects. If the
user selects the option Replace existing objects, then the objects in the loaded file

Chapter 14: Lapidary Reference 657

will replace the current objects in the drawing window. If the user selects the option
Add to existing objects, then the objects in the file will be added to the existing
objects in the window.

Read File

Reading...

Filename:

Windowname: Drawing Window 3

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

OK
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Cancel

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Add to existing objects

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Replace existing objects

Figure 14.9: Load file dialog box

Chapter 14: Lapidary Reference 658

(Add Gadget:) Users may create objects in the lisp listener and then link them to a
Lapidary window. (add-gadget) pops up a dialog box that requests the name of the
object to be added and the name of a window to place the object in (Figure [add-
gadget-fig], page 659). The name of the object should be the one used in the call to
create-instance. For example, the object created by (create-instance ’my-gadget

opal:rectangle) is named “my-gadget”. The name of the window should be the name
that appears in the window’s title bar or in its icon.

Chapter 14: Lapidary Reference 659

Adding Gadget...

Gadgetname:

Windowname: Drawing Window 1

add this object

add an instance of this object

OK Cancel

Figure 14.10: Add gadget dialog box

The user has the option of either adding the object itself or an instance of the object
to Lapidary. If the user decides to add the object itself and the object has instances,
Lapidary will pop up a warning box indicating that editing this object could have
unintended consequences on other applications that use this object. For example, it

Chapter 14: Lapidary Reference 660

is better to add an instance of a garnet gadgets text button rather than the actual
button defined in the gadgets package, since editing the actual button is likely to cause
Lapidary to fail (Lapidary uses garnet gadgets text buttons).

(Quit:) Allows the user to exit Lapidary. It is suggested that before rebooting Lapidary,
that the user create a new lisp listener and reload Garnet.

14.8 Edit

(Make Instance:) Creates an instance of the selected object. The selected object is the
new object’s prototype.

(Make Copy:) Creates a copy of the selected object. The value of each slot in the
selected object will be copied to the new-object. The new object will have the same
prototype as the selected object, and thus will inherit from the selected object’s pro-
totype rather than the selected object.

(Delete Object:) Destroys all selected objects.

(Delete Window:) Pops up a dialog box and asks the user to input the name of a
window that appears in a window’s title bar or icon. Lapidary then destroys the
window.

14.9 Properties

Lapidary contains four property menus that control an object’s line-style, filling-style, draw-
function, and font. The line-style and filling-style menus (Figures [shade-menu], page 661,
and [line-menu], page 662) provide a set of commonly used styles, an “Other” option which
prompts the user for the name of a style, and a “Constraint” option that allows the user
to enter a custom constraint that defines the style (see Section [constraints], page 674, for
information on how to enter a custom constraint). The color button pops up a color menu
that allows the user to select a pre-defined color or create a new color by mixing hues of
red, green, and blue.

(Filling Style:) Allows the user to set the filling style of selected objects.

Chapter 14: Lapidary Reference 661

Fill-Style:

None

Other:

OK Cancel

Constraint

Color

Figure 14.11: Filling styles that can be attached to objects in Lapidary

(Line Style:) Allows the user to set the line style of selected objects.

Chapter 14: Lapidary Reference 662

OK Cancel

Line-Style:

Constraint

Color

None

Other:

Figure 14.12: Line styles that can be attached to objects in Lapidary

(Draw Function:) Allows the user to set the draw function of all selected objects. The
Opal chapter describes draw functions in more detail.

Chapter 14: Lapidary Reference 663

Copy Xor And Or

Clear Set No-Op

Copy-Inverted Invert Equiv

Nand Nor And-Inverted

And-Reverse Or-Inverted Or-Reverse

Draw Function

Others

OK Apply Cancel

Figure 14.13: Draw functions that can be attached to objects in Lapidary

(Name Object:) Requests a name from the user (no quotes should be used), converts it
to a keyword, and stores it in the :known-as slot of the selected object (if there is more
than one selected object, Lapidary will rename the last object the user selected; name
object does not distinguish between primary and secondary selections). Lapidary also

Chapter 14: Lapidary Reference 664

creates a link with this name in the object’s parent that points to this object. When
an object is saved, it will be assigned this name.

(List Properties:) Brings up a property list for horizontal and vertical lists. This
property list allows the user to modify any of the customizable slots of an aggrelist.
The list of customizable slots can be found in the Aggrelists chapter.

(Text Properties:) Allows the user to choose a standard Opal font, to request a font
from one of the directories on the user’s font path, to request a font from an arbitrary
directory, or to enter a custom constraint that determines the font (Figure [text-menu],
page 665). It also allows the user to enter a custom constraint that determines the
string of a text object.

Chapter 14: Lapidary Reference 665

Text-Properties OK

:font

Standard Fonts

Family Serif Sans-Serif Fixed

Size Small Medium Large Very-Large

Face Roman Italic Bold Bold-Italic

Font From File

Font-Name

Default Font Path or Font-Path

<Formula> Unconstrain

:string

Generate Text from Formula Remove Text Formula

Figure 14.14: Lapidary’s text properties menu

(Parameters:) Allows the user to specify that one or more slots in an object should
be parameters (Figure [parameters-fig], page 667). A slot that is a parameter will
have its value provided at run-time by the application. To create parameters, the user
must make both a primary and a secondary selection. The primary selection is the

Chapter 14: Lapidary Reference 666

object whose slots are being made into parameters and the secondary selection is the
object that the parameters will retrieve their values from. Typically the secondary
selection will be the top-level aggregadget that contains the object, since the top-level
aggregadget is the only object that the application should know about (an application
should not be required to know the parts of an aggregadget). For example, if a label
text object belongs to an aggregadget, the user might make the label the primary
selection and the aggregadget the secondary selection. If the object is already at the
top-level, then the object should be both the primary and secondary selection.

Chapter 14: Lapidary Reference 667

Parameters

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

OK
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Cancel

If a slot should be a parameter, enter the name of
the slot in the secondary selection that it should
retrieve its value from. If you do not want a slot
to be a parameter, just leave the text box next to
it blank (or make it blank it it currently contains
the name of a slot.

:FONT

:STRING

:LINE-STYLE

:DRAW-FUNCTION

:font

:value

Select the following button to get a list of objects
that are referenced by the primary selection, and
which lapidary thinks should be parameters. If there
are no such objects, nothing will appear.

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

link parameters

Figure 14.15: Parameters dialog box

To turn a slot into a parameter, select the text box next to the slot and enter the name of
the slot in the secondary selection that the slot should retrieve its value from. In Figure
[parameters-fig], page 667, the label’s (string) slot retrieves its value from list element’s
(value) slot, and the (font) slot retrieves its value from the list element’s (font) slot.

Chapter 14: Lapidary Reference 668

To make the slot no longer be a parameter, make the slot’s text box be blank. Lapidary
maintains a list of slots for each objects that can be turned into parameters. If the user
wants to parameterize a slot that is not displayed in the parameters dialog box, the
user can bring up C32 and place a formula in the desired slot that retrieves its value
from the top-level aggregadget.

Chapter 14: Lapidary Reference 669

link parameters

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

OK
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Cancel

Some of the slots in the object reference objects that might be parameters. These objects
are listed below, along with the slots that reference them. If you make any of these objects
into parameters, Lapidary will create formulas that cause the slots to retrieve the parameters
from the object labeled ’parameters object’.

If you want to see the object labeled ’object:’, select the object’s name with the left mouse
button and the object will be flashed on the display.

If you want to make an object a parameter, enter the parameter name in the blank box next to each
object. This name must be a slot name (e.g., :string). If the user has already provided a name,
Lapidary puts it in the box.

If you do not want an object to be a parameter, just leave its parameter box blank (or make it
blank if Lapidary has put a name in there).

If you want to see one of the referenced objects, select the object’s name with the left mouse
button and the object will be flashed on the display.

For more information on this operation, see the Lapidary reference manual.

object:

parameters object:

TRANSPARENT-THIN-ARROW-LINE-25038

TRANSPARENT-THIN-ARROW-LINE-25038

:from-obj

:to-obj

TRANSPARENT-THIN-LINE-RECTANGLE-25026

TRANSPARENT-THIN-LINE-RECTANGLE-25028

 :X1 :Y1

 :X2 :Y2

object referenced by slots parameter name

Figure 14.16: Link parameters dialog box

The link parameters button in the parameters dialog box allows the user to specify
links that should be parameters. Links are used by Lapidary-generated constraints
to indirectly reference other objects. For example, when the user creates a constraint
that attaches the endpoint of a line, say (arrow1) to a rectangle, say (rect1), Lapidary

Chapter 14: Lapidary Reference 670

generates a link in (arrow1) that points to (rect1). When a link references an object
that is not part of the primary selection’s top-level aggregadget, Lapidary guesses
that this link should be a parameter and displays it in the link parameters dialog box
(Figure [link-parameters], page 669). For each such link, Lapidary displays the value of
the link, the slots that reference the link, and a parameter name, if any, that the user
has assigned to this link. The user can change this parameter name by editing it, or
can indicate that this link should not be a parameter by making the parameter name
blank.

Chapter 14: Lapidary Reference 671

Parameters

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

OK
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Cancel

If a slot should be a parameter, enter the name of
the slot in the secondary selection that it should
retrieve its value from. If you do not want a slot
to be a parameter, just leave the text box next to
it blank (or make it blank it it currently contains
the name of a slot.

:FONT

:STRING

:LINE-STYLE

:DRAW-FUNCTION

:items

:items

Select the following button to get a list of objects
that are referenced by the primary selection, and
which lapidary thinks should be parameters. If there
are no such objects, nothing will appear.

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

link parameters

Figure 14.17: Parameters dialog box for an Aggrelist

To make a slot depend on an :items list in an aggrelist, make any object in the aggrelist
be a primary selection and make the aggrelist be the secondary selection. Then enter
:items in the labeled box for any slot on the parameters menu that should get its value
from :items. For example, suppose the prototype object for a list is a text object

Chapter 14: Lapidary Reference 672

and the string and font slots of the text object should retrieve their values from the
aggrelist’s (:items) slot. To do this the user makes the aggrelist the secondary selection
and one of the text objects in the aggrelist a primary selection. The user then selects the
(parameters) option, which causes Lapidary to pop up the parameters menu. Typing
:items in the type-in fields next to the (font) and (string) slots creates the necessary
formulas that link these slots to the (:items) slot in the aggrelist (Figure [paramItems-
fig], page 671). The :items slot of the aggrelist will now contain a list of the form
((string1 font1) (string2 font2)...(stringN fontN)).

If the prototype object is an aggregadget (such as a labeled box that contains a rectangle
and a piece of text), then any of the parts of the aggregadget, and the aggregadget itself,
can have slots that depend on the aggrelist’s :items slot. This is done by parameterizing
the parts one at a time. For example, if the string slot of the text object and the filling-
style slot of the rectangle should be parameters, the user could first select the rectangle
and parameterize it, then select the text object and parameterize it. Lapidary does
not follow any easily described rules in constructing the :items list (e.g., the string and
font values could easily have been reversed in the above list), so users should look at
the :items list Lapidary constructs before writing their own.

If a slotname besides :items (e.g., :string) is entered in a type-in field, then the slot
is treated as an ordinary parameter, and all items in the list will have a formula that
accesses this slot in the aggrelist. For example, if a list consists of rectangles, and
the rectangles should all have the line-style that is passed to the aggrelist, then the
user would select one of the rectangles and enter the an appropriate name, such as
(:line-style), next to the :line-style slot of the rectangle.

14.10 Arrange

(Bring to Front:) Brings the selected objects to the front of their aggregadget (i.e.,
they will cover all other objects in their aggregadget). If multiple objects are selected,
it brings the objects to the front in their current order.

(Send to Back:) Sends the selected objects to the back of their aggregadget (i.e.,
they will be covered by all other objects in their aggregadget). If multiple objects are
selected, it sends the objects to the back in their current order.

(Make Aggregadget:) Creates a new aggregadget and adds all selected objects (both
primary and secondary selections) to it. The selected objects must initially belong
to the same aggregadget or else Lapidary will print an error message and abort the
operation. The (:left) and (:top) slots of the objects added to the aggregadget are
constrained to the aggregadget unless they were already constrained (if the object is a
line, the (:x1), (:y1), (:x2), and (:y2) slots are constrained). The constraints tie the
objects to the northwest corner of the aggregadget and use absolute offsets based on
the current position of the objects. Thus if an object is 10 pixels from the left side
of the aggregadget (the bounding box of the aggregadget is computed from the initial
bounding boxes of the objects), the object’s (:left) slot will be constrained to be 10
pixels from the left side of the aggregadget. If the object is a line, the object’s endpoints
will be tied to the aggregadget’s northwest corner by absolute fixed offsets. These con-
straints cause the objects to move with the aggregadget when the aggregadgets moves.
If the user wants different constraints to apply, the user can primary select an object,

Chapter 14: Lapidary Reference 673

secondary select the aggregadget, and attach a different constraint. The aggregadget
derives its width and height from its children, so the :width and :height slots of the
children are not constrained to the aggregadget. Because the aggregadget computes its
width and height from its children, it is not permitted to resize an aggregadget.

(Ungroup:) Destroys selected aggregadgets and moves their components to the aggre-
gadgets’ parents.

14.11 Constraints

(Line Constraints:) Brings up the line constraints dialog box (Figure [line-constraint],
page 678).

(Box Constraints:) Brings up the box constraints dialog box (Figure [box-constraint],
page 675)

(C32:) Brings up C32. Each primary and secondary selection is displayed in the
spreadsheet, and additional Lapidary objects can be displayed using the (Point to
Object) command. While Lapidary is running, only objects in Lapidary’s drawing
windows can be displayed in the spreadsheet. Nothing will happen if the user attempts
to execute the (Point to Object) command on an object which is not in a Lapidary
drawing window. The C32 chapter describes how to use C32 and Section [custom-
constraint], page 679, describes a number of modifications Lapidary makes to C32.

14.12 Other

(Interactors:) Displays a menu of interactors that the user can choose to look at. Once
the user selects an interactor, the information from that interactor will be displayed in
the appropriate interactor dialog box (see Section [interactors], page 684) and the user
is free to change it. In addition, menu items are provided for the five Garnet-defined
interactor types: choice (encompassing both menu and button interactors), move/grow,
two-point, text, and angle. If the user has selected a set of objects, then the interactors
menu will contain all interactors associated with these objects. Lapidary will display
all interactors whose (:start-where) slot references these objects, or whose (:feedback-
obj) or (:final-feedback-obj) points at these objects. If no objects are selected, then
the interactors menu will contain all interactors that have been created in Lapidary.

(Clear Workspace:) Deletes all objects from Lapidary but does not destroy any of the
drawing windows.

14.13 Test and Build Radio Buttons

(Test:) Deactivates the Lapidary interactors that operate on the drawing windows
and activates all user-defined interactors. This allows the user to experiment with the
look-and-feel that the user has created.

(Build:) Deactivates all user-defined interactors and reactivates the Lapidary interac-
tors, allowing the user to modify the look-and-feel.

Chapter 14: Lapidary Reference 674

14.14 Creating Constraints

Lapidary provides two menus for creating constraints, one that deals with “box” constraints
(constraints on non-line objects) and one that deals with line constraints. In addition,
several of the property menus provide a custom constraint option that allows the user
to input a constraint that determines the property. Each of the menus contains buttons
labeled with tiny rectangular boxes that indicate how an object will be positioned if the
constraint associated with that button is chosen. The rectangular boxes in the buttons are
colored black to indicate that the primary object is the object that will be constrained,
and the white rectangular boxes positioned at the four corners of the rectangle in the box
constraint menu indicate that the secondary selection is the object that will be referenced
in the constraint.

The Box and Line Constraint dialog boxes, can be used separately from Lapidary (see
section [constraint-gadget], page 680).

The constraint menus can display the current position and size of a primary selection. By
pressing the (Show Constraints) button in the constraint menus, the user can see what
types of constraints are on the slots of an object. If two objects are selected, Lapidary will
display the types of the constraints between the two objects.

14.15 Box Constraints

The box constraint menu allows constraints to be attached to the (:left), (:top), (:width),
and (:height) of an object (see Figure [box-constraint], page 675). The user attaches con-
straints by first selecting the object to be constrained (a primary selection) and the object
to be referenced in the constraint (a secondary selection). The user then selects the ap-
propriate buttons in the box constraint menu. The possible constraints for the (:left) slot
are:

Chapter 14: Lapidary Reference 675

Drawing Window 2

⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷
⊷⊷⊷

⊷⊷⊷
⊷⊷⊷

⊷⊷⊷
⊷⊷⊷

⊷⊷⊷
⊷⊷⊷

⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷

box constraints

Box Constraint Menu ⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Show Constraints
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

OK

:left 186

offset 20

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

unconstrain
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

customize

:top 28

offset 0

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

unconstrain

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

customize

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

:width 57

Scale 1
Difference
in pixels

0

unconstrain

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

customize

:height 24

Scale 0.33
Difference
in pixels

0

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

unconstrain

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

customize

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

Figure 14.18:

The constraint menu for box-like objects on the left, and a drawing window on the right.
The white rectangle in the drawing window is the object to be constrained and the gray
rectangle is the object to be referenced in the constraint. The white rectangle is constrained
to be offset from the right of the gray rectangle by 20 pixels, and aligned at the top-inside
of the gray rectangle. The white rectangle’s width is not constrained and it is 33% as
tall as the gray rectangle. If the gray rectangle changes, the white one will be adjusted
automatically.

Chapter 14: Lapidary Reference 676

left-outside: The right side of the primary selection is aligned with the left side of the
secondary selection.

left-inside: The left side of the primary selection is aligned with the left side of the
secondary selection.

center: The center of the primary selection is aligned with the center of the secondary
selection.

right-inside: The right side of the primary selection is aligned with the right side of the
secondary selection.

right-outside: The left side of the primary selection is aligned with the right side of the
secondary selection.

The possible constraints for the (:top) slot are:

top-outside: The bottom side of the primary selection is aligned with the top side of
the secondary selection.

top-inside: The top side of the primary selection is aligned with the top side of the
secondary selection.

center: The center of the primary selection is aligned with the center of the secondary
selection.

bottom-inside: The bottom side of the primary selection is aligned with the bottom
side of the secondary selection.

bottom-outside: The top side of the primary selection is aligned with the bottom side
of the secondary selection.

The only option for the (:width) slot is to constrain the width of the primary selection
to the width of the secondary selection and the only option for the (:height) slot is to
constrain the height of the primary selection to the height of the secondary selection. In
addition, each of the four slots may have a custom constraint attached to them (see Section
[custom-constraint], page 679). Each of the four slots also has an “Unconstrain” option
that destroys the constraint attached to that slot.

The constraints in the box constraint menu can be fine-tuned by entering offsets for the
constraints, and in the case of the size slots (width and height), scale factors as well. When
an object is centered with respect to another object, the offset field changes to a percent
field denoting an interval where 0% causes the center point of the constrained object to be
attached to the left or top side of the object referenced in the constraint and 100% causes
the center point of the constrained object to be attached to the right or bottom side of the
object referenced in the constraint. By default this percentage is 50. The (Difference in
pixels) and (Scale) factors cause the width and height constraints to be computed as Scale
* Dimension + Difference in pixels.

Finally, each of the slots has a labeled box next to its name that allows the user to type
in an integer that will be placed in that slot. If there is already a constraint in the slot,
the constraint will not be destroyed so the value will only temporarily override the value
computed by the constraint (the next time the constraint is recomputed, the value will be
lost). This operation works only when there is one primary selection and no secondary
selections.

Chapter 14: Lapidary Reference 677

14.16 Line Constraints

The line constraint menu allows the endpoints of a line to be attached to other objects
or the (:left) and (:top) slots of a box object to be constrained to the endpoint of a line
(Figure [line-constraint], page 678). The buttons on the box and line object in Figure
[line-constraint], page 678, indicate the various locations where the endpoint of a line can
be attached to a box or line object or where a point of a box can be attached to a line.
Thus the two endpoints of a line can be attached to any of the corners, sides, or center of
a box object and any of the corners, sides, or center of a box object can be attached to the
endpoints or center of a line.

Chapter 14: Lapidary Reference 678

line constraints

Line Constraint Menu

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

obj-to-constrain

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

obj-to-reference

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷
⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷
⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

unconstrain

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

customize

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Show Constraints
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

OK

x-offset 0

y-offset 0

x1 40

y1 20

x2 152

y2 79

Drawing Window 4

⊷⊷⊷
⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷⊷
⊷⊷⊷⊷

⊷⊷⊷
⊷⊷⊷

⊷⊷⊷
⊷⊷⊷

Figure 14.19:

The constraint menu for line-like objects on the left, and a drawing window on the right.
The arrow in the drawing window is the object to be constrained and the circle is the
object to be referenced in the constraint. In the “obj-to-constrain” section of the constraint
menu, the line feedback object has been rotated so that it has the same orientation as
the selected arrow, and the box feedback object has been disabled (grayed-out). In the
“obj-to-reference” section the line feedback object has been disabled since the object to
be referenced in the constraint is a box-like object. The darkened buttons on the right
endpoint of the line feedback object and the left corner of the box feedback object indicate
that the right endpoint of the arrow is attached to the left corner of the circle.

Chapter 14: Lapidary Reference 679

The line object in the constraint menu is oriented in the same direction as the selected line
in the drawing window, so that the user knows which endpoint is being constrained. The
buttons with the blackened rectangles indicate the points that can be constrained in the
primary selection. Similarly, the buttons with the white rectangles indicate the points in
the secondary selection that the primary selection can be attached to.

The (Unconstrain) button at the bottom of the menu allows the user to destroy the con-
straint on the selected point and the (Customize) button allows the user to input a custom
constraint (described in Section [custom-constraint], page 679). Finally the (x-offset) and
(y-offset) labeled boxes allow the user to enter offsets for the constraint. All offsets are
added to the value computed by the constraint. For example, an x-offset of 10 causes an
endpoint constrained to the northwest corner of a box object to appear 10 pixels to the
right of that corner.

The end points of a line can be set directly by typing in values for x1, y1, x2 and y2. This
function is only active if there is a single line as the primary selection and no secondary
selections.

14.17 Custom Constraints

When the user selects the custom constraint option in any of the constraint or property
menus, Lapidary brings up the C32 spreadsheet and a formula window for the desired slot.
The user should enter a formula and press OK (or cancel to stop the operation). Both the
OK and cancel buttons in the formula window will make C32 disappear.

Information on C32 can be found in the C32 chapter. However, Lapidary modifies C32
in a number of ways that are important for a user to know. First, it generates indirect
references to objects rather than direct references. A direct reference explicitly lists an
object in a constraint, whereas an indirect reference accesses the object indirectly through
a link. For example, (gv rect1 :left) is a direct reference to (rect1), whereas (gvl

:link0 :left) is an indirect reference to (rect1) (this assumes that a pointer to (rect1) is
stored in (:link0)). If the user always generates references using the C32 functions (Insert
Ref from Mouse) and (Insert Ref from Spread), then Lapidary will automatically generate
indirect references and create appropriate link names. The user can edit these link names
by bringing up the parameters menu and hitting the link parameters button (see Section
[parameters], page 665). However, if the user inserts the references by typing them in, then
the user should take care to use the (gvl) form and create the appropriate links. When
the formula is completed, Lapidary checks whether there are any direct references in the
formula and generates a warning if there are. At this point the user has the option of
editing the formula or continuing with the formula as is. If the user chooses to leave direct
references in the formula, Lapidary may not be able to generalize it, so the formula may
behave strangely if it is inherited.

The second change Lapidary makes is in copying formulas. Lapidary copies all the links
that the formula references to the object which is receiving the copied formula. If the links
should point to new objects, the user must chapterly change them by selecting the (Show
All Slots) option in C32 and editing the appropriate links (the names of the links that need
to be modified can be found by looking at the formula).

Chapter 14: Lapidary Reference 680

14.18 The Constraint Gadget

The constraint menus have been bundled into a constraint gadget that can be used
independently of Lapidary. The constraint gadget provides two menus: a box constraint
menu for specifying box-type constraints (Figure [box-constraint], page 675) and a line
constraint menu for specifying line-type constraints (Figure [line-constraint], page 678).
These menus operate as described in Sections [box-constraint-section], page 674, and
[line-constraint-section], page 677. The menus also provide access to C32 through
(customize) buttons. The module can be loaded independently of Lapidary with
(garnet-load "lapidary:constraint-gadget-loader") and is exported from the
gadgets package (garnet-gadgets).

14.18.1 Programming Interface

The constraint gadget can be created (or made visible, if already created) by executing one
of the -do-go or show- functions described in section [Functions], page 681. Certain slots
of the gadget, described in section [cg-parameters], page 680, are then set with the objects
to be constrained. When the user operates the buttons in the dialog box, constraints will
be set up among the indicated objects.

14.18.2 Slots of the Constraint Gadget

The constraint gadget exports one object called gg::*constraint-gadget*. This object
contains four settable slots:

:obj-to-constrain - The object which should be constrained. This slot ex-
pects only one object , it will not take a list.

:obj-to-reference - The object which should be referenced in the constraint.
This slot expects only one object , it will not take a list.

:top-level-agg - The top level aggregate containing constrainable objects. If
the aggregate associated with a window is the top level aggregate, this slot
may be left nil (the default). However, if, for example, the window contains
an editor aggregate and a feedback aggregate, then the :top-level-agg slot
should be set to the editor aggregate.

:custom-function - A function that is executed whenever a constraint is at-
tached to a slot. The function should take three parameters: an object, a slot,
and a formula. The function is called after the formula has been installed on
the slot, but before the formula has been evaluated. This function is not called
when the user calls the c32 function and provides a c32-custom-function as a
parameter (see Section 〈undefined〉 [functions], page 〈undefined〉, for details on
the c32-custom-function and its parameters). The function is not called in this
case since the constraint gadget does not install the formula if the c32-custom-
function is provided.

It is also possible to prevent either the box-constraint or line-constraint menus from attach-
ing a constraint to a slot by adding the slot’s name to a list in the :do-not-alter-slots

of an object. For example, to prevent a constraint from being attached to the :width or
:height slots of a text object, the list ’(:width :height) could be placed in the object’s
:do-not-alter-slots slot. If the user tries to attach a constraint to that slot, an error box
will be popped up indicating that a constraint cannot be attached to that slot. C32 does not

Chapter 14: Lapidary Reference 681

recognize the :do-not-alter-slots, and therefore the box-constraint and line-constraint
menus cannot prevent the user from inserting a formula into a forbidden slot if a customize
button is chosen.

14.18.3 Exported Functions

The following functions are exported from the constraint gadget module:

gg:Box-Constraint-Do-Go [No value for ‘‘function’’]

gg:Line-Constraint-Do-Go [No value for ‘‘function’’]

These functions create the Box and Line Constraint dialog boxes. They should not be
executed multiple times, since there is only one constraint-gadget object. If the user
clicks on an “OK” button and makes the dialog boxes invisible, then the following functions
can be called to make them visible again:

gg:Show-Box-Constraint-Menu [No value for ‘‘function’’]

gg:Show-Line-Constraint-Menu [No value for ‘‘function’’]

These functions make the Box and Line Constraint dialog boxes visible. They can only be
called after the -do-go functions above have been called to create the dialog boxes.

gg:C32 &optional object slot [function], page 90

&key left top c32-custom-function prompt

This function causes c32 to come up, with the object displayed in the first panel of the c32
window. The formula in slot will be displayed in c32’s formula editing dialog box. The
keyword parameters are as follows:

left, top - Controls placement of query box that users use to indicate that they
are done with C32.

c32-custom-function - A function to be executed when the user hits the OK
button in a formula window in C32. The function should take three parameters:
an object, a slot, and a formula. If a custom function is provided, the formula
will not be installed in the slot (thus the function in :custom-function will not
be called, it must be called explicitly by the c32-custom-function if it should
be executed). This gives the c32-custom-function an opportunity to defer the
installation of the formula. For example, in Lapidary, the user can create for-
mulas that define the values of various slots in an interactor, but until the user
presses the “create-interactor” or “modify” buttons, the formulas should not
be installed. Thus the Lapidary c32-custom-function places the formulas on
a queue, but does not install them.

The constraint gadget stores the links that this formula uses in a meta-slot in
the formula called :links. Like the formula, the links are not installed. That is,
the link slots do not exist (unless another formula already uses them). Because
the links have not been installed, the constraint gadget stores the links and the
objects they point to in another meta-slot in the formula called :links-and-

objs. The contents of this slot have the form (list (cons (link-name object))(*)).
Links that already exist because another formula uses them will not be on this
list.

Chapter 14: Lapidary Reference 682

The c32-custom-function or the application can install the links by calling
the c32 function install-links which takes a formula and the object that
the links should be installed in as arguments (the object that is passed to
c32-custom-function is the object that should be passed to install-links).
install-links will create the links, and if the link points to an object that is in
the same aggregate as the object containing the link, install-links will create
a path to the reference object and store it in the link slot. install-links de-
stroys the :links-and-objs slot, so the c32-custom-function or application
should take care to save the contents of this slot if they need to make further
use of this information.

prompt - A text string that should be displayed in the query box that appears
when C32 is invoked.

gg:CG-Destroy-Constraint object slot [function], page 90

This function destroys a constraint created by the constraint gadget. Required parameters
are an object and a slot.

@emph{destroy-constraint-support-slots}: destroys the slots in the :links,

:offset, and :scale slots of a formula (these are the

standard support slots created by the constraint gadget).

A slot is destroyed only if the formula is the only formula

that depends on this slot. Required parameters are:

object: The object which contains the formula.

formula: A formula.

An optional parameter is:

destroy-meta-info-p: If this parameter is true, the meta

slots :links, :offset, and :scale are destroyed in

the formula. This parameter defaults to @code{nil}.

gg:Valid-Integer-P gadget string [function], page 90

Valid-integer-p determines if a string input by a Garnet gadget contains a valid integer.
If it does not, the gadget’s original value is restored and an error message is printed.

c32::Install-Links formula obj [No value for ‘‘function’’]

This function is provided by c32, though it is not exported. As mentioned above, it is useful
for installing links when a custom function is provided in c32. The formula should have
a :links-and-objs slot, whose value should be a list of the form ((link-slot-name object)
(link-slot-name object) ...). The obj parameter names the object which the links should be
installed in.

14.18.4 Programming with Links

Each constraint contains indirect references to objects rather than direct references. The set
of link names it uses to make these indirect references is contained in the :links meta-slot
of the formula and the name of the offset slot it uses is contained in the :offset meta-slot.

Chapter 14: Lapidary Reference 683

If the formula involves the width or height slots, there is also a :scale meta-slot, containing
the name of the scale slot that the formula uses. The constraint gadget generates link and
offset names by appending the suffixes -over and -offset to the name of the slot that
is being constrained. For example, if the left slot is being constrained, the link name will
be :left-over and the offset name will be :left-offset. These slot names are stored in
a formula’s :links and :offset meta-slots. For width and height slots, scale names are
generated by appending the suffix -scale to the slot name. Thus the scale slot for a height
constraint would be named :height-scale. When C32 generates link names, it generates
them by appending a number to the prefix link-. Thus it generates links such as :link-0
and :link-1.

The rationale for storing slot names rather than actual values in a

formula’s meta-slots is as follows:

@itemize

link slots: Storing the real objects pointed to by the constraint would

be difficult because of inheritance. When a formula was inherited,

it would have to change the object it was pointing to. If the names

of link slots are stored, it can use the link slot to get the real

object. The link slot presumably will have been made to point to

the appropriate object. Also, storing the name of the link slot

makes it easier for an application to change the link names in the

formula, if the application is so inclined.

offset and scale slots: Storing the names of the offset and scale slots

serves two purposes: 1) the application can immediately find out

what the constraint is calling the offset and scale slots and

change them if necessary (the user may not want to call an offset

slot, :left-offset); and 2) when an offset or scale changes, the

change only has to be made in one place rather than two places.

For feedback purposes, the application can retrieve the offset and

scale indirectly using the names of these slots.

14.18.5 Custom Constraints

When the user selects the custom constraint option in any of the constraint menus, the
constraint gadget brings up the C32 spreadsheet and a formula window for the desired slot.
The user should enter a formula and press OK (or cancel to stop the operation). Both the
OK and cancel buttons in the formula window will make C32 disappear.

The constraint gadget modifies C32 in a number of ways that are important for a user to
know. First, it generates indirect references to objects rather than direct references. A direct
reference explicitly lists an object in a constraint, whereas an indirect reference accesses the
object indirectly through a link. For example, (gv RECT1 :left) is a direct reference to
RECT1, whereas (gvl :link0 :left) is an indirect reference to RECT1 (this assumes that
a pointer to RECT1 is stored in :link0). If the user always generates references using the
C32 functions Insert Ref from Mouse and Insert Ref from Spread, then the constraint

Chapter 14: Lapidary Reference 684

gadget will automatically generate indirect references and create appropriate link names.
The user can edit these link names by finding them in the spreadsheet and modifying them.
However, if the user inserts the references by typing them in, then the user should take
care to use the gvl form and create the appropriate links. When the formula is completed,
the constraint gadget checks whether there are any direct references in the formula and
generates a warning if there are. At this point the user has the option of editing the
formula or continuing with the formula as is. If the user chooses to leave direct references
in the formula, the constraint gadget may not be able to generalize it, so the formula may
behave strangely if it is inherited.

The second change the constraint gadget makes is in copying formulas. The constraint
gadget copies all the links that the formula references to the object which is receiving the
copied formula. If the links should point to new objects, the user must chapterly change
them by selecting the Show All Slots option in C32 and editing the appropriate links (the
names of the links that need to be modified can be found by looking at the formula).

14.18.6 Feedback

The user can determine which constraints are attached to an object by selecting the object
and an optional second object that the object may be constrained to, and then selecting
the Show Constraints option. The appropriate constraint buttons will be highlighted and
the offset fields set to the correct values. If only one object is selected, then all constraints
that the constraint menu can represent will be shown. For example, the box constraint
menu would display the constraints on the left, top, width, and height slots. If there are
two selections, a constrained object and a reference object, then only the constraints in the
constrained object that depend on the reference object are shown.

14.19 Interactors

Lapidary provides a set of dialog boxes that allow a user to define new interactors or modify
existing ones. To create or modify an interactor, select the (Interactors) command from the
Lapidary editor menu. Lapidary will display a menu listing Garnet-defined and user-defined
interactors that may be viewed. Select the desired interactor and Lapidary will display the
appropriate interactor dialog box.

All interactor dialog boxes have a number of standard items, including a set of action
buttons, a name box, a (:start-where) field, and buttons for events. In addition, each
dialog box allows the user to set the most commonly changed slots associated with that
interactor. Other slots may be set using C32 (see section [custom-constraint], page 679).

The name field allows the user to type in a name for the interactor. The name is not used
to name the interactor, but instead is converted to a keyword and stored in the interactor’s
:known-as slot. If the interactor is saved, the user-provided name will be placed in the name
parameter field for create-instance.

14.20 Action Buttons

The action buttons permit the following types of operations:

Create Instance: This operation creates an instance of the displayed interactor and, if
the user has modified any of the slot values, overrides the values inherited from this

Chapter 14: Lapidary Reference 685

interactor with the modified values. In addition, Lapidary examines the (:start-where)
field of the new interactor and if the start-where includes an aggregadget, adds the
interactor to the aggregadget’s behavior slot.

Modify: This operation stores any changes that the user has made to the interactor’s
slots in the interactor.

Destroy: This operation destroys the interactor.

Save: This operation prompts the user for a file name and then writes out the interactor.

C32: This operation brings up C32 and displays the interactor in the spreadsheet
window. The user can then edit any slot in the interactor. Any changes the user
makes will not be discarded by the (Cancel) button. It is generally advisable to bring
up the C32 menu only after the interactor has been created. (the one exception to
this rule is when C32 appears as the result of pressing a formula button. If the user
enters a formula in the formula window, the formula will be installed in the instance).
Otherwise the user will end up editing the prototype for the interactor to be created,
instead of the interactor itself. The C32 chapter describes how to operate C32 and
Section [custom-constraint], page 679, describes the modifications Lapidary makes to
C32.

Cancel: This operation discards any changes the user has made to the dialog box since
the last create-instance or modify command.

14.21 Events

Lapidary allows the user to define the start, stop, and abort events of an interactor using
event cards. Each card defines one event and a list of events can be generated from a deck
of cards. Each interactor dialog box contains buttons that pop up a window for each event
that defines a start, stop or abort event. A sample event card is shown in Figure [cards],
page 686. Selecting (Delete this event) will cause this event to be deleted. However,
Lapidary will not allow you to delete an event card if it is the only one that exists. (Add an
event) causes a new event to be created. (OK) makes the window disappear and generates
the event list for the desired event.

Chapter 14: Lapidary Reference 686

Modifiers:

Mouse Action:

Keyboard:

shift control meta any modifier

leftdown middledown rightdown mousedown

leftup middleup rightup mouseup

Specific keypress:Any keypress:

OK Cancel

Add an event Delete this event

Figure 14.20: A sample event card deck

Any combination of (shift), (control), and (meta) can be selected, but if the (any modi-
fier) button is selected then the other modifier buttons will become unselected. The mouse
actions and keyboard items are all mutually exclusive, so selecting one will cause the pre-

Chapter 14: Lapidary Reference 687

viously selected item to be deselected. Events like #\Return can be generated by simply
typing “Return” in the (Specific keypress) box (quotes are not needed).

14.22 :Start Where

Every interactor dialog box displays two commonly used start-wheres for an interactor and
allows the user to select an alternative one using the (other) button (Figure [choice-inter],
page 688). If (other) is selected, a dialog box will appear which lists all possible :start-
where’s. Once the desired start-where is selected, Lapidary will incorporate the selected
object in the drawing window into the start-where if it is appropriate (which it is in all
cases but (t) and (nil)). If the start-where requires a slot (which the (list) start-where’s
do), Lapidary will request the name of a slot.

If the user wants a type restriction, then pressing the (type restriction) button will cause
Lapidary to request a type restriction. A type restriction can be either an atom (e.g.,
opal:text) or a list of items (e.g., (list opal:text opal:rectangle)). The type restriction button
is a toggle button so if it is already selected, selecting it again will cause the type restriction
to be removed. Also, selecting a new start-where will cause the type restriction to be
removed.

14.23 Formulas

Selecting a formula button in any of the interactor dialog boxes causes the interactor to be
displayed in the C32 spreadsheet window and the current value of the slot associated with
the formula button to be displayed in a C32 formula window. This value can then be edited
into a formula. When the (OK) button is pressed in the formula window, C32 disappears
and the formula is batched with the other changes that have been made to the interactor
since the last (Create Instance) or (Modify) command. The formula is not actually installed
until the (Create Instance) or (Modify) buttons are selected. If the user selects (Cancel) in
the interactor dialog box, the formula will be discarded. The formula will also be discarded
if the user selects (Cancel) in the C32 formula window.

14.24 Specific Interactors

14.24.1 Choice Interactor

The choice interactor dialog box allows the user to create either a button interactor or menu
interactor, depending on whether the (menu) or (button) radio button is selected (Figure
[choice-inter], page 688). The other slots that can be set using this dialog box are:

Chapter 14: Lapidary Reference 688

Choice of Items Interactor
Interactor Name:

:start-where

Aggregate of items

Single item

or

or

Other Type restriction:

CREATE INSTANCE

MODIFY

DESTROY

SAVE

PRINT KR NAME

CANCEL

:feedback-obj

Interim Feedback By Demo None

:final-feedback-obj

Final Feedback By Demo None

Menu Button

Final Function:

:how-set

Set Clear Toggle <formula>

List-Add List-Toggle List-Remove

increment by: max value:

Start-Event Stop-Event Abort-Event

Figure 14.21: Choice interactor dialog box

:start-where. If the user selects either (aggregadget of items) or (single item) and there
is a least one selection in a drawing window (it may be either a primary or secondary

Chapter 14: Lapidary Reference 689

selection), then start-where’s with (:element-of) and (:in-box) are generated with the
selected object.

:feedback-obj. Selecting the radio button associated with (interim feedback) will cause
the selected object in the Lapidary drawing windows to become the interim feedback
for this interactor. If this object is constrained to one of the objects that satisfies the
start-where or to a component of one of these objects, Lapidary will automatically
generalize the constraints so that the object can appear with any of the objects in the
start-where.

The user can also use the (by-demo) option to demonstrate interim feedback. Lapidary
will pop up an OK/Cancel box when an object that satisfies the start-where is selected.
The user can then use the various Lapidary menus to modify this object so that it looks
as it should when the object’s (:interim-selected) slot is set. Once the desired look is
achieved, the user selects OK and the changes will be installed so that the object looks
like its original self when it is not interim selected, and will look like the by-demo copy
when it is interim selected.

Lapidary implements the by-demo operation by comparing the values of the following
slots in the original object and the copied object: :left, :top, :width, :height,

:visible, :draw-function, :font, :string, :line-style, :filling-style,

:x1, :x2, :y1, :y2.

The last option the user can choose is (none) in which case nil will be stored in
the (:feedback-obj) slot. This will not undo the effects of a by-demo operation since
by-demo also places nil in the (:feedback-obj) slot.

:final-feedback. The options for final feedback are identical to those for (:feedback-
obj). The by-demo changes will appear when the object’s (:selected) slot is set to (t).
Multiple final feedback objects can be created by selecting several objects and pressing
the final feedback button. Lapidary will then bring up C32 and prompt the designer
for a constraint that determines when to use each kind of feedback object at run-time.

:final-function. The user can type in the name of a function that should be called when
the interactor completes.

:how-set. The user can set the (:how-set) slot by selecting a radio button or entering
numbers in the (increment-by) and (optionally) (max value) fields.

14.24.2 Move/Grow Interactor

The move/grow interactor dialog box (Figure [lapidary-move-inter], page 691) allows the
user to specify a move/grow interactor. The slots that can be set using this dialog box are:

:start-where. If the user selects either (Object to Press Over) or (One of This Ag-
gregate) and there is at least one selection in a drawing window (it may be either a
primary or secondary selection), then start-where’s with :in-box and :element-of are
generated with the selected object.

:line-p. This slot is set by the (Line) and (Box) buttons. If a formula is selected, the
formula should return (t) if the interactor is moving/growing a line, and (nil) if it is
moving/growing a box object.

:grow-p. This slot is set by the (Grow) and (Move) buttons. If a formula is selected,
the formula should return (t) if the interactor is growing an object, and (nil) if it is
moving an object.

Chapter 14: Lapidary Reference 690

:min-length. Specifies a minimum length for lines.

:min-width. Specifies a minimum width for box objects.

:min-height. Specifies a minimum height for box objects.

:obj-to-change. The user can let the move/grow interactor modify the object that
satisfies the start-where, present an example object to change to Lapidary or use a
formula to compute the object to change. This slot would be set if the interaction
should start over a feedback object such as selection handles, but should actually move
the object under the feedback object.

If the user presents an example object to change to Lapidary by selecting an object
and pressing the (Change this object) button, Lapidary will automatically construct
a formula so that the interactor changes the correct object at run-time. For example,
in Figure [lapidary-move-inter], page 691, the user wants the move interactor to start
over one of the selection handles, but wants the object highlighted by the selection
handles moved. The user can specify that the interactor should start over the selection
handles by selecting the aggregate containing the selection handles and pressing the
(One of This Aggregate) radio button in the move/grow dialog box. The user can
specify that the object highlighted by the selection handles at run-time should be the
object changed by selecting the example object that the selection handles currently
highlight and pressing the (Change this object) button in the move/grow dialog box.
Occasionally Lapidary may not be able to determine from the start-where objects which
object should be changed at run-time. In this case Lapidary will give the user the choice
of entering a formula or of having the example object selected as the obj-to-change be
the actual object changed at run-time.

:final-function. The user can type in the name of a function that should be called when
the interactor completes.

:feedback-obj. An interim feedback object can be created by creating the desired object
and pressing the interim-feedback button. Constraints will be automatically attached
to the feedback object that cause it to move or grow appropriately, and that make it
visible/invisible at the appropriate times. If multiple objects are selected, Lapidary
will bring up C32 and prompt the designer for a constraint that determines when to
use each kind of feedback object at run-time.

:attach-point. Controls where the mouse will attach to the object.

The grow and move parameters allow the user to control which slots in the object that is
being grown or moved will actually be set. If a formula is entered, it must return a value
that can be used by the slot :slots-to-set (see the Interactors chapter for more details on
this slot).

Example: To create an interactor that moves a box,

Create the box and leave it selected

Select interactors from the editor menu and then select move/grow

In :start-where click on “Object to Press Over”. This will cause the selected rectangle’s
KR name to be displayed.

Press the CREATE INSTANCE action button

To test the interactor press test button in the editor menu and drag it around.

Chapter 14: Lapidary Reference 691

interim feedback

obj-to-change

objects to start over

Move/Grow Interactor

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Move/Grow Interactor
Interactor Name: MYMOVEINTER

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

:start-where

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Object to Press Over

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

One of This Aggregate BOX-SELECTION-HANDLES

or

or

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Other ⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

Type restriction:

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

CREATE INSTANCE

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

MODIFY

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

DESTROY

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

SAVE

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

C32

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

CANCEL

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Line
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

Box
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

<Formula>

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Grow ⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Move ⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

<Formula>

Grow Parameters

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Change Width

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Change Height

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Change Width and Height

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

<Formula>

Growing Line

Min-Length

Growing Non-Line

Min-Width 0

Min-Height 0

Move Parameters

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Change Left

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Change Top

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Change Left and Top

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

<Formula>

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

:obj-to-change

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Result of :start-where

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Change this object

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

<Formula>

Final Function:

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

:feedback-obj

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Interim Feedback DASHED-LINE-RECT
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

Change Original

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

<Formula>

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

:attach-point

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Nearest Point ⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

<Formula>

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Start-Event
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Stop-Event
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Abort-Event

(a) (b)

Figure 14.22:

(a) The various parts for a move behavior; and (b) the dialog box for specifying the
move/grow interactor. The user can now directly select the obj-to-change and Lapidary
will create a formula that automatically selects the correct object to change at run-time.

Chapter 14: Lapidary Reference 692

14.24.3 Two Point Interactor

The two point interactor dialog box (Figure [two-point-inter], page 693) allows a user to
create a two point interactor. The slots that can be set using this dialog box are:

:start-where. If the user selects (Start Anywhere in Window) then a start-where with
(t) is generated. if the user selects (Start in Box) and there is at least one selection in a
drawing window (it may be either a primary or secondary selection), then a start-where
with :in-box is generated with the selected object.

:line-p. This slot is set by the buttons (Create Line) and (Create Non-Line). If a
formula is selected, the formula should return (t) if the interactor is creating a line,
and (nil) if it is creating a box object.

:min-length. Specifies a minimum length for lines.

:min-width. Specifies a minimum width for box objects.

:min-height. Specifies a minimum height for box objects.

:flip-if-change-side. Indicates whether a box may flip over when it is being created.

:abort-if-too-small. Indicates whether the operation should be aborted if the object is
too small or whether an object of the minimum size should be created.

:feedback-obj. An interim feedback object can be created by creating the desired object
and pressing the interim-feedback button. Constraints will be automatically attached
to the feedback object that cause it to sweep out as the mouse cursor is moved, and that
make it visible/invisible at the appropriate times. If multiple objects are selected, then
Lapidary will bring up C32 and prompt the designer for a constraint that determines
when to use each kind of feedback object at run-time. If the standard feedback option
is selected, a box or line feedback object is automatically created according to whether
a line or box is being created.

:final-function. The user can type in the name of a function that should be called when
the interactor completes.

Example: To create a two-point interactor with line feedback

1) select the interactors option from (other) in the editor menu and then select two point
interactor in the menu that pops up

2) click on Start Anywhere in Window

3) click on Create Line

4) click on Standard Feedback

5) click on CREATE INSTANCE

To test this interactor, enter test mode, press down on the left mouse button, and sweep
out a line. No line will be created because a final function was not provided.

Chapter 14: Lapidary Reference 693

Two Point Interactor
Interactor Name:

:start-where

Start Anywhere in Window

Start in Box

or

or

Other Type restriction:

CREATE INSTANCE

MODIFY

DESTROY

SAVE

PRINT KR NAME

CANCEL

Create Line Create Non-Line <Formula>

Non-Line Parameters

Min-Width

Min-Height

May Flip Over

Line Parameters

Min-Length

Abort if Too Small or Increase to Min Size

:feedback-obj

Interim Feedback Standard Feedback

None

Final Function:

Start-Event Stop-Event Abort-Event

Figure 14.23: Two point interactor dialog box

14.24.4 Text Interactor

The text interactor dialog box (Figure [text-inter], page 694) allows the user to create or
modify a text interactor and to edit the following slots:

Chapter 14: Lapidary Reference 694

text interactor

Text Interactor
Interactor Name:

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

CREATE INSTANCE

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

MODIFY

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

DESTROY

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

SAVE

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

C32

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

CANCEL

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

:start-where

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Start Anywhere in Window

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

One of this aggregate

or

or

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Other
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷
⊷⊷⊷⊷

Type restriction:

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

:object-to-change

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

result of start-where

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

change this object

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

<formula>

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

:feedback-obj

⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

Interim Feedback
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

None

Cursor appears:
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

where pressed
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷

at end of string

Final Function:

⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Start-Event
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Stop-Event
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷
⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷⊷

Abort-Event

Figure 14.24: Text interactor dialog box

:start-where. If the user selects either (object to press over) or (one of this aggregadget)
and there is at least one selection in a drawing window (it may be either a primary or

Chapter 14: Lapidary Reference 695

secondary selection), then start-wheres with (:in-box) and (:element-of) are generated
with the selected object.

:obj-to-change. The user can either let the text interactor modify the object that
satisfies the start-where or use a formula to compute the object to change. Lapidary
can construct a formula for this slot if necessary (see section [move-grow-sec], page 689).

:feedback-obj. An interim feedback object can be created by creating a text object
and pressing the interim-feedback button. Constraints will be automatically attached
to the feedback object that cause it to appear at the selected text object and that
make it visible/invisible at the appropriate times. If multiple objects are selected, then
Lapidary will bring up C32 and prompt the designer for a constraint that determines
when to use each kind of feedback object at run-time.

:cursor-where-press. This slot is set by the buttons (where pressed) and (at end of
string). If (where pressed) is selected, the text editing cursor will appear under the
mouse cursor. If (at end of string) is selected, the text editing cursor will always appear
at the end of the string when editing starts.

:final-function. The user can type in the name of a function that should be called when
the interactor completes.

14.24.5 Angle Interactor

The angle interactor dialog box (Figure [angle-inter], page 696) allows the user to create
and modify an angle interactor. The slots that can be set by this dialog box are:

:start-where. If the user selects (object to press over) and there is a least one selection
in a drawing window (it may be either a primary or secondary selection), then a start-
where with (:in-box) is generated. If the user selects (start anywhere in window), then
a start-where of (t) is generated.

:obj-to-change. The user can either let the angle interactor modify the object that
satisfies the start-where or use a formula to compute the object to change.

:feedback-obj. An interim feedback object can be created by creating an object, se-
lecting it, and pushing the interim feedback button. The :angle slot of the object will
be set as the interactor is operated and the object will be made visible/invisible as ap-
propriate. To make the feedback object or the object that gets the final angle change
in response to changes in the :angle slot, custom constraints must be created for the
position and size slots. See the angle interactor section in the Interactors chapter for
sample constraints. If multiple objects are selected, then Lapidary will bring up C32
and prompt the designer for a constraint that determines when to use each kind of
feedback object at run-time.

:final-function. The user can type in the name of a function that should be called when
the interactor completes.

:center-of-rotation. This is the center of rotation for the interaction. The user can
either enter a list of (x,y), enter a formula that returns a list of (x,y) or select one of
the standard locations for the center of rotation by selecting the appropriate button.

Chapter 14: Lapidary Reference 696

Angle Interactor
Interactor Name:

:start-where

Object to Press Over

Start Anywhere in Window

or

or

Other Type restriction:

CREATE INSTANCE

MODIFY

DESTROY

SAVE

PRINT KR NAME

CANCEL

:obj-to-change

Result of :start-where

<Formula>

:feedback-obj

Interim Feedback None

Final Function:

:center-of-rotation

X Y
<Formula>

Start-Event Stop-Event Abort-Event

Figure 14.25: Angle interactor dialog box

Chapter 14: Lapidary Reference 697

14.25 Getting Applications to Run

Lapidary-generated files consist of a set of create-instance calls. The objects created are
stored in a list and assigned to the variable *Garnet-Objects-Just-Created*. The top of a
Lapidary-generated file contains code to load the lapidary-functions.lisp file, which provides
functionality to support the created objects.

698

15 Hints on Making Garnet Programs Run Faster

Brad A. Myers

14 May 2020

15.1 Abstract

This chapter discusses some hints about how to make Garnet programs run faster. Most of
these techniques should not be used until your programs are fully debugged and ready to
be shipped.

15.2 Introduction

An important goal of Garnet has been to create a system that is as efficient as possible. For
example, users should notice that version 2.2 is about two or three times faster than 2.1.
Now that people are writing large-scale systems using Garnet, a number of things have been
learned about how to make Garnet programs run faster. This chapter collects a number of
hints about how to write efficient Garnet code. If you have ideas about how to make the
underlying Garnet system run faster, or new hints to add to this section, please let us know.

The ideas in this chapter are aimed at producing the final production version of your
system. Therefore, we feel that you should not worry about the comments here during
early development. For example, turning off the debugging and testing information is likely
to make your development more difficult. Also, declaring constants makes changing code
more difficult. Generally, you should get your system to a fairly well-debugged state before
applying these ideas.

Of course, the easiest way to make Garnet run faster is to get a faster machine and/or more
physical memory. With SPARC IIs and HP Snakes becoming more prevalent, and 100 mip
machines like the DEC Alpha around the corner, we see expect that the next generation of
applications will have much less of a problem with achieving adequate performance.

15.3 General

Ideas in this section are relevant to any code written in Lisp, not just Garnet code. Some
of these may seem obvious, but we have seen code that violates many of them.

Be sure to compile all your files.

The variable user::*default-garnet-proclaim*, which is defined in
garnet-loader.lisp, provides some default compiler optimization values for Allegro,
Lucid, CMU, LispWorks, and MCL lisp implementations. The default gives you fast
compiled code with verbose debugging help. You can setf this variable before loading
(and compiling) Garnet to override the default proclamations, if you want to sacrifice
debugging help for speed:

(PROCLAIM ’(OPTIMIZE (SPEED 3) (SAFETY 0) (SPACE 0)

(COMPILATION-SPEED 0)))

Fundamental changes in underlying algorithms will often overcome any local tweaking
of code. For example, changing an algorithm that searches all the objects to one that

Chapter 15: Hints on Making Garnet Programs Run Faster 699

has a pointer or a hash table to the specific object can make an application practical
for large numbers of objects.

Use a fast Lisp system. We have found that Allegro Version 4.2 is much faster than
Allegro V3.x. Also, Allegro and Lucid are much faster than KCL and AKCL on Unix
machines.

Most systems have specialized commands and features for making smaller and faster
systems. For example, if you are using Allegro, check out PRESTO, which tries to make
the run-time image smaller. One user reported that the "reorganizer" supplied with
Lucid, the CPU time used decreased about 10-20%, and the overall time for execution
dropped by about 30%. We have found that the tracing tools supplied by vendors to
find where code is spending its time are mostly worthless, however.

Beware of Lisp code which causes CONS’ing. Quite often, the most natural way to
write Lisp code is the one that creates a lot of intermediate storage. Unfortunately,
this may result in severe performance problems, as allocating and garbage-collecting
storage is among the slowest operations in Lisp. The recommendations below apply to
all of your code in general, but in particular to code that may be executed often (such
as the code in certain formulas which need to be recomputed many times).

As a rule, mapping operations (like mapcar) generate garbage in most Lisp implemen-
tations, because they create temporary (or permanent) lists of results. Most mapping
operations can be rewritten easily in terms of DO, DOLIST, or DOTIMES.

Handling large numbers of objects with lists is generally expensive. If you have lists
of more than a few tens of objects, you should consider using arrays instead. Arrays
are just as convenient as lists, and they require much less storage. If your application
needs variable numbers of objects, consider using variable-length arrays (possibly with
fill pointers).

Declare the types of your variables and functions (using DECLARE and PROCLAIM).

Some Lisp applications will give you warnings or notes about Lisp constructs that are
potentially inefficient. In CMU Common Lisp, for example, setting speed to 3 and
compilation-speed to 0 generates a number of messages about potentially inefficient
constructs. Many such inefficiencies can be eliminated easily, for example by adding
declarations to your code.

Wrap all lambdas in #’ rather than just ’ (in CLtL2 the # is no longer optional). This
comes up in Garnet a lot in final-functions for interactors and selection-functions for
gadgets. Note, in the :parts or :interactors parts of aggregadgets or aggrelists, use
,#’ (comma-number-quote) before lambdas and functions.

You can save an enormous amount of time loading software if you make images of
lisp with the software already loaded. For example, if you start lisp and load Garnet,
you can save an image of lisp that can be restarted later with Garnet already loaded.
We have simplified this procedure by providing the function opal:make-image. If you
want to make images by hand, you will have to use opal:disconnect-garnet and
opal:reconnect-garnet to sever and restore lisp’s connection with the X11 server.
All of these functions are documented in the Opal chapter.

It may help to reboot your workstation every now and then. This will reset the swap
file so that large applications (like Garnet) run faster.

Chapter 15: Hints on Making Garnet Programs Run Faster 700

15.4 Making your Garnet Code Faster

This section contains hints specifically about how to make Garnet code faster.

The global switch :garnet-debug can be removed from the *features* list to cause
all the debugging and demo code in Garnet to be ignored during compiling and load-
ing. This will make Garnet slightly smaller and faster. The :garnet-debug keyword
is pushed onto the *features* list by default in garnet-loader.lisp, but you can
prevent this by setting user::Garnet-Garnet-Debug to nil before compiling and load-
ing Garnet. Garnet will need to be recompiled with the new *features* list, so that
the extra code will not even get into the compiled binaries. Of course, you will lose
functions like inter:trace-inter.

Turn off KR’s type-checking by setting the variable kr::*types-enabled* to nil.
Note: the speed difference may be imperceptible, since the type system has been im-
plemented very efficiently (operations are only about 2% slower with type-checking).

If you have many objects in a window, and an interactor only works on a small set
of those objects, then the small set of objects should be in their own aggregate or
subwindow. This will cause Opal’s point-in-gob methods run faster, which identify
the object that you clicked on. When objects are arranged in an orderly aggregate
hierarchy, then the point-in-gob methods can reject entire groups of objects, without
checking each one separately, by checking whether a point is inside their aggregate’s
bounding box. For example, in demo-motif the scroll bars are in their own aggregate.
Putting objects in a seperate subwindow is even faster, since the coordinates of the
click will only be checked against objects in the same window as the click.

Use o-formulas instead of formulas. O-formulas are compiled along with the rest of
the file, whereas formulas are compiled at load- or run-time, which is much slower.

Try not to use formulas where not really needed. For example, if the positions of objects
won’t change, use expressions or numbers instead of formulas to calculate them.

Try to eliminate as many interactors as possible. Garnet must linearly search through
all interactors in each window. To see how many interactors are on your window,
you can use (inter:print-inter-levels). If this is a long list, then try to use one
global interactor with a start-where that includes lots of objects, rather than having
each object have its own interactor. This can even work if you have a lot of scattered
gadgets. For example, if you have a lot of buttons, you can use a button-panel and
override the default layout to individually place each button.

The fast-redraw property of graphical objects can be set to make objects move and
draw faster. This can be used in more cases than with previous versions of Garnet, but
it is still restricted. See the fast-redraw section of the Opal chapter.

Aggrelists are quite general, and have a lot of flexibility. If you don’t need this flexibility,
for example, if your objects will always be in a simple left-aligned column, it will be
more efficient to place the objects yourself, or create custom formulas.

If you are frequently destroying and creating new objects of the same type, it is more
efficient to just keep a list of objects around, and re-using them. Allocating memory
in Lisp is fairly expensive.

If you are deleting a number of objects at the same time, first set the window’s
:aggregate slot to nil and update the window. Then, when you are done destroying,

Chapter 15: Hints on Making Garnet Programs Run Faster 701

set the aggregate back and update again. For example, to destroy 220 rectangles on
a Sparc, removing the aggregate reduced the time from 11.8 to 2.4 seconds (80%)! So
your new code should be:

;; Code fragment to quickly destroy all the objects within an aggregate.

(let ((temp-agg (kr:gv my-window :aggregate)))

(when temp-agg

;; First, temporarily remove the aggregate:

(kr:s-value my-window :aggregate NIL)

(opal:update my-window)

;; Now do the actual destroying:

(dolist (object (kr:get-values temp-agg :components))

(opal:destroy object))

;; Finally, restore the aggregate:

(kr:s-value my-window :aggregate temp-agg)

(opal:update my-window)))

If you have objects in different parts of the same window changing at the same time,
it is often faster to call update explicitly after one is changed and before the other.
(This is only true if neither of the objects is a fast-redraw object. Many of the built-
in gadgets are fast redraw objects for this reason, so this usually is not necessary for
built-in gadgets.) The reason for this problem is that Garnet will redraw everything
in a bounding box which includes all the changed objects. If the changed objects are
in different parts of a window, then everything in between will be redrawn also. Ways
around this problem include calling update explicitly after one of the objects changes,
making one of the objects be a fast redraw object if possible, moving the objects closer
together if possible (so there aren’t objects in between), or putting the objects in
separate subwindows if possible (subwindows are updated independently).

Conventional object-oriented programming relies heavily on message sending. In Gar-
net, however, this technique is often less efficient than the preferred Garnet program-
ming style, which relies on slots and constraints. Rather than writing methods to get
values from certain slots in an object, for example, consider accessing those slots di-
rectly and having a formula compute their value. The Garnet style is more efficient,
since it avoid the message-sending overhead. Because Garnet provides a powerful con-
straint mechanism, the functionality that would normally be associated with a method
can typically be implemented in a formula.

If you use the same formula in multiple places, it is more efficient to declare a formula
prototype, and create instances of it. For example:

(defparameter leftform (o-formula (+ 10 (first (gvl :box)))))

;; for every object

(create-instance NIL <whatever>

...

(:left (formula leftform)))

If many objects in your scene have their own feedback objects, maybe you can re-
place these with one global feedback object instead. The button and menu interactors
can take a :final-feedback-obj parameter and will duplicate the feedback object if
necessary.

Chapter 15: Hints on Making Garnet Programs Run Faster 702

If you have a lot of objects that become invisible and stay invisible for a reasonable
period if time, it might be better to remove them from their aggregate rather than just
setting their :visible slot. There are many linear searches in Garnet that process all
objects in an aggregate, and each time it must check to see if the objects are invisible.

It is slightly more efficient when you are creating a window at startup, if you add all
the objects to the top level aggregate before you add the aggregate to the window.

The use of double-buffering doesn’t make your applications run faster (they actually
run a little slower), but it usually appears faster due to the lack of flicker. See the
section in the Opal chapter on how to make a window be double-buffered.

15.5 Making your Binaries Smaller

This section discusses ways to make the run-time size of your application smaller. This
is important because when your system gets big, it can start to swap, which significantly
degrades performance. We have found that many applications would be fast enough if they
all fit into physical memory, whereas when they begin swapping virtual memory, they are
not fast enough.

Don’t load the PostScript module or debugging code unless you need to. Change
the values of the appropriate variables in garnet-loader, or set the variables before
loading Garnet. The values will not be overridden, since they are defined with defvar

in garnet-loader.

Declare constants where possible. This allows Garnet to throw away formulas,
which saves a lot of run-time space. All the built-in objects and gadgets provide a
:maybe-constant slot, which means that you can use (:constant T) to make all
the slots constant. The :maybe-constant will contain all of the slots discussed in
the chapter as parameters to the object or gadget. Of course, the slots that allow
the widget to operate (e.g., the buttons to be pressed or the scroll-bar-indicator to
move) are not declared constant. Remember that only slots that don’t change can be
declared constant. Therefore, if your gadget changes position or items or active or
font after creation, then you should :except the appropriate slots. For example:

(create-instance NIL gg:motif-radio-button-panel

;; only the :active slot will change

(:constant ’(T :except :active))

(:left 10)(:top 30)

(:items ’("Start" "Pause" "Quit")))

Several functions are discussed in the Debugging chapter (starting on page [No value for
“debug”]) that are very helpful in determining which slots should be declared constant.
The KR chapter describes the fundamentals of constant declarations in detail.

Don’t load gadget files you don’t need. Most Garnet applications (like the demos),
load only the gadgets they need, if they haven’t been loaded already. This approach
means that lots of gadgets you never use won’t take up memory.

Consider using virtual-aggregates if you have a lot of similar objects in an interface,
such as lines in a map or dots on a graph. This will decrease storage requirements
significantly.

703

The variable kr::store-lambdas can be set to nil to remove the storage of the lambda
expressions for compiled formulas. This will save some storage, but it prevents objects
from being stored to files.

704

16 Gem: Low-level Graphics Library

16.1 Creating New Graphics Backends

<TODO>

16.2 Using the module directly

<TODO>

16.3 Function Reference

[Gem Window on :all-garnet-windows]root-window
(gem-method :beep (root-window))

(gem-method :bit-blit (window source s-x s-y width height destination d-x d-y))

(gem-method :black-white-pixel (window))

(gem-method :character-width (root-window font character))

(gem-method :check-double-press (root-window state code time))

(gem-method :clear-area (window &optional (x 0) (y 0) width height buffer-p))

(gem-method :color-to-index (root-window a-color))

(gem-method :colormap-property (root-window property &optional a b c))

(gem-method :copy-to-pixmap (root-window to from width height))

(gem-method :create-cursor (root-window source mask foreground background from-font-p
x y))

(gem-method :create-image (root-window width height depth from-data-p &optional color-
or-data properties bits-per-pixel left-pad data-array))

(gem-method :create-image-array (root-window width height depth))

(gem-method :create-pixmap (root-window width height depth &optional image bitmap-p
data-array))

(gem-method :build-pixmap (window image width height bitmap-p))

(gem-method :create-state-mask (root-window modifier))

(gem-method :create-window (parent-window x y width height title icon-name background
border-width save-under visible min-width min-height max-width max-height user-specified-
position-p user-specified-size-p override-redirect))

(gem-method :delete-font (root-window font))

(gem-method :delete-pixmap (root-window pixmap &optional buffer-too))

(gem-method :delete-window (root-window x-window))

(gem-method :device-image (root-window index))

(gem-method :discard-mouse-moved-events (root-window))

(gem-method :discard-pending-events (root-window &optional timeout))

(gem-method :draw-arc (window x y width height angle1 angle2 function line-style fill-style
&optional pie-slice-p))

Chapter 16: Gem: Low-level Graphics Library 705

(gem-method :draw-image (window left top width height image function fill-style))

(gem-method :draw-line (window x1 y1 x2 y2 function line-style &optional drawable))

(gem-method :draw-lines (window point-list function line-style fill-style))

(gem-method :draw-points (window point-list function line-style))

(gem-method :draw-rectangle (window x y width height function line-style fill-style))

(gem-method :draw-roundtangle (window left top width height corner-width corner-height
function line-style fill-style))

(gem-method :draw-text (window x y string font function line-style &optional
fill-background invert-p))

(gem-method :drawable-to-window (root-window drawable))

(gem-method :event-handler (root-window ignore-keys))

(gem-method :flush-output (window))

(gem-method :font-exists-p (root-window name))

(gem-method :font-max-min-width (root-window font min-too))

(gem-method :font-name-p (root-window arg))

(gem-method :font-to-internal (root-window opal-font))

(gem-method :get-cut-buffer (root-window))

(gem-method :image-bit (root-window image x y))

(gem-method :image-from-bits (root-window patterns))

(gem-method :image-hot-spot (root-window image))

;;; returns three values: width, height, depth (gem-method :image-size (a-window image))

(gem-method :image-to-array (root-window image))

(gem-method :initialize-device (root-window))

(gem-method :initialize-window-borders (window drawable))

(gem-method :inject-event (window index))

(gem-method :make-font-name (root-window key))

(gem-method :map-and-wait (a-window drawable))

(gem-method :max-character-ascent (root-window font))

(gem-method :max-character-descent (root-window font))

(gem-method :mouse-grab (window grab-p want-enter-leave &optional owner-p))

(gem-method :raise-or-lower (window raise-p))

(gem-method :read-an-image (root-window pathname))

(gem-method :reparent (window new-parent drawable left top))

(gem-method :set-clip-mask (window clip-mask &optional lstyle-ogc fstyle-ogc))

(gem-method :set-cut-buffer (root-window string))

(gem-method :set-device-variables (root-window full-display-name))

(gem-method :set-draw-function-alist (root-window))

(gem-method :set-draw-functions (root-window))

(gem-method :set-drawable-to-window (window drawable))

Chapter 16: Gem: Low-level Graphics Library 706

(gem-method :set-interest-in-moved (window interestedp))

(gem-method :set-screen-color-attribute-variables (root-window))

(gem-method :set-window-property (window property value))

(gem-method :stippled-p (root-window))

(gem-method :text-extents (root-window opal-font string))

(gem-method :text-width (root-window opal-font string))

(gem-method :translate-character (window x y state code time))

(gem-method :translate-code (window scan-code shiftp))

(gem-method :translate-coordinates (root-window window x y &optional other-window))

(gem-method :translate-mouse-character (root-window button-code modifier-bits
event-key))

(gem-method :window-debug-id (window))

(gem-method :window-depth (window))

(gem-method :window-from-drawable (root-window drawable))

(gem-method :window-has-grown (window width height))

(gem-method :window-to-image (window left top width height))

(gem-method :write-an-image (root-window pathname image))

16.4 Font Handling

<TODO>

BAM: I am not sure this section is correct.

EED: This was moved from Opal to the Gem chapter where its discusion of low level
graphics is perhaps more appropriate

Most users of Opal will only use the pre-defined graphical objects, and will combine them
into aggregates and use formulas to attach them together. It will be rare to create new
kinds of graphical objects. This should only be needed when new primitives are available,
such as splines.

This chapter discusses how to create new types of graphical objects, should that be neces-
sary.

16.5 Internal slots in graphical objects

There are numerous extra slots in all graphical objects that are used internally by Opal.
This section will attempt to describe these slots and their potential uses when designing
new graphical objects.

16.5.1 :update-slots

The :update-slots slot contains an association list of all slots in the object that affect the
output picture from the object. For example:

* (gv opal:arc :update-slots)

((:visible) (:line-style) (:filling-style) (:draw-function) (:left)

(:top) (:width) (:height) (:angle1) (:angle2))

Chapter 16: Gem: Low-level Graphics Library 707

If any of the values of these objects slots in an instance of an opal:arc object change, the
instance will need to be redrawn at the next window update.

Anytime a slot on the :update-slots list is changed (either with s-value or by a formula
being invalidated) the KR’s invalidate demon is called with the object, the slot, and the
slot’s value on the association list.

Opal doesn’t use the second value of the association pair, so it should be left as nil.

When creating an object that is a specialized instance of a prototype object, one should
inherit all the slots on the :update-slots list, and then add any others as necessary.
Commonly this is done by something of the form:

(create-instance ’opal:arc opal:graphical-object

...

(:update-slots

(append (gv opal:graphical-object :update-slots)

’((:left) (:top) (:width) (:height)

(:angle1) (:angle2))))

...)

By doing this, you insure that all the necessary slots are inherited, and add any new slots
as necessary.

16.5.2 :drawable

The :drawable slot contains a structure that is the CLX drawable object that the object
is to display itself into when it is sent a draw message. This object may not be the physical
window that the object is to be displayed into, it may be a pixmap that is double buffered
onto the screen somewhere in the update algorithm. All objects should trust the value in
this slot, even though is may not correspond to the drawable of their window. This slot may
not contain a value until the object (or one of its parents) is placed in a Garnet window.

16.5.3 :display-info

The :display-info slot holds information used by many of the CLX primitives for com-
putation, and drawing. Once an object is placed in a window, this slot contains an opal
structure:

(defstruct (display-info

(:print-function display-info-printer))

display

screen

root-window

default-gcontext)

The form (display-info-xxx (gv object :display-info)) returns the xxx structure
from object’s :display-info slot. These fields are useful as follows:

• display is the CLX structure corresponding to the current display connection to the X
server. This is used in calls that affect or query the server directly, such as <xlib:open-
font>, xlib:display-force-output, and <xlib:global-pointer-position>.

• screen is the CLX structure containing information about the window’s screen. This
is used most often with structure accessors to get information on values for the screen’s
white and black pixels, width and height in pixels or millimeters.

Chapter 16: Gem: Low-level Graphics Library 708

• root-window is the CLX window that corresponds to (xlib:screen-root screen) for
use in calls to xlib:create-window.

• default-context is a CLX graphical context structure used all drawing requests. Opal
maintains a cache on this object, so it should not be changed. It is acceptable to use this
structure in an xlib:with-gcontext form when it is necessary to modify a gcontext
outside the bounds of with-filling-styles [and]with-line-styles.

16.5.4 :x-tiles

The x-tiles slot contains a formula that computes a pixmap for use in drawing tiled lines,
or pattern filled regions. The formula evaluates to a cons cell the car of which is the pixmap
to use for tiling lines, and the cdr of which is a pixmap to use when drawing fillings. These
are computed from values in the object’s :line-style and :filling-style slots.

16.5.5 :x-draw-function

This slot contains a formula that is used to compute the CLX drawing function from the
:draw-function slot. It probably won’t ever be necessary to change the formula in this
slot.

16.6 Methods on all graphical objects

The following methods are defined on all graphical objects and may be specialized upon
when creating new classes of graphical objects.

[Method on opal:draw]graphical-object
The draw method on a graphical object causes the object to display itself in the
window of its aggregate. This is only called by the update methods, never directly
by users of Opal.

[Method on graphical-object]initialize
This method is called immediately after an instance of an object is created. It is
passed the new object as its only argument.

[Method on graphical-object]opal:point-in-gob x y
This method should be provided for all new objects. It is used by point-to-

component and point-to-leaf to query an object for a hit. The method should
return t if the object is under the point (x, y). This function should also take into
account the values in the :hit-threshold, :select-outline-only, and :visible

slots of the object, as described in section [stdfuncs], page 156. Objects that are not
visible should return nil.

[Method on graphical-object]opal::fix-properties changed-slots
This method is called on aggregates and windows at the time when the update algo-
rithm passes them during an update. The method is called with an object, and a list
of slots that have changed since it was last called. This function is often useful for
calling functions that cannot easily be put into formulas.

Currently fix-properties is not called on graphical objects, but this functionality
can be added to Opal by talking to the maintainer.

Chapter 16: Gem: Low-level Graphics Library 709

16.7 Draw Methods

There are several things that are worthy of note when working on draw methods for new
objects.

Objects must draw entirely within their bounding box. The redisplay algorithm will not
work properly if things are drawn outside of their bounding boxes.

There are two macros for use in writing draw methods that prepare a gcontext from the
gcontext cache that is appropriate for drawing outlines or fillings as described by the values
in the :line-style and :filling-style slots of the object.

[Macro]with-filling-styles (variable graphical-object) body
This form executes the forms inside body with variable bound to a CLX gcontext
structure suitable for drawing the filling of an object with respect to graphical-object’s
filling style object in the slot :filling-style.

[Macro]with-line-styles (variable graphical-object) body
This form executes the forms inside body with variable bound to a CLX gcontext
structure suitable for drawing the outline of an object with respect to graphical-
object’s line style object in the slot :line-style.

These forms are commonly used like this:

(define-method :draw opal:polyline (polyline)

(let ((point-list (gv polyline :point-list))

(drawable (gv polyline :window :drawable)))

(with-filling-styles (gcontext polyline)

(xlib:draw-lines drawable gcontext

point-list :fill-p t))

(with-line-styles (gcontext polyline)

(xlib:draw-lines drawable gcontext

point-list))))

710

Appendix A GNU General Public License

711

Function Index

A
aggregate on opal:remove-component 201
append-value . 136

B
bar-item on opal:add-item 444
bar-item on opal:remove-item 445

C
c32:do-go . 634
create-instance . 226

D
delete-value-n . 136
dont-enter-main-event-loop 290
double-buffered-p . 290
dovalues . 134

F
final-function . 291

G
garnet-debug:flash . 95
garnet-debug:ident . 96
gd:count-formulas . 128
gd:explain-formulas . 128
gd:find-formulas . 128
gd:fix-up-window . 579
gd:record-from-now . 128
gd:Suggest-Constants . 128
gd:why-not-constant . 128
get-local-values . 136
get-values . 134
gg:abort-polyline-creator 478
gg:careful-eval . 481
gg:display-error . 480
gg:display-error-and-wait 480
gg:display-load-gadget . 490
gg:display-load-gadget-and-wait 490
gg:find-submenu-component 446
gg:get-bar-component . 446
gg:get-submenu-component 446
gg:Get-Val-For-Propsheet-Value 499
gg:hide-load-gadget . 490
gg:hide-save-gadget . 486
gg:make-bar-item . 444
gg:make-menubar . 444
gg:make-motif-submenu-item 544
gg:make-submenu-item . 444

gg:Menubar-Components . 445
gg:menubar-disable-component 446
gg:menubar-enable-component 446
gg:menubar-enabled-p . 446
gg:menubar-get-title . 446
gg:menubar-installed-p . 446
gg:menubar-set-title . 446
gg:pop-up-win-change-items 502
gg:pop-up-win-change-obj 502
gg:pop-up-win-for-prop . 501
gg:promote-item . 475
gg:push-first-item . 475
gg:reusepropsheet . 498
gg:reusepropsheetobj . 498
gg:save-file-if-wanted 486, 489
gg:scroll-win-inc . 466
gg:scroll-win-to . 466
gg:Set-First-Item . 475
gg:set-menubar . 444
gg:set-selection . 461
gg:Set-Submenu . 444
gg:set-val-for-propsheet-value 499
gg:show-box . 467
gg:stop-polyline-creator 478
gg:submenu-components . 445
gg:undo-last-move-grow . 461
graphical-object on opal:destroy 156
graphical-object on opal:draw 708
graphical-object on opal:rotate 157

I
index-1 on :cursor . 210
initial-classifier . 290
initial-examples . 290
initial-gesture-name . 290
initialize on graphical-object 708
inter:add-lisp-char . 198
inter:angle-interactor . 246
inter:animator-interactor 246
inter:button-interactor . 245
inter:copy-selection . 196
inter:cut-selection . 196
inter:delete-lisp-region 198
inter:exit-main-event-loop 225
inter:gesture-interactor 246
inter:indent . 197
inter:lispify . 198
inter:main-event-loop . 225
Inter:Menu-Interactor . 245
inter:move-grow-interactor 245
inter:paste-selection . 196
inter:set-focus . 196
inter:text-interactor . 246

Function Index 712

inter:turn-off-match . 198
inter:two-point-interactor 246

K
kr::add-update-slot . 132
kr::Call-On-One-Slot . 141
kr::call-on-ps-slots . 141
kr::i-depend-on . 128
kr::make-into-o-formula . 125
kr::with-dependencies-disabled 125
kr:apply-prototype-method 112
kr:call-prototype-method 111
kr:change-formula . 124
kr:check-slot-type . 115
kr:copy-formula . 124
kr:create-instance . 105
kr:create-prototype . 119
kr:create-relation . 123
kr:create-schema . 119
kr:declare-constant . 127
kr:def-kr-type . 113
kr:define-method . 110
kr:destroy-constraint . 125
kr:destroy-schema . 120
kr:destroy-slot . 120
kr:doslots . 124
kr:formula . 109
kr:formula-p . 110
kr:g-cached-value . 125
kr:g-formula-value . 129
kr:g-local-value . 136
kr:g-type . 114
kr:g-value . 107
kr:get-declarations . 122
kr:get-local-value . 136
kr:get-slot-declarations 123
kr:get-type-definition . 115
kr:get-type-documentation 115
kr:get-value . 134
kr:gv . 107, 110
kr:gv-local . 136
kr:gvl . 110
kr:has-slot-p . 123
kr:is-a-p . 107, 115
kr:kr-path . 128
kr:kr-send . 111
kr:mark-as-changed . 124
kr:method-trace . 112
kr:move-formula . 125
kr:name-for-schema . 120
kr:o-formula . 109
kr:ps . 106, 137
kr:recompute-formula . 124
kr:relation-p . 123
kr:s-formula-value . 129
kr:s-type . 114
kr:s-value . 108

kr:schema-p . 107
kr:set-type-documentation 115
kr:with-constants-disabled 127
kr:With-Demons-Disabled . 132
kr:with-types-disabled . 115

M
menubar on opal:add-item 444
menubar on opal:remove-item 445

O
opal::fix-properties on
graphical-object . 708

opal:add-char . 190
opal:add-component . 200
opal:add-components . 201
opal:add-object . 192
opal:between-marks-p . 192
opal:bottom . 157
opal:bottom-side . 157
opal:bounding-box . 158
opal:center . 158
opal:center-x . 157
opal:center-y . 157
opal:Change-Color-Of-Selection 190
opal:change-cursors . 211
opal:change-font-of-selection 189
opal:clean-up . 214
opal:concatenate-text . 192
opal:convert-coordinates 215
opal:copy-selected-text . 189
opal:deiconify-window . 215
opal:delete-char . 191
opal:delete-prev-char . 191
opal:delete-prev-word . 191
opal:delete-selection . 189
opal:delete-substring . 191
opal:delete-word . 191
opal:destroy on Window . 214
opal:directory-p . 219
opal:do-all-components . 202
opal:do-components . 202
opal:fetch-next-char . 190
opal:fetch-prev-char . 190
opal:get-cursor-line-char-position 190
opal:get-objects . 192
opal:get-selection-line-char-position 190
opal:get-standard-font . 179
opal:get-string . 190
opal:get-text . 190
opal:get-x-cut-buffer . 215
opal:go-to-beginning-of-line 188
opal:go-to-beginning-of-text 188
opal:go-to-end-of-line . 188
opal:go-to-end-of-text . 188
opal:go-to-next-char . 188

Function Index 713

opal:go-to-next-line . 188
opal:go-to-next-word . 188
opal:go-to-prev-char . 188
opal:go-to-prev-line . 188
opal:go-to-prev-word . 188
opal:gv-bottom . 157
opal:gv-center-x . 157
opal:gv-center-x-is-center-of 158
opal:gv-center-y . 157
opal:gv-center-y-is-center-of 158
opal:gv-right . 157
opal:gvl-sibling . 318
opal:halftone . 166
opal:halftone-darker . 166
opal:halftone-lighter . 166
opal:iconify-window . 215
opal:insert-mark . 192
opal:insert-string . 190
opal:insert-text . 190
opal:kill-main-event-loop-process 226
opal:kill-rest-of-line . 191
opal:launch-main-event-loop-process 226
opal:left-side . 157
opal:lower-window . 215
opal:main-event-loop-process-running-p . . . 226
opal:make-filling-style . 166
opal:make-image . 218
opal:make-ps-file . 216
opal:move-component . 201
opal:notice-resize-object 192
opal:point-in-gob on graphical-object 708
opal:point-in-gob on view-object 156
opal:point-to-component . 202
opal:point-to-leaf . 202
opal:pure-list-to-text . 191
opal:raise-window . 215
opal:remove-components . 201
opal:restore-cursors . 211
opal:right . 157
opal:right-side . 157
opal:search-backwards-for-mark 192

opal:search-for-mark . 192
opal:set-bounding-box . 158
opal:set-center . 158
opal:set-cursor-to-line-char-position 188
opal:set-cursor-to-x-y-position 188
opal:set-cursor-visible . 187
opal:set-position . 158
opal:set-selection-to-line-

char-position . 189
opal:set-selection-to-x-y-position 189
opal:set-size . 158
opal:set-text . 191
opal:set-x-cut-buffer . 215
opal:shell-exec . 219
opal:string-height . 181
opal:string-width . 181
opal:text-to-pure-list . 191
opal:text-to-string . 191
opal:toggle-selection . 188
opal:top-side . 157
opal:update on Window . 213
opal:update-all . 214
opal:with-cursor . 211
opal:with-hourglass-cursor 211

R
root-window on :all-garnet-windows 704

S
set-values . 134

T
text-obj on gg:auto-scroll 182

W
with-filling-styles . 709
with-line-styles . 709

714

Variable Index

. 170

:
:active . 295
:always . 295
:attach-point . 262
:background-color of line-style 163
:bevel . 163
:blue of color . 160
:bold . 179
:bold-italic . 179
:butt . 163
:cap-style of line-style . 163
:clear . 251
:color-name of graphic-quality 161
:color-p of graphic-quality 161
:condense . 179
:current-obj-over . 301
:current-window . 301
:dash-pattern of line-style 164
:extend . 179
:first-obj-over . 301
:fixed . 178
:foreground-color of line-style 163
:green of color . 160
:grow-p . 262
:if-any . 296
:input-filter . 262
:interactors . 295
:italic . 179
:join-style of line-style 163
:large . 170
:line-p . 261
:line-style of line-style 163
:line-thickness of line-style 162
:list-add . 252
:list-remove . 252
:list-toggle . 252
:medium . 170
:min-height . 262
:min-length . 262
:min-width . 262
:miter . 163
:name-prefix . 137
:obj-to-change . 262, 301
:opaque-stippled . 167
:outline . 179
:override . 137
:plain . 179
:rectangle . 168
:red of color . 160
:redraw . 167

:roman . 179
:round . 163
:running-priority . 295
:sans-serif . 179
:serif . 178
:set . 251
:shadow . 179
:small . 170
:solid . 167
:sorted-interactors . 296
:start-char . 301
:start-where . 301
:stipple of line-style . 164
:stippled . 167
:stop-when . 295
:toggle . 251
:underline . 179
:waiting-priority . 295

A
Angle-Interactor . 69
Animator-Interactor . 70

B
background-color . 217
borders-p . 216
Button-Interactor . 69

C
char . 299
clip-p . 217
code . 299
color-p . 217
cur-classifier . 291
cur-examples . 291

D
downp . 299

G
Gesture-Interactor . 70

I
inter:high-priority-level 296
inter:multi-point-interactor 246
inter:normal-priority-level 296
inter:running-priority-level 296
Inter:Trace-Interactor . 246

Variable Index 715

K
kr::*print-as-structure* 142
kr::*print-new-instances* 142
kr::*store-lambdas* . 142
kr::*warning-on-circularity* 142
kr::*warning-on-create-schema* 142
kr::*warning-on-evaluation* 142
kr::*warning-on-null-link* 142

L
landscape-p . 216
last-saved-filename . 291
left, top . 216
left-margin, right-margin,

top-margin, bottom-margin 216
Line :fill-style . 167

M
Menu-Interactor . 69
mousep . 299
Move-Grow-Interactor . 69

N
nil . 296

O
opal:black-fill . 165
opal:blue-fill . 165
opal:blue-line . 162
opal:cyan-fill . 165
opal:cyan-line . 162
opal:dark-gray-fill . 165
opal:diamond-fill . 165
opal:gray-fill . 165
opal:green-fill . 165
opal:green-line . 162
opal:light-gray-fill . 165
opal:make-filling-style . 165
opal:motif-blue . 160
opal:motif-blue-fill . 165
opal:motif-gray . 160
opal:motif-gray-fill . 165
opal:motif-green . 160
opal:motif-green-fill . 165
opal:motif-light-blue . 160
opal:motif-light-blue-fill 165
opal:motif-light-gray . 160

opal:motif-light-gray-fill 165
opal:motif-light-green . 160
opal:motif-light-green-fill 165
opal:motif-light-orange . 160
opal:motif-light-orange-fill 165
opal:motif-orange . 160
opal:motif-orange-fill . 165
opal:no-fill . 165
opal:orange-fill . 165
opal:orange-line . 162
opal:purple-fill . 165
opal:purple-line . 162
opal:red-fill . 165
opal:red-line . 162
opal:white-fill . 165
opal:white-line . 162
opal:yellow-fill . 165
opal:yellow-line . 162

P
paper-size . 217
position-x . 216
position-y . 216

S
saved-p . 291
scale-x, scale-y . 216
subwindows-p . 216

T
t . 168
Text-Interactor . 70
timestamp . 299
title, creator, for . 217
trained-p . 291
Two-Point-Interactor . 69

W
window . 298

X
x . 299

Y
y . 299

716

Keyword Index

(Index is nonexistent)

717

Type Index

’
’(integer . 116
’(member . 117
’(or . 117
’(real . 116

A
accelerators-type . 119
aggregate . 117
aggregate-or-nil . 117

B
bitmap . 117
bitmap-or-nil . 117

C
color . 117, 160
color-or-nil . 117
cons . 116

D
direction . 118
direction-or-nil . 118
draw-function . 118

F
filename-type . 119
fill-style . 118
filling-style . 118
filling-style-or-nil . 118
font . 117
font-face . 118
font-family . 118
font-size . 118

H
h-align . 118

I
integer . 116
inter-window-type . 118
items-type . 118

K
keyword . 116
known-as-type . 117
kr-boolean . 116

L
line-style . 118, 162
line-style-or-nil . 118
list . 116

N
null . 116
number . 116

P
priority-level . 119

S
schema . 116
string . 116

T
t . 116

V
v-align . 118

W
window . 118
window-or-nil . 118

718

Concept Index

#\ (character prefix)
#\ (character prefix) . 228

* (in a “where”)
* (in a “where”) . 236

avoid–equal–values
avoid-equal-values . 582

avoid–shared–values
avoid-shared-values . 582

count–symbols
count-symbols . 582

Current–event
Current-event . 299

defined–names
defined-names . 368

Garnet–Break–Key
Garnet-Break-Key . 293

garnet–break–key
garnet-break-key . 225

gilt–obj
gilt-obj . 625, 629

ignore–undefined–keys
ignore-undefined-keys . 230

pre–set–demon
pre-set-demon . 131

required–names
required-names . 368

screen–height
screen-height . 213

screen–width
screen-width . 213

standard–names
standard-names . 368

verbose–write–gadget
verbose-write-gadget . 367

:join–style
:join-style . 163

‘ (in a “where”)
‘ (in a “where”) . 231

abort–action
abort-action . 243

abort–event
abort-event . 242

abort–if–too–small
abort-if-too-small . 268

Abort–interactor
Abort-interactor . 300

Accelerators
Accelerators . 240

Action Routines
Action Routines 303, 304, 305, 306, 308

action routines
action routines . 308

Concept Index 719

active (slot of priority–level)
active (slot of priority-level) 295

Active slot
Active slot . 591

active
active . 243, 298

actual–heightp
actual-heightp . 181

add gadget
add gadget . 657

add–component
add-component 28, 200, 360, 365

add–components
add-components . 201

add–garnet–load–prefix
add-garnet-load-prefix . 18

add–global–accelerator
add-global-accelerator . 240

add–interactor
add-interactor . 362

Add–item", Secondary="Menubar
Add-item", Secondary="Menubar 441

Add–item",Secondary="Gadgets
Add-item",Secondary="Gadgets 402

add–item, menubar
add-item, menubar . 444

add–item
add-item . 205, 363

Add–item
Add-item . 542, 544, 545

add–lisp–char
add-lisp-char . 198

add–local–component
add-local-component . 366

add–local–interactor
add-local-interactor . 366

add–local–item
add-local-item . 366

add–object
add-object . 192

add–submenu–item
add-submenu-item . 441

add–window–accelerator
add-window-accelerator . 240

additional–selection
additional-selection When the user presses

the middle mouse . 474

Address
Address . 5

after–cursor–moves–func
after-cursor-moves-func . 199

agate
agate . 288

aggregadget, make
aggregadget, make . 672

aggregadget, selection
aggregadget, selection . 645

Concept Index 720

aggregadget
aggregadget . 312

Aggregadget
Aggregadget . 249, 279

aggregadgets
aggregadgets . 220

aggregate
aggregate . 27, 200, 208

aggregraph slots
aggregraph slots . 384

aggregraphs
aggregraphs . 378, 587

Aggrelist
Aggrelist . 249

aggrelist
aggrelist . 644

aggrelists
aggrelists . 343, 420

Aggrelists
Aggrelists . 352

Align... (in Gilt)
Align... (in Gilt) . 620

All parts
All parts . 326

Allegro Common Lisp
Allegro Common Lisp . 152

always
always . 295

amulet
amulet . 1, 21

and–inverted
and-inverted . 154

and–reverse
and-reverse . 154

and
and . 154

angle (slot)
angle (slot) . 272, 273

Angle action routines
Angle action routines . 306

Angle–Interactor
Angle-Interactor 246, 270, 273, 587

Angle
Angle . 306

animation
animation . 587

animator–bounce
animator-bounce . 292

Animator–Interactor
Animator-Interactor . 246

animator–interactor
animator-interactor . 291

animator–wrap
animator-wrap . 292

any–keyboard
any-keyboard . 228

Concept Index 721

any–leftdown
any-leftdown . 228

any–leftup
any-leftup . 228

any–middledown
any-middledown . 228

any–middleup
any-middleup . 228

any–mousedown
any-mousedown . 228

any–mouseup
any-mouseup . 228

any–rightdown
any-rightdown . 228

any–rightup
any-rightup . 228

apply–prototype–method
apply-prototype-method . 112

arc
arc . 176

arrange
arrange . 672

arrow–cursor
arrow-cursor . 210

arrow–line–go
arrow-line-go . 589

arrow–line
arrow-line . 468

arrowhead
arrowhead . 173

articles
articles . 22

at
at . 200

atoms
atoms . 402

attach–point
attach-point . 260, 262

Auto–Repeat
Auto-Repeat . 256

back–inside–action
back-inside-action . 243

back–pointer
back-pointer . 380

back
back . 200

background–color
background-color . 163, 208

backquote
backquote . 231

Balloon Help
Balloon Help . 504

bar–item
bar-item . 438

bboard
bboard . 1

Concept Index 722

beep
beep . 303

behaviors slot
behaviors slot . 329

behind
behind . 200

bell
bell . 303

between–marks–p
between-marks-p . 192

bevel
bevel . 163

Bind–Key
Bind-Key . 280

Binding Keys
Binding Keys . 281

bitmap
bitmap . 182, 644

black–fill
black-fill . 165

black
black . 160

blue–fill
blue-fill . 165

blue
blue . 160

bold–italic
bold-italic . 179

bold
bold . 179

border–width
border-width . 209

bottom–border–width
bottom-border-width . 209

Box (slot)
Box (slot) . 259

box (slot)
box (slot) 222, 228, 259, 269, 278

box constraints
box constraints . 673

box–constraint–do–go
box-constraint-do-go . 681

Box
Box . 447

box
box . 263

Break–On–Slot–Set
Break-On-Slot-Set . 578

bring to front
bring to front . 672

browser gadget
browser gadget . 470

browser–gadget–loader
browser-gadget-loader . 471

browser–gadget
browser-gadget . 588

Concept Index 723

bugs (reporting)
bugs (reporting) . 1

Build (in Gilt)
Build (in Gilt) . 629

build
build . 673

butt
butt . 163

Button action routines
Button action routines . 304

Button–Interactor
Button-Interactor 245, 253, 255

button–outside–stop?
button-outside-stop? . 277

Button
Button . 256, 257, 304

buttons
buttons . 420, 422

C32 panels
C32 panels . 634

C32
C32 . 673

cached values
cached values . 103, 109, 125

calculator
calculator . 587

Call–Func–On–Slot–Set
Call-Func-On-Slot-Set . 578

cap–style
cap-style . 163

careful–eval–formula–lambda
careful-eval-formula-lambda 482

careful–eval
careful-eval . 481

careful–read–from–string
careful-read-from-string . 482

careful–string–eval
careful-string-eval . 482

center (justification)
center (justification) . 181

center–of–rotation
center-of-rotation . 273

Change–Active
Change-Active . 298

change–cursors
change-cursors . 211

change–item
change-item . 205, 364

Changing Label Button
Changing Label Button . 257

character code
character code . 574

check–leaf–but–return–element–or–none
check-leaf-but-return-element-or-none - 235

check–leaf–but–return–element
check-leaf-but-return-element - 235

Concept Index 724

child vs. leaf
child vs. leaf . 232

children–function
children-function . 379

children
children . 367

choice interactor
choice interactor . 687

circle
circle . 178, 644

circular constraints
circular constraints . 104

Circular gauge
Circular gauge . 418

classifier (slot)
classifier (slot) . 286

classifier
classifier . 284

clean–up
clean-up . 214, 309

clear workspace
clear workspace . 673

clear–global–accelerators
clear-global-accelerators . 241

Clear–Slot–Set
Clear-Slot-Set . 578

clear–window–accelerators
clear-window-accelerators . 241

clear
clear . 154, 251

Clip–And–Map
Clip-And-Map . 264

Clipboard–Object
Clipboard-Object . 506

clisp
clisp . 13

clock
clock . 587

Close–Transcript
Close-Transcript . 293

clx
clx . 214

cmu Common Lisp
cmu Common Lisp . 225

CMU Common Lisp
CMU Common Lisp . 152

color–name
color-name . 161

color–p
color-p . 161

color
color . 159

colorimage
colorimage . 217

combining methods
combining methods . 145

Concept Index 725

command (Mac key)
command (Mac key) . 229

commas
commas . 318

Common Lisp
Common Lisp . 225

Compiling demos
Compiling demos . 584

Compiling Garnet
Compiling Garnet . 16

compiling Garnet
compiling Garnet . 5

compiling
compiling . 17

complete program
complete program . 224

components of aggrelists
components of aggrelists . 346

components slot
components slot . 315
components slot As with aggregates,

components are listed . 312

components–in–rectangle
components-in-rectangle . 203

components
components . 149, 200

condense
condense . 179

connect–x
connect-x . 174

connect–y
connect-y . 174

constant slots
constant slots . 125, 168

constants in aggregadgets
constants in aggregadgets . 316

constants in aggrelists
constants in aggrelists 344, 347, 358

Constants", Secondary="Gadgets
Constants", Secondary="Gadgets 403

constraint maintenance
constraint maintenance . 103

constraint–gadget
constraint-gadget . 680

constraint
constraint . 574

constraints
constraints . 673, 674

continuous
continuous . 241

Continuous
Continuous . 227

control
control . 229

convert–coordinates
convert-coordinates . 215

coordinates
coordinates . 574

Concept Index 726

copy–gadget
copy-gadget . 360

copy–inverted
copy-inverted . 154

copy–selection
copy-selection . 196

copy
copy . 154

copying formulas in C32
copying formulas in C32 . 641

core image
core image . 218

count–formulas
count-formulas . 577

Coverage
Coverage . 3

create object
create object . 652

Create or edit string
Create or edit string . 279

create–instance
create-instance 103, 105, 223, 226, 227

Create–instance
Create-instance . 27

create–pixmap–image
create-pixmap-image . 184

create–relation
create-relation . 123

Creating Interactor Window
Creating Interactor Window 223

creating new objects
creating new objects . 286, 586

Creating new objects
Creating new objects . 269

creating objects
creating objects . 105, 119, 636

creating pixmaps
creating pixmaps . 184

creating schemata
creating schemata . 105, 119

creating the image of a window
creating the image of a window 184

Current–event
Current-event . 299

current–obj–over
current-obj-over . 250

current–window
current-window . 250

cursor (pointer)
cursor (pointer) . 209

cursor slot syntax
cursor slot syntax . 210

cursor–font
cursor-font . 180

cursor–index (slot)
cursor-index (slot) . 276, 278

Concept Index 727

Cursor–Multi–Text
Cursor-Multi-Text . 28

cursor–where–press
cursor-where-press . 277

Custom (Start–Where)
Custom (Start-Where) . 233

Custom Action Routines
Custom Action Routines . 303

custom
custom . 233
custom - . 236

customization
customization The most important feature of

the Garnet Gadgets . 399
customization This instruction creates

an object called . 400

cut buffer
cut buffer . 215

cut–selection
cut-selection . 196

cyan–fill
cyan-fill . 165

cyan
cyan . 160

dark–gray–fill
dark-gray-fill . 165

dash–pattern
dash-pattern . 164

dashed–line
dashed-line . 161

Debugging
Debugging . 309

declare syntax
declare syntax . 120

declare–constant
declare-constant . 127

default constraints
default constraints . 103

default formulas
default formulas . 106

default–filling–style
default-filling-style . 165

default–font
default-font . 178

default–gcontext
default-gcontext . 707

default–global–accelerators
default-global-accelerators . 241

default–line–style
default-line-style . 161

define–keys
define-keys . 11

defined–names
defined-names . 368

defining methods
defining methods . 106

degrees schema
degrees schema . 143

Concept Index 728

Delete All (in Gilt)
Delete All (in Gilt) . 622

delete object
delete object . 660

Delete Selected (in Gilt)
Delete Selected (in Gilt) . 622

delete window
delete window . 660

delete–lisp–region
delete-lisp-region . 198

demo–3d
demo-3d . 591

demo–angle
demo-angle . 587

demo–animator
demo-animator . 587

demo–arith
demo-arith . 586

demo–calculator
demo-calculator . 587

demo–clock
demo-clock . 587

demo–editor
demo-editor . 586

demo–fade
demo-fade . 587

demo–file–browser
demo-file-browser . 588
demo-file-browser Two demos, named
"demo-schema-browser" and 471

demo–gadgets
demo-gadgets . 589

demo–gesture
demo-gesture . 588

demo–graph
demo-graph . 587

demo–grow
demo-grow . 586

demo–menu
demo-menu . 587

demo–mode
demo-mode . 591

demo–motif
demo-motif . 589

demo–moveline
demo-moveline . 591

demo–multifont
demo-multifont . 182, 586

demo–multiwin
demo-multiwin . 591

demo–pixmap
demo-pixmap . 588

demo–schema–browser
demo-schema-browser . 471, 588

demo–sequence
demo-sequence . 591

demo–text
demo-text . 586

Concept Index 729

demo–twop
demo-twop . 586

demo–unidraw
demo-unidraw . 588

Demo–Virtual–Agg
Demo-Virtual-Agg . 588

demons
demons . 707

dependencies
dependencies . 318, 574

dependency paths
dependency paths . 105

Dependency View (in Inspector)
Dependency View (in Inspector) 569

DeSelectObj
DeSelectObj . 251

Destroy–Gadget–Window (in Gilt)
Destroy-Gadget-Window (in Gilt) 631

destroy–me
destroy-me . 316

destroy
destroy . 214, 316

Destroy
Destroy . 227

detail
detail . 572

diameter
diameter . 174

diamond–fill
diamond-fill . 166

direction
direction . 344

directories in save–gadget
directories in save-gadget . 486

Directories
Directories . 9

directory–p
directory-p . 219

disconnect–garnet
disconnect-garnet . 219

display–error–and–wait
display-error-and-wait . 480

display–error
display-error . 480

display–info–default–gcontext
display-info-default-gcontext 707

display–info–display
display-info-display . 707

display–info–root–window
display-info-root-window . 707

display–info–screen
display-info-screen . 707

display–info
display-info . 707

display–query–and–wait
display-query-and-wait . 483

Concept Index 730

display–query
display-query . 483

display–save–gadget–and–wait
display-save-gadget-and-wait 486

display–save–gadget
display-save-gadget . 486

display
display . 707

displaying objects
displaying objects The first two

instructions create an . 400

displays
displays . 212

do–all–components
do-all-components . 202

do–components
do-components . 201

Do–Go (Gilt)
Do-Go (Gilt) . 611

do–go
do-go . 585

do–in–clip–rect
do-in-clip-rect . 206

do–not–dump–objects
do-not-dump-objects . 367

do–not–dump–slots
do-not-dump-slots . 367

Do–Stop (Gilt)
Do-Stop (Gilt) . 611

do–stop
do-stop . 585

doc
doc . 9

Documentation Line
Documentation Line . 504

dotted–line
dotted-line . 161

double clicking
double clicking . 230

double–arrow–line
double-arrow-line . 468

double–buffered windows
double-buffered windows . 585

double–buffered–p
double-buffered-p . 208

double–click–time
double-click-time . 230

double–dash
double-dash . 163

downarrow–bitmap
downarrow-bitmap . 430

drag–through–selection?
drag-through-selection? . 193

draw function
draw function . 662

draw–function
draw-function . 153, 168

Concept Index 731

draw–on–children
draw-on-children . 208

draw
draw . 708

drawable
drawable . 707

Drawing program
Drawing program . 585

Duplicate (in Gilt)
Duplicate (in Gilt) . 620

eager evaluation
eager evaluation . 103

eager inheritance
eager inheritance . 133

Edit–Func
Edit-Func . 282

Edit
Edit . 660

Editable String
Editable String . 279

Editing commands for multifont
Editing commands for multifont 194

Editing Commands
Editing Commands . 275

editing formulas in C32
editing formulas in C32 . 636

element (in a “where”)
element (in a “where”) . 232

element–of–or–none
element-of-or-none - This returns a

non-NIL value whenever . 235

element–of
element-of - over any . 234

equiv
equiv . 154

error–checking
error-checking . 481

error–gadget–go
error-gadget-go . 589

error–gadget
error-gadget . 479, 589

even–odd
even-odd . 167

event–char
event-char . 299

event–code
event-code . 299

event–downp
event-downp . 299

event–mousep
event-mousep . 299

event–timestamp
event-timestamp . 299

event–window
event-window . 298

event–x
event-x . 299

Concept Index 732

event–y
event-y . 299

Events
Events . 230, 298, 299

events
events . 228, 685

example program
example program . 224

examples
examples . 224, 286

Examples
Examples . . . 222, 223, 230, 231, 233, 248, 249, 251,
256, 257, 259, 264, 269, 272, 279, 281, 297, 299, 302,

304

except
except . 230

exit–main–event–loop
exit-main-event-loop . 225

exit
exit . 660

explain–formulas
explain-formulas . 577

explain–nil
explain-nil . 579

explain–short
explain-short . 575

explain–slot
explain-slot . 574

extend
extend . 179

f1
f1 . 225

face
face . 179

family
family . 178

fast redraw objects
fast redraw objects . 167

fast–redraw–p
fast-redraw-p . 167

Features
Features . 2

Feedback Rectangle
Feedback Rectangle . 248

Feedback–obj
Feedback-obj . 228

feedback–obj
feedback-obj . 242, 248

feedback–rect
feedback-rect . 248

Feedback
Feedback . 228, 279

file names
file names . 10

fill–background–p
fill-background-p . 181

fill–rule
fill-rule . 167

Concept Index 733

fill–style
fill-style . 167

filling style
filling style . 660

filling–style
filling-style . 28, 153, 164, 168

Final Feedback (for buttons)
Final Feedback (for buttons) 255

Final Feedback (for menus)
Final Feedback (for menus) 249

Final Feedback Objs
Final Feedback Objs . 251

final–feed–inuse
final-feed-inuse . 251

final–feedback–obj
final-feedback-obj . 250

final–function
final-function . . 242, 252, 255, 262, 268, 273, 277, 285

find–formulas
find-formulas . 577

find–key–symbols
find-key-symbols . 11

find–submenu–component
find-submenu-component . 446

fix–properties
fix-properties . 708

fix–up–window
fix-up-window . 213, 215, 579

fixed–height–p
fixed-height-p . 344

fixed–height–size
fixed-height-size . 345

fixed–width–p
fixed-width-p . 344

fixed–width–size
fixed-width-size . 344

fixed
fixed . 178

flash
flash . 573

flip–if–change–side
flip-if-change-side . 268

focus–multifont–textinter
focus-multifont-textinter . 195

FocusLenience
FocusLenience . 12

font changing keys
font changing keys . 194

font–from–file
font-from-file . 180

font–name
font-name . 180

font–path
font-path . 180

fonts.dir
fonts.dir . 180

Concept Index 734

Fonts
Fonts . 11

foreground–color
foreground-color . 163

formula
formula . 29
formula often have unexpected values, and

program listings do . 574

Formulas", Secondary="in aggregadgets
Formulas", Secondary="in aggregadgets 318

Formulas
Formulas . 103

formulas
formulas . 687

framed–text example
framed-text example . 330

from–x
from-x . 174

from–y
from-y . 174

front
front . 200

FTP Instructions
FTP Instructions . 5

full–object–in
full-object-in - makes sure the entire 234

function for :interactors
function for :interactors . 329

Function–For–OK (in Gilt)
Function-For-OK (in Gilt) . 630

Functions for parts
Functions for parts . 323, 326

Functions
Functions . 237

Future work
Future work . 21

g–formula–value
g-formula-value . 129

g–value
g-value . 107

Gadget–Values (in Gilt)
Gadget-Values (in Gilt) . 631

Gadgets in Gilt
Gadgets in Gilt . 614

gadgets
gadgets . 589

garnet–aggregraphs–loader
garnet-aggregraphs-loader . 378

garnet–break–key
garnet-break-key . 225

Garnet–Break–Key
Garnet-Break-Key . 293

garnet–calculator
garnet-calculator . 587

garnet–compile
garnet-compile . 17

garnet–compiler
garnet-compiler . 16

Concept Index 735

Garnet–Debug (Package)
Garnet-Debug (Package) . 25

garnet–debug (package)
garnet-debug (package) . 563
garnet-debug (package) Useful functions to help

debug Garnet programs, . 19

Garnet–Gadgets (Package)
Garnet-Gadgets (Package) . 25

garnet–gadgets (package)
garnet-gadgets (package) A

collection of pre-defined . 19

garnet–gadgets package
garnet-gadgets package . 399

garnet–gadgets–loader
garnet-gadgets-loader . 406

Garnet–Gilt–Loader
Garnet-Gilt-Loader . 611

garnet–load
garnet-load . 17

Garnet–Load
Garnet-Load is a useful procedure 27

Garnet–loader
Garnet-loader . 10

garnet–loader
garnet-loader . 9, 16

Garnet–Screen–Number
Garnet-Screen-Number . 12

garnet–users
garnet-users . 1

garnet–version–number
garnet-version-number . 9

garnet–version
garnet-version . 10

Garnet–xxx–Pathname
Garnet-xxx -Pathname . 16

Garnet–xxx–Src
Garnet-xxx -Src . 16

Garnetdraw
Garnetdraw . 585

garnetdraw
garnetdraw . 35

gauge–go
gauge-go . 589

gauge
gauge . 418, 587, 589

gem (package)
gem (package) Low-level graphics 18

generalizing formulas
generalizing formulas . 641

gest–attributes–abs–th
gest-attributes-abs-th . 285

gest–attributes–dx2
gest-attributes-dx2 . 285

gest–attributes–dy2
gest-attributes-dy2 . 285

gest–attributes–endx
gest-attributes-endx . 285

Concept Index 736

gest–attributes–endy
gest-attributes-endy . 285

gest–attributes–initial–cos
gest-attributes-initial-cos . 285

gest–attributes–initial–sin
gest-attributes-initial-sin . 285

gest–attributes–magsq2
gest-attributes-magsq2 . 285

gest–attributes–maxx
gest-attributes-maxx . 285

gest–attributes–maxy
gest-attributes-maxy . 285

gest–attributes–minx
gest-attributes-minx . 285

gest–attributes–miny
gest-attributes-miny . 285

gest–attributes–path–r
gest-attributes-path-r . 285

gest–attributes–path–th
gest-attributes-path-th . 285

gest–attributes–sharpness
gest-attributes-sharpness . 285

gest–attributes–startx
gest-attributes-startx . 285

gest–attributes–starty
gest-attributes-starty . 285

gesture action routines
gesture action routines . 308

Gesture–Interactor
Gesture-Interactor 246, 285, 286

gesture–interactor
gesture-interactor . 282

Gesture
Gesture . 308

Gestures in demo–arith
Gestures in demo-arith . 586

gestures
gestures . 288

get–cursor–index
get-cursor-index . 181

get–objects
get-objects . 192

get–submenu–component
get-submenu-component . 446

get–value
get-value . 134

Getting Garnet
Getting Garnet . 5

gg nickname
gg nickname . 399

gilt (package)
gilt (package) The Garnet . 19

gilt–obj
gilt-obj . 625, 629

gilt–ref slot (in Gilt)
gilt-ref slot (in Gilt) . 632

Concept Index 737

Gilt
Gilt . 608

global–limit–values slot
global-limit-values slot . 139

goodbye world
goodbye world . 224

graph–node
graph-node . 378, 379

Graphic–quality
Graphic-quality . 158

graphical–object
graphical-object . 153

graphics selection
graphics selection . 451

graphics–selection
graphics-selection . 586

gravity
gravity . 263

gray feedback object
gray feedback object . 474

gray–fill
gray-fill . 28, 165

green–fill
green-fill . 165

green
green . 160

gridding
gridding . 263

grow–p
grow-p . 262

grow
grow . 652

guarantee–processes
guarantee-processes . 12

gv
gv . 29, 110

gvl–sibling
gvl-sibling . 318

gvl
gvl . 110

h–align
h-align . 345

h–scroll–bar
h-scroll-bar . 407

h–slider
h-slider . 410

h–spacing
h-spacing . 344

H–scroll–go
H-scroll-go . 589

H–slider–go
H-slider-go . 589

halftone–darker
halftone-darker . 166

halftone–image–darker
halftone-image-darker . 183

Concept Index 738

halftone–image–lighter
halftone-image-lighter . 183

halftone–image
halftone-image . 183

halftone–lighter
halftone-lighter . 166

Harlequin
Harlequin . 12

head–x
head-x . 174

head–y
head-y . 174

height
height . 152, 168, 207

Hello World
Hello World . 28, 151

Help Line
Help Line . 504

Help–string slot
Help-string slot . 504

HELP key
HELP key . 566

hide–save–gadget
hide-save-gadget . 486

high–priority–level
high-priority-level . 296

hit–threshold
hit-threshold 155, 168, 200, 236

horiz–choice–list
horiz-choice-list . 502

hourglass–cursor
hourglass-cursor . 210

How–set
How-set . 251

icon–bitmap
icon-bitmap . 208

icon–title
icon-title . 208

Ident
Ident . 309

ident
ident . 574

if–any
if-any . 296

ignore–undefined–keys
ignore-undefined-keys . 230

ignored–slots slot
ignored-slots slot . 139

image
image . 182, 183
imageThe :image slot works

exactly like that of . 183

in–box
in-box - inside the rectangle of <obj>. This 234

in–but–not–on
in-but-not-on - checks if point is 234

in–front
in-front . 200

Concept Index 739

in–progress
in-progress . 212

in
in - inside <obj>. Sends the point-in-gob 234

Incrementing Button
Incrementing Button . 256

indent in lisp–mode
indent in lisp-mode . 197

indent
indent . 345

indicator
indicator . 410

info–function
info-function . 379

inheritance relations
inheritance relations . 123

inheritance search
inheritance search . 123

inheritance
inheritance . 102, 136, 399

inherited formulas
inherited formulas . 103

initial value
initial value . 401, 561

initialize method
initialize method . 103, 106

initialize
initialize . 708

input–filter
input-filter . 262, 268

insert–mark
insert-mark . 192

Insert–Text–Into–String
Insert-Text-Into-String . 278

inspect–next–inter
inspect-next-inter . 566

inspector–key
inspector-key . 566

inspector–next–inter–key
inspector-next-inter-key . 566

Inspector
Inspector . 564

install–links
install-links . 682

installing Garnet
installing Garnet . 5

instance
instance . 102

int–feedback–p
int-feedback-p . 410

Inter (Package)
Inter (Package) . 25

inter (package)
inter (package) Handling of . 19

Inter Package
Inter Package . 222

Concept Index 740

interaction–complete
interaction-complete . 302

interactor–window
interactor-window . 27, 223

Interactor–Window
Interactor-Window . 226

interactors (slot of priority–level)
interactors (slot of priority-level) 295

interactors function
interactors function . 329

Interactors
Interactors . 220

interactors
interactors . 329, 579, 673, 684

Interim Feedback (for buttons)
Interim Feedback (for buttons) 255

Interim Feedback (for menus)
Interim Feedback (for menus) 248

Interim–Selected (slot)
Interim-Selected (slot) . 248, 255

interim–selected
interim-selected . 248

invalidate demon
invalidate demon . 131

inverse relations
inverse relations . 123

invert
invert . 154, 574

is–a relation
is-a relation . 102

is–a–tree
is-a-tree . 573

Is–A–Motif–Background
Is-A-Motif-Background . 508

Is–A–Motif–Rect
Is-A-Motif-Rect . 508

italic
italic . 179

item functions
item functions . 402, 421

item–prototype
item-prototype . 345

Item–to–string–function
Item-to-string-function . 562

item–to–string–function
item-to-string-function The :items

slot may be a list of . 434
item-to-string-function The

function in the slot . 474

itemized aggrelists
itemized aggrelists . 343, 345

items slot
items slot . 401, 421

items
items . 346

iterators
iterators . 124, 135

Concept Index 741

justification
justification . 32, 181

key bindings
key bindings . 194

Key Bindings
Key Bindings . 280

Key Caps
Key Caps . 11

key descriptions
key descriptions . 198

Key Translation Tables
Key Translation Tables . 280

Keyboard Keys
Keyboard Keys . 11

keyboard keys
keyboard keys . 228

keyboard–selection
keyboard-selection . 525

kids
kids . 572

kill–main–event–loop–process
kill-main-event-loop-process 226

Known–as (in Gilt)
Known-as (in Gilt) . 625

kr (package)
kr (package) The object and constraint 18

kr–path
kr-path . 128

KR (Package)
KR (Package) . 25

Labeled box
Labeled box . 447

Labeled–Box–go
Labeled-Box-go . 589

lapidary (package)
lapidary (package) A . 19

large
large . 170, 179

Last
Last . 236

launch–main–event–loop–process
launch-main-event-loop-process 226

launch–process–p
launch-process-p . 226

layout function
layout function . 388

layout–graph
layout-graph . 388

lazy evaluation
lazy evaluation . 103

Leaf Objects
Leaf Objects . 233

leaf vs. child
leaf vs. child . 232

leaf–element–of–or–none
leaf-element-of-or-none - Like
:element-of-or-none, except it 235

Concept Index 742

leaf–element–of
leaf-element-of - . 234

leaf–objects–in–rectangle
leaf-objects-in-rectangle . 203

leaf
leaf . 574

left (justification)
left (justification) . 181

left–border–width
left-border-width . 209

left
left . 152, 168, 207

leftdown
leftdown . 228

length
length . 174

License
License . 5

light–gray–fill
light-gray-fill . 165

limit–values slot
limit-values slot . 139

line constraints
line constraints . 673

line style
line style . 661

line–0
line-0 . 161

line–1
line-1 . 161

line–2
line-2 . 161

line–4
line-4 . 161

line–8
line-8 . 161

line–constraint–do–go
line-constraint-do-go . 681

line–p
line-p . 261, 267

line–style (slot)
line-style (slot) . 163

line–style
line-style 153, 161, 162, 168, 181

line–thickness
line-thickness . 162

line
line . 170, 644

lines–bitmap
lines-bitmap . 430

link slots
link slots . 682

link–prototype
link-prototype . 379

lisp image
lisp image . 218

Concept Index 743

lisp mode in multifont
lisp mode in multifont . 197

lispify
lispify . 198

lispworks
lispworks . 12, 152, 225

list properties
list properties . 664

list–add
list-add . 252

list–check–leaf–but–return–element–or...
list-check-leaf-but-return-element-or... - 235

list–check–leaf–but–return–element
list-check-leaf-but-return-element - like 235

list–element–of–or–none
list-element-of-or-none - like
:list-element-of, . 235

list–element–of
list-element-of - the contents of

the <slot> of . 235

list–leaf–element–of–or–none
list-leaf-element-of-or-none - like
:list-leaf-element-of, 235

list–leaf–element–of
list-leaf-element-of - like
:list-element-of, except if 235

list–remove
list-remove . 252

list–toggle
list-toggle . 252

load–gadget
load-gadget . 489

load–xxx–p
load-xxx -p . 16

loader files
loader files . 400, 404

loading aggregadgets
loading aggregadgets . 311

Loading Garnet
Loading Garnet . 16

loading
loading . 17, 563

local values
local values . 136

locate
locate . 573, 574
locate a window is to use the function: 574

look–inter
look-inter . 580

Look–inter
Look-inter . 309

look
look . 572

Lucid Common Lisp
Lucid Common Lisp . 152

lucid
lucid . 225

Mac mouse buttons
Mac mouse buttons . 228

Concept Index 744

Machine–specific features
Machine-specific features . 10

machines
machines . 212

main–event–loop–process–running–p
main-event-loop-process-running-p 226

Main–Event–Loop
Main-Event-Loop . 26, 152

main–event–loop
main-event-loop . 225

make copy
make copy . 652, 660

make instance
make instance . 652, 660

make–bar–item
make-bar-item . 444

Make–Event
Make-Event . 299

make–filling–style
make-filling-style . 166

make–image
make-image . 218

make–motif–bar–item
make-motif-bar-item . 544

make–motif–menubar
make-motif-menubar . 544

make–motif–submenu–item
make-motif-submenu-item . 544

make–ps–file
make-ps-file . 215

make–submenu–item
make-submenu-item . 444

marks
marks . 192

match–parens–p
match-parens-p . 198

max–dist–to–mean
max-dist-to-mean . 285

max–height
max-height . 207

max–width
max-width . 207

maybe–constant
maybe-constant . 126, 168, 403

me
me 〈undefined〉 [shortdash], page 〈undefined〉,

Assume that all components and 367

medium
medium . 170, 179

Menu action routines
Menu action routines . 304

Menu Interactor
Menu Interactor . 248

Menu–go
Menu-go . 589

Menu–Interactor
Menu-Interactor . 245, 246, 252

Concept Index 745

menu–items–generating–function
menu-items-generating-function The slot 474

Menu
Menu . 249, 304, 432

menubar–disable–component
menubar-disable-component 446

menubar–enable–component
menubar-enable-component 446

menubar–enabled–p
menubar-enabled-p . 446

menubar–get–title
menubar-get-title . 446

Menubar–go
Menubar-go . 589

menubar–set–title
menubar-set-title . 446

menubar
menubar . 438

messages
messages . 102

meta–information
meta-information . 129

meta
meta . 229

method combination
method combination . 102

methods
methods . 110, 111, 112

middledown
middledown . 228

min–height
min-height . 207, 262, 267

min–length
min-length . 262, 268

min–non–ambig–prob
min-non-ambig-prob . 284

min–width
min-width . 207, 262, 267

miter
miter . 163

modal windows
modal windows . 297

mode line
mode line . 504

modes
modes . 591

Modes
Modes . 297

modify (keyboard in aggregadgets)
modify (keyboard in aggregadgets) 336

modify (keyword)
modify (keyword) . 336, 345

modules
modules . 404

Motif colors
Motif colors . 511

Concept Index 746

Motif filling styles
Motif filling styles . 511

motif–(light–)blue–fill
motif-(light-)blue-fill . 165

motif–(light–)gray–fill
motif-(light-)gray-fill . 165

motif–(light–)green–fill
motif-(light-)green-fill . 165

motif–(light–)orange–fill
motif-(light-)orange-fill . 165

motif–blue
motif-blue . 160

Motif–Check–Buttons–go
Motif-Check-Buttons-go . 589

Motif–check–buttons
Motif-check-buttons . 527

motif–error–gadget–go
motif-error-gadget-go . 589

motif–error–gadget
motif-error-gadget . 548, 589

Motif–gadget–prototype
Motif-gadget-prototype . 508

Motif–Gauge–go
Motif-Gauge-go . 589

Motif–gauge
Motif-gauge . 520

motif–gray
motif-gray . 160

motif–green
motif-green . 160

Motif–h–scroll–bar
Motif-h-scroll-bar . 513

Motif–H–Scroll–go
Motif-H-Scroll-go . 589

motif–load–gadget
motif-load-gadget . 551

motif–menu–accelerator–inter
motif-menu-accelerator-inter 534

Motif–Menu–go
Motif-Menu-go . 589

Motif–menu
Motif-menu . 531

Motif–Menubar–go
Motif-Menubar-go . 589

Motif–menubar
Motif-menubar . 542, 544, 545

motif–menubar
motif-menubar . 538, 543

motif–option–button–go
motif-option-button-go . 589

motif–option–button
motif-option-button . 529

motif–orange
motif-orange . 160

motif–prop–sheet–for–obj–with–done
motif-prop-sheet-for-obj-with-done 556

Concept Index 747

Motif–Prop–Sheet–for–obj–With–OK
Motif-Prop-Sheet-for-obj-With-OK 553

Motif–Prop–Sheet–With–OK
Motif-Prop-Sheet-With-OK 552

motif–query–gadget
motif-query-gadget . 549, 589

Motif–Radio–Buttons–go
Motif-Radio-Buttons-go . 589

Motif–radio–buttons
Motif-radio-buttons . 528

Motif–Scrolling–Labeled–Box–go
Motif-Scrolling-Labeled-Box-go 589

motif–scrolling–labeled–box
motif-scrolling-labeled-box . 546

motif–scrolling–menu
motif-scrolling-menu . 535

Motif–Scrolling–Window–go
Motif-Scrolling-Window-go . 589

motif–scrolling–window–with–bars
motif-scrolling-window-with-bars 557

motif–scrolling–window
motif-scrolling-window . 557

Motif–Slider–go
Motif-Slider-go . 589

motif–slider
motif-slider The loader file for the
motif-slider is . 517

Motif–tab–inter
Motif-tab-inter . 512

Motif–Text–Buttons–go
Motif-Text-Buttons-go . 590

Motif–text–buttons
Motif-text-buttons . 525

motif–trill–device
motif-trill-device . 519

motif–trill–go
motif-trill-go . 590

Motif–v–scroll–bar
Motif-v-scroll-bar . 513

Motif–V–Scroll–go
Motif-V-Scroll-go . 590

mouse buttons
mouse buttons . 228

Mouse Documentation Line
Mouse Documentation Line 504

mouse–keys.lisp
mouse-keys.lisp . 15

mouse
mouse . 651

mouseline–go
mouseline-go . 590

MouseLine
MouseLine . 504

MouseLinePopup
MouseLinePopup . 505

Move or Change Size
Move or Change Size . 302

Concept Index 748

move–component
move-component . 201

Move–Grow action routines
Move-Grow action routines . 305

Move–Grow–Interactor
Move-Grow-Interactor 30, 245, 257, 262

move–grow–interactor
move-grow-interactor . 591

Move–Grow
Move-Grow . 305

move/grow interactor
move/grow interactor . 689

Move
Move . 651

Mover for moving–rectangle
Mover for moving-rectangle 223

Moving–Line
Moving-Line . 259

Moving–Rectangle
Moving-Rectangle . 259

moving–rectangle
moving-rectangle . 28, 222

multi–graphics–selection
multi-graphics-selection . 455

multi–line text input
multi-line text input . 586

multi–line
multi-line . 328

Multi–Point–Interactor
Multi-Point-Interactor . 246

multi–selection–loader
multi-selection-loader . 458

multi–text
multi-text . 644

multifont text input
multifont text input . 586

multifont–gadget–go
multifont-gadget-go . 590

multifont–gadget
multifont-gadget . 199

multifont–text–interactor
multifont-text-interactor . 193

multifont–text
multifont-text . 185

multiple inheritance
multiple inheritance . 133

Multiple Screens
Multiple Screens . 12

Multiple selection
Multiple selection . 251

multiple values
multiple values . 105

Multiple Windows
Multiple Windows . 302, 591

multipoint
multipoint . 171

Concept Index 749

name object
name object . 663

name–prefix keyword
name-prefix keyword . 137

nand
nand . 154

no–fill
no-fill . 165

no–line
no-line . 161

no–op
no-op . 154

node–prototype
node-prototype . 379

node
node . 379

none
none . 232

nor
nor . 154

normal–priority–level
normal-priority-level . 296

not–last
not-last . 163

notice–items–changed
notice-items-changed . 346, 402

notice–resize–object
notice-resize-object . 192

Notify–On–Slot–Set
Notify-On-Slot-Set . 578

null link
null link . 579
null link e.g. 575

null–object
null-object . 365

Number input
Number input . 414

numbers (used in :how–set slot)
numbers (used in :how-set slot) 252

o–formula
o-formula . 29, 318

obj–in–rectangle
obj-in-rectangle . 203

Obj–Over (slot)
Obj-Over (slot) 248, 255, 263, 273

obj–to–change
obj-to-change . 262, 272, 277

object constraints
object constraints . 103

object initialization
object initialization . 103

object names
object names . 119

Object View (in Inspector)
Object View (in Inspector) . 567

object–oriented programming
object-oriented programming 102, 110

Concept Index 750

objects and inheritance
objects and inheritance . 102

OK–Apply–Cancel gadget (in Gilt)
OK-Apply-Cancel gadget (in Gilt) 630

OK–Cancel gadget (in Gilt)
OK-Cancel gadget (in Gilt) 630

omit (keyword in aggregadgets)
omit (keyword in aggregadgets) 336

omit–title–bar–p
omit-title-bar-p . 208

Opal (Package)
Opal (Package) . 25

opal (package)
opal (package) . 19

Opal Package
Opal Package . 150

opaque–stippled
opaque-stippled . 167

open–p
open-p . 174

OpenWindows
OpenWindows . 12

operates–on
operates-on . 330

option–button–go
option-button-go . 590

option–button
option-button . 426

or–inverted
or-inverted . 154

or–reverse
or-reverse . 154

or
or . 154

orange–fill
orange-fill . 165

orange
orange . 160

orphans–only
orphans-only . 214

Othello
Othello . 34

other, menu selection
other, menu selection . 673

outline
outline . 179

outside stop
outside stop . 277

outside–action
outside-action . 243

outside
outside . 242

Outside
Outside . 236

oval
oval . 178

Concept Index 751

overlapping
overlapping . 200

Packages in Garnet
Packages in Garnet . 18

Packages
Packages . 25

page–trill–p
page-trill-p . 410

papers
papers . 22

parameters
parameters . 665

parent (slot)
parent (slot) . 152

parent
parent . 149, 208

parenthesis matching
parenthesis matching . 198

Part–generating functions
Part-generating functions 323, 326, 352

parts in aggregadgets
parts in aggregadgets . 312

parts in aggrelists
parts in aggrelists . 355

Parts of Garnet
Parts of Garnet . 18

paste–selection
paste-selection . 196

pathnames
pathnames . 10

paths in formulas
paths in formulas . 105, 110

pixarray
pixarray . 183

pixel–margin
pixel-margin . 345

pixmap
pixmap . 183, 217

plain
plain . 179

Playback
Playback . 293

point–in–gob
point-in-gob . 156, 203

point–to–component
point-to-component . 202, 205

point–to–leaf
point-to-leaf . 202

point–to–rank
point-to-rank . 205

pointer
pointer . 209

points (slot)
points (slot) . 269

Points (slot)
Points (slot) . 259

Concept Index 752

points
points . 263

polyline editing
polyline editing . 476

polyline–creator–loader
polyline-creator-loader . 477

Polyline–Creator
Polyline-Creator . 476

polyline
polyline . 171

Pop–Up Dialog Boxes (from Gilt)
Pop-Up Dialog Boxes (from Gilt) 630

Pop–Up–From–Icon
Pop-Up-From-Icon . 502

popup–menu–button–go
popup-menu-button-go . 590

popup–menu–button
popup-menu-button . 429

position–by–hand
position-by-hand . 208

position
position . 200

Postscript in demo–arith
Postscript in demo-arith . 586

PostScript
PostScript . 215

ppm
ppm . 184

ppmtoxpm
ppmtoxpm . 184

pre–set demon
pre-set demon . 131

pretend–to–be–Leaf
pretend-to-be-Leaf . 233

pretend–to–be–leaf
pretend-to-be-leaf . 155, 236
pretend-to-be-leaf
:pretend-to-be-leaf slot of each 202, 203

primary select covered object
primary select covered object 651

Primary Selection, add to
Primary Selection, add to . 651

primary selection, deselect
primary selection, deselect . 651

primary selection
primary selection . 645, 651

print–as–structure slot
print-as-structure slot . 139

Print–Inter–Levels
Print-Inter-Levels . 309

Print–Inter–Windows
Print-Inter-Windows . 309

print–schema–control
print-schema-control . 138

print–slots slot
print-slots slot . 139

printing schemata
printing schemata . 106, 137

Concept Index 753

printing
printing . 215

Priorities
Priorities . 294

priority level
priority level: . 580

priority levels
priority levels . 297

Priority Levels
Priority Levels . 297

priority–level–list
priority-level-list . 295

priority–level
priority-level . 295

procedural attachments
procedural attachments . 131

projecting
projecting . 163

promote–item
promote-item The function
promote-item is used to . 475

prop–sheet–for–obj–go
prop-sheet-for-obj-go . 590

Prop–Sheet–for–obj–With–OK
Prop-Sheet-for-obj-With-OK 500

Prop–Sheet–For–Obj
Prop-Sheet-For-Obj . 494

Prop–Sheet–With–OK
Prop-Sheet-With-OK . 499

prop–sheet
prop-sheet . 491

Properties... (in Gilt)
Properties... (in Gilt) . 622

Properties
Properties . 660

Property sheets
Property sheets . 490

prototype/instance
prototype/instance . 102

prototypes
prototypes . 102, 106, 145

ps
ps . 572

PS
PS . 309

pull–down menus
pull-down menus . 438

purple–fill
purple-fill . 165

purple
purple . 160

push–first–item
push-first-item The function
push-first-item is used 475

quarantine slot
quarantine slot . 212

query–gadget
query-gadget . 483, 589

Concept Index 754

quit
quit . 660

Quitting Gilt
Quitting Gilt . 611

radio–button–panel
radio-button-panel . 425

Radio–Button–Panel
Radio-Button-Panel . 32

radio–button
radio-button . 425

Radio–Buttons–go
Radio-Buttons-go . 590

radius
radius . 170

rank–margin
rank-margin . 345

read–image
read-image . 182

read–xpm–file
read-xpm-file . 184

Read... (in Gilt)
Read... (in Gilt) . 627

reader macros
reader macros . 112

recalculate–virtual–aggregate–bboxes
recalculate-virtual-aggregate-bboxes 206

record–from–now
record-from-now . 576

Recording
Recording . 293

rectangle
rectangle . 28, 170, 644

red–fill
red-fill . 165

red
red . 160

Refreshing windows
Refreshing windows . 26

relation maintenance
relation maintenance . 123

relation
relation . 102

relations
relations . 123

remove–component
remove-component . 201, 361

remove–components
remove-components . 201

remove–global–accelerator
remove-global-accelerator . 241

remove–interactor
remove-interactor . 362

remove–item
remove-item 205, 364, 442, 445, 543

remove–local–component
remove-local-component . 366

Concept Index 755

remove–local–interactor
remove-local-interactor . 366

remove–local–item
remove-local-item . 366

remove–nth–component
remove-nth-component . 366

remove–nth–item
remove-nth-item . 364

remove–submenu–item
remove-submenu-item . 442, 543

remove–window–accelerator
remove-window-accelerator . 241

replace–item–prototype–object
replace-item-prototype-object 364

required–names
required-names . 368

Reset–Inter–Levels
Reset-Inter-Levels . 309

resize
resize . 652

restore–cursors
restore-cursors . 211

retrieving Garnet
retrieving Garnet . 5

Return–Final–Selection–Objs
Return-Final-Selection-Objs 250

ReUsePropSheet
ReUsePropSheet . 498

right (justification)
right (justification) . 181

right–border–width
right-border-width . 209

rightdown
rightdown . 228

roman
roman . 179

root–window
root-window . 707

Rotating Line
Rotating Line . 272

round
round . 163

roundtangle
roundtangle . 170, 644

Run (in Gilt)
Run (in Gilt) . 629

Run Lapidary
Run Lapidary . 643

running demos
running demos . 585

running–action
running-action . 243

Running–action
Running-action . 304

running–priority–level
running-priority-level . 296

Concept Index 756

running–priority
running-priority . 242, 295

running–where
running-where . 231, 242

s–value
s-value . 27

sans–serif
sans-serif . 178

save–gadget
save-gadget . 483

save–under
save-under . 208

Save... (in Gilt)
Save... (in Gilt) . 625

save
save . 655

saving aggregadgets
saving aggregadgets . 366

saving Garnet objects
saving Garnet objects . 483

saving lisp images
saving lisp images . 218

saving pixmaps
saving pixmaps . 184

scalable aggregraph image
scalable aggregraph image . 387

scalable aggregraph
scalable aggregraph . 386

schema manipulation
schema manipulation . 105

schema
schema . 99

schemata and variables
schemata and variables . 99

scr–incr
scr-incr . 410

scr–trill–p
scr-trill-p . 410

screen
screen . 707

Screens
Screens . 12

Scroll Bar
Scroll Bar . 259, 297

scroll bar
scroll bar . 297

scroll bars
scroll bars . 587

scroll–bars
scroll-bars . 407

Scrolling menu
Scrolling menu . 435

Scrolling–Input–String–go
Scrolling-Input-String-go . 590

Scrolling–Input–String–loader
Scrolling-Input-String-loader 449

Concept Index 757

Scrolling–Input–String
Scrolling-Input-String . 448

Scrolling–Labeled–Box–go
Scrolling-Labeled-Box-go . 590

Scrolling–labeled–box–loader
Scrolling-labeled-box-loader 451

Scrolling–Labeled–Box
Scrolling-Labeled-Box . 450

Scrolling–Menu–go
Scrolling-Menu-go . 590

scrolling–window slot
scrolling-window slot . 182

Scrolling–Window–go
Scrolling-Window-go . 590

scrolling–window–loader
scrolling-window-loader 465, 559

scrolling–window–with–bars
scrolling-window-with-bars . 464

search–backwards–for–mark
search-backwards-for-mark . 192

search–for–mark
search-for-mark . 192

secondary select covered object
secondary select covered object 651

secondary selection, add to
secondary selection, add to . 651

secondary selection, deselect
secondary selection, deselect 651

secondary selection
secondary selection . 645

Secondary Selection
Secondary Selection . 651

Select objects inside a box
Select objects inside a box . 299

select–outline–only
select-outline-only 155, 168, 236

Selected (slot)
Selected (slot) 249, 251, 252, 255, 256

selected (slot)
selected (slot) . 222

selected
selected . 249, 255

selecting in a rectangle
selecting in a rectangle . 299

selecting objects in a region
selecting objects in a region 462

selecting objects
selecting objects . 645

selection–function
selection-function . 401

selection–interactor
selection-interactor . 197

Selection
Selection . 451

SelectObj
SelectObj . 251

Concept Index 758

self–deactivate
self-deactivate . 244

send to back
send to back . 672

sending messages
sending messages . 102, 111

serif
serif . 178

set–aggregate–hit–threshold
set-aggregate-hit-threshold . 200

Set–Default–Key–Translations
Set-Default-Key-Translations 282

set–first–item
set-first-item . 473
set-first-item Once an instance of the
browser-gadget has . 475

set–focus
set-focus . 196

Set–Initial–Value (in Gilt)
Set-Initial-Value (in Gilt) . 630

set–menubar
set-menubar . 444, 544

set–submenu
set-submenu . 444, 544

Set–val–for–propsheet–value
Set-val-for-propsheet-value . 499

set
set . 251

shadow
shadow . 179

shell–exec
shell-exec . 219

shift
shift . 229

show–box–constraint–menu
show-box-constraint-menu . 681

Show–In–Window (in Gilt)
Show-In-Window (in Gilt) . 630

Show–In–Window–And–Wait (in Gilt)
Show-In-Window-And-Wait (in Gilt) 630

show–line–constraint–menu
show-line-constraint-menu . 681

show–marks
show-marks . 192

show–object–key
show-object-key gd:*show-object-key*. 566

show–trace
show-trace . 284, 286

Single parts
Single parts . 323

Single selection
Single selection . 251

Site specific changes
Site specific changes . 10

size
size . 179, 582

sliders
sliders . 410

Concept Index 759

slot iterator
slot iterator . 124

slot names
slot names . 99

slot
slot . 99
slot function can be used: . 574

Slots (of interactors)
Slots (of interactors) . 241

slots–to–set
slots-to-set . 253, 263

slots–to–show slot
slots-to-show slot . 642

slots
slots . 399

small
small . 170, 179

solid
solid . 167

sort–objs–display–order
sort-objs-display-order . 508

sorted–slots slot
sorted-slots slot . 139

source–node
source-node . 378

source–roots
source-roots . 379

Special Slots
Special Slots . 302

Spreadsheet in C32
Spreadsheet in C32 . 633

src
src . 9

Standard Edit
Standard Edit . 505

standard parent
standard parent of the object’s

parent in parentheses. 573

Standard–Copy
Standard-Copy . 507

Standard–Cut
Standard-Cut . 507

Standard–Delete–All
Standard-Delete-All . 507

Standard–Delete
Standard-Delete . 507

Standard–Duplicate
Standard-Duplicate . 508

Standard–Group
Standard-Group . 508

Standard–Initialize–Gadget
Standard-Initialize-Gadget . 506

standard–names
standard-names . 368

Standard–NIY
Standard-NIY . 507

Standard–Paste–Inc–Place
Standard-Paste-Inc-Place . 507

Concept Index 760

Standard–Paste–Same–Place
Standard-Paste-Same-Place 507

Standard–Refresh
Standard-Refresh . 507

Standard–Select–All
Standard-Select-All . 507

Standard–To–Bottom
Standard-To-Bottom . 507

Standard–To–Top
Standard-To-Top . 507

Standard–Undo–Last–Delete
Standard-Undo-Last-Delete 507

Standard–UnGroup
Standard-UnGroup . 508

Start Lapidary
Start Lapidary . 643

start–action
start-action . 243

Start–Animator
Start-Animator . 291

start–calc
start-calc . 587

start–event
start-event . 241

Start–interactor
Start-interactor . 300

start–interactor
start-interactor . 591

start–othello
start-othello . 34

Start–Where
Start-Where . 231

start–where
start-where . 231, 241

starting demos
starting demos . 585

Starting Gilt
Starting Gilt . 611

States (of interactors)
States (of interactors) . 237

stipple
stipple . 164, 166

stippled
stippled . 167, 183

stop–action
stop-action . 243

Stop–Animator
Stop-Animator . 291

stop–calc
stop-calc . 587

stop–event
stop-event . 242

Stop–Interactor
Stop-Interactor . 300

stop–othello
stop-othello . 36

Concept Index 761

stop–tour
stop-tour . 36

stop–when (slot of priority–level)
stop-when (slot of priority-level) 295

stop
stop . 660

stopping demos
stopping demos . 585

Stopping Gilt
Stopping Gilt . 611

string (slot)
string (slot) . 276, 278

String input
String input . 447

string–height
string-height . 181

string–width
string-width . 181

String
String . 279

string
string . 181

submenu–item
submenu-item . 438

suggest–constants
suggest-constants . 576

take–default–component
take-default-component . 362

temperature–device schema
temperature-device schema . 144

test
test . 673

Text action routines
Text action routines . 308

Text Editing Commands
Text Editing Commands . 275

text interactor
text interactor . 693

text properties
text properties . 664

text, edit
text, edit . 652

text–button–panel
text-button-panel . 423

text–button
text-button . 422

Text–Buttons–go
Text-Buttons-go . 590

text–fonts.lisp
text-fonts.lisp . 11

text–interactor
text-interactor . 273, 586

Text–Interactor
Text-Interactor . 30, 246, 277

Text
Text . 275, 279, 308

Concept Index 762

text
text . 181, 644

textkeyhandling.lisp
textkeyhandling.lisp . 11

thermometer schema
thermometer schema . 144

thin–line
thin-line . 161

timer functions
timer functions . 292

timer–handler slot (animation)
timer-handler slot (animation) 291

timer–initial–wait
timer-initial-wait . 256

timer–repeat–p
timer-repeat-p . 256

title
title . 207

To Bottom (in Gilt)
To Bottom (in Gilt) . 620

To Top (in Gilt)
To Top (in Gilt) . 620

toggle–polyline–handles
toggle-polyline-handles . 478

toggle
toggle . 251

top–border–width
top-border-width . 209

top
top . 152, 168, 207

trace–inter
trace-inter . 579

Trace–Inter
Trace-Inter . 309

Trace–Interactor
Trace-Interactor . 246

tracing
tracing . 579

training gestures
training gestures . 288

training new gestures
training new gestures . 288

Transcript–Events–From–File
Transcript-Events-From-File 293

Transcript–Events–To–File
Transcript-Events-To-File . 293

Transcripts
Transcripts . 293

trill boxes
trill boxes . 410

trill–device
trill-device . 414

Trill–go
Trill-go . 590

trill–incr
trill-incr . 410

Concept Index 763

triple clicking
triple clicking . 230

turn–off–match
turn-off-match . 198

two point interactor
two point interactor . 692

Two–Point action routines
Two-Point action routines . 306

Two–point–interactor
Two-point-interactor . 269

two–point–interactor
two-point-interactor . 586

Two–Point–Interactor
Two-Point-Interactor 246, 265, 268, 299

Two–Point
Two-Point . 306

type checking
type checking . 579

Type in Where
Type in Where . 233

type–checking
type-checking . 112

Type
Type . 232

Unbind–All–Keys
Unbind-All-Keys . 282

Unbind–Key
Unbind-Key . 282

underline
underline . 179

Undo Last Delete (in Gilt)
Undo Last Delete (in Gilt) . 622

undo
undo . 461

ungroup
ungroup . 673

uniform declaration syntax
uniform declaration syntax . 120

uninvert
uninvert . 574

unix
unix . 219

untrace–inter
untrace-inter . 580

update–all
update-all . 214

update–slots
update-slots . 131, 706

Update
Update . 152

update
update . 27, 213, 578
update For example: . 574

use–package
use-package . 150, 399

v–align
v-align . 345

Concept Index 764

v–scroll–bar
v-scroll-bar . 400, 407

v–slider
v-slider . 410

v–spacing
v-spacing . 344

V–scroll–go
V-scroll-go . 590

V–slider–go
V-slider-go . 590

V–Slider
V-Slider . 33

value dependency
value dependency . 110

value iterator
value iterator . 135

value propagation
value propagation . 104, 124

Value Slot
Value Slot . 32

value slot
value slot . 400, 420

value–obj
value-obj . 420

Value–Of (in Gilt)
Value-Of (in Gilt) . 631

value
value . 99

values (lisp function)
values (lisp function) . 328

values as links
values as links . 101

verbose–write–gadget
verbose-write-gadget . 367

very–large
very-large . 179

view–object
view-object . 152

virtual–aggregates
virtual-aggregates . 203

visibility
visibility . 151
visibility The function . 573

visible (slot)
visible (slot) . 263, 269, 278

Visible (slot)
Visible (slot) . 248

visible
visible . 152, 168, 208

wait–interaction–complete
wait-interaction-complete . 302

waiting–priority
waiting-priority . 242, 295

warp–pointer
warp-pointer . 303

what
what . 572

Concept Index 765

Where
Where . 231

where
where . 231, 573

white–fill
white-fill . 165

white
white . 160

who line
who line . 504

why–not–constant
why-not-constant . 577

width
width . 152, 168, 207

winding
winding . 167

window (slot)
window (slot) . 152

Window Creation
Window Creation . 223

Window Managers
Window Managers . 148

Window–Enter event
Window-Enter event . 229

Window–Leave event
Window-Leave event . 229

window–to–pixmap–image
window-to-pixmap-image . 184

Window
Window . 223

window
window . 206, 241, 302, 644

Windows (debugging function)
Windows (debugging function) 309, 574

windows for interactors
windows for interactors . 330

windows on other displays
windows on other displays . 212

windows
windows . 591

with–constants–disabled
with-constants-disabled . 127

with–cursor
with-cursor . 211

with–demon–disabled
with-demon-disabled . 133

with–demon–enabled
with-demon-enabled . 133

with–filling–styles
with-filling-styles . 709

with–hourglass–cursor
with-hourglass-cursor . 211

with–line–styles
with-line-styles . 709

word wrap (in multifont–text)
word wrap (in multifont-text) 182, 185

Concept Index 766

write–gadget
write-gadget . 366

write–xpm–file
write-xpm-file . 184

x–button–panel
x-button-panel . 424

x–button
x-button . 423

x–draw–function
x-draw-function . 708

x–tiles
x-tiles . 708

X–Buttons–go
X-Buttons-go . 590

xor
xor . 154

xset
xset . 180

xwd
xwd . 184

xwdtopnm
xwdtopnm . 184

yellow–fill
yellow-fill . 165

yellow
yellow . 160

A
auto scroll . 182
Auto scroll . 198
auto-scroll-p slot . 182

B
box-object . 100

C
change-formula . 124

E
expressions in formulas . 109

F
face . 179
family . 178
font directories . 180
font-from-file . 180
fonts . 178, 179, 180
formula (function) . 109
formula-p . 110
Formulas . 103, 109

G
gv in formulas . 110

I
Inheritance . 103
Initial values . 109
installing formulas . 108
is-a-p (type predicate) . 115

K
Knowledge representation . 96
kr . 96

M
my-graphical-object . 100

N
named schemata . 99

O
o-formula . 109
opal:multifont-text . 198
opal:text . 182

P
predicates . 110
prototype . 178

Concept Index 767

R
rectangle-1 . 100
rectangle-2 . 100

S
schema names . 99
scrolling-window slot . 182
size . 179

U
unnamed schemata . 99

V
vs. word wrap . 182

	Overview
	Introduction
	Garnet Bulletin Board
	Important Features of Garnet
	Coverage
	Running Garnet From /afs
	How to Retrieve and Install Garnet
	Installation on a Mac
	Installation on a Unix System

	Directory Organization
	Site-Specific Changes
	Pathnames
	Compiler Optimization Settings
	Fonts in X11
	Keyboard Keys
	Multiple Screens
	OpenWindows Window Manager
	LispWorks
	CLISP
	AKCL

	Mac-Specific Issues
	Compensating for 31-Character Filenames:
	Directories:
	Binding Keys:
	Simulating Multiple Mouse Buttons With the Keyboard:
	Modifier Keys:
	Things to Keep in Mind When You Want Your Garnet Programs

	Compiling Garnet
	Loading Garnet
	Loader and Compiler Functions
	Garnet-Load and Garnet-Compile
	Adding Your Own Pathnames

	Overview of the Parts of Garnet
	Overview of this Technical Report
	What You Need To Know
	Planned Future Extensions
	Garnet Articles

	On-line Tour Through Garnet
	Abstract
	Introduction
	Getting Started
	Typing
	Garbage Collection
	Errors, etc.
	Learning Garnet
	LearnGarnet
	A Note on Packages
	A Note on Refresh
	Loading Garnet and the Tour
	Basic Objects
	Formulas
	Interaction
	Higher-level Objects
	Buttons
	Slider

	Playing Othello
	Modifying Othello
	Using GarnetDraw
	Cleanup
	

	Garnet Tutorial
	Abstract
	Take the Tour
	Load Garnet
	The Prototype-Instance System
	Inheritance
	Prototypes
	Default Values
	The Inspector
	Parameters
	Destroying Objects
	Unnamed Objects
	Lines, Rectangles, and Circles
	Aggregates
	Aggregadgets, Aggrelists, and Aggregraphs
	Aggregadgets
	Aggrelists

	Windows
	Gadgets
	Constraints
	Formulas
	Cached Values
	Formulas and s-value
	Using the :obj-over Slot
	Constraints in Aggregadgets
	Interactors
	Kinds of Interactors
	The Button Interactor
	A Feedback Object with the Button Interactor
	The Move-Grow Interactor
	A Feedback Object with the Move-Grow Interactor
	Creating a Panel of Text Buttons
	The Limitations of Aggregates
	Using an Aggregadget for the Text Button
	Defining Parts Using Prototypes
	The Label of the Button
	Instances of the Button Aggregadget
	Making an Aggrelist of Text Buttons
	Adding an Interactor

	Referencing Objects in Functions
	Hints and Caveats
	Dimensions of Aggregates
	Supply Your Own Formulas to Improve Performance
	Ignore Feedback Objects in Dimension Formulas
	Include All Components in the Aggregate's Bounding Box

	Dimensions of Windows
	Formulas
	The Difference Between formula and o-formula
	Avoid Real Number Divide

	Feedback Objects
	Debugging
	The Inspector
	PS
	Flash
	Ident
	Trace-Inter

	KR: Constraint-Based Knowledge Representation
	KR: Introduction
	Structure of the System
	Basic Concepts
	Main Concepts: Schema, Slot, Value
	Inheritance

	Object-Oriented Programming
	Objects
	Prototypes vs. Classes
	Inheritance of Formulas

	Constraint Maintenance
	Value Propagation
	Formulas
	Circular Dependencies
	Dependency Paths
	Constraints and Multiple Values

	Functional Interface: Common Functions
	Schema Manipulation
	Slot and Value Manipulation Functions
	Getting Values with g-value and gv
	Setting Values with S-Value
	formula and o-formula
	gv and gvl in Formulas
	Object-Oriented Programming
	Reader Macros

	The Type-Checking System
	Creating Types
	Declaring the Type of a Slot
	Type Documentation Strings
	Retrieving the Predicate Expression
	Explicit Type-Checking
	Temporarily Disabling Types
	System-Defined Types

	Functional Interface: Additional Topics
	Schema Manipulation
	Uniform Declaration Syntax
	Declarations in Instances
	Examining Slot Declarations
	Relations and Slots
	Constraint Maintenance

	Constant Formulas
	Efficient Path Definitions

	Tracking Formula Dependencies
	Formula Meta-Information
	Creating Meta-Information
	Accessing Meta-Information
	Demons
	Overview of the Demon Mechanism
	The :update-slots List
	Examples of Demons
	Enabling and Disabling Demons
	Multiple Inheritance
	Inheritance: Implementation Notes
	Local Values
	Local-only Slots
	Schema Creation Options
	Print Control
	Print Control Slots
	Slot Printing Functions
	Control Variables

	An Example
	The Degrees Schema
	The Thermometer Example

	Summary

	Opal: The Garnet Graphical Object System
	Abstract
	Introduction
	Overview of Opal
	Basic Concepts
	The Opal Package
	Simple Displays
	Object Visibility
	View Objects
	Read-Only Slots
	Different Common Lisps

	Slots of All Graphical Objects
	Left, top, width and height
	Line style and filling style
	Drawing function
	select-outline-only, hit-threshold, and pretend-to-be-leaf

	Methods on All view-objects
	Standard Functions
	Extended Accessor Functions

	Graphic Qualities
	Color
	Using Default Colors
	Prototype and Definition

	line-style Class
	Using Default Line Styles
	Prototype and Definition opal:line-style

	Filling-Styles
	Creating Your Own Stippled Filling-Styles
	Fancy Stipple Patterns
	Other Slots Affecting Stipple Patterns

	Fast Redraw Objects

	Specific Graphical Objects
	Line
	Rectangles
	Rounded-corner Rectangles

	Polyline and Multipoint
	Arrowheads
	Arcs
	Ovals
	Circles
	Fonts and Text
	Fonts
	Text
	Scrolling Text Objects

	Bitmaps
	Pixmaps
	Creating a pixmap
	Storing a pixmap

	Multifont
	Format of the :initial-text Slot
	Functions on Multifont Text
	Functions that Manipulate the Cursor
	Functions for Text Selection
	Functions that Access the Text or Cursor

	Adding and Editing Text
	Operations on :initial-text Format Lists
	Using view-objects as Text
	Using Marks

	Interactors for Multifont Text
	Multifont Text Interactor
	Focus Multifont Text Interactor
	Selection Interactor
	Lisp Mode

	Auto-Scrolling Multifont Text Objects
	After Cursor Moves
	A Multifont Text Gadget

	Aggregate objects
	Class Description
	Insertion and Removal of Graphical Objects
	Application of functions to components
	Finding Objects Under a Given Point
	Finding objects inside rectangular regions

	Virtual-Aggregates
	Virtual-Aggregates Slots
	Two-dimensional virtual-aggregates
	Manipulating the Virtual-Aggregate

	Windows
	Window Positioning
	Border Widths
	Window Cursors
	The :cursor Slot
	Garnet Cursor Objects
	Temporarily Changing the Cursor

	Update Quarantine Slot
	Windows on other Displays
	Methods and Functions on Window Objects

	Printing Garnet Windows
	Saving and Restoring
	Saving Lisp Images
	Saving Lisp Images Manually in X11

	Utility Functions
	Executing Unix Commands
	Testing Operating System Directories

	Aggregadgets and Interactors
	Creating New Graphical Objects

	Interactors: Encapsulating Mouse and Keyboard Behaviors
	Abstract
	Introduction
	Advantages of Interactors
	Overview of Interactor Operation
	Simple Interactor Creation
	Overview of the Section
	the Main Event Loop
	main-event-loop
	main-event-loop Process
	Launching and Killing the main-event-loop-process
	launch-process-p
	main-event-loop-process-running-p
	Operation
	Creating and Destroying

	Continuous
	Feedback
	Events
	Keyboard and Mouse Events
	"Middledown" and "Rightdown" on the Mac
	Modifiers (Shift, Control, Meta)
	Window Enter and Leave Events
	Double-Clicking
	Function Keys, Arrows Keys, and Others
	Multiple Events
	Special Values T and nil

	Values for the ``Where'' slots
	Introduction
	Running-where
	Kinds of ``where''
	Type Parameter
	Custom
	Full List of Options for Where
	Same Object
	Outside while running
	Thresholds, Outlines, and Leaves

	Details of the Operation
	Mouse and Keyboard Accelerators
	Slots of All Interactors
	Specific Interactors
	Menu-Interactor
	Default Operation
	Interim Feedback
	Final Feedback
	Final Feedback Objects
	Items Selected
	Application Notification
	Normal Operation
	Slots-To-Set

	Button-Interactor
	Default Operation
	Interim Feedback
	Final Feedback
	Items Selected
	Application Notification
	Normal Operation
	Auto-Repeat for Buttons
	Examples
	Single button
	Single button with a changing label

	Move-Grow-Interactor
	Default Operation
	attach-point
	Running where
	Extra Parameters
	Application Notification
	Normal Operation
	Gridding
	Setting Slots
	Useful Function: Clip-And-Map

	Two-Point-Interactor
	Default Operation
	Minimum sizes
	Extra Parameters
	Application Notification
	Normal Operation
	Examples
	Creating New Objects

	Angle-Interactor
	Default Operation
	Extra Parameters
	Application Notification
	Normal Operation

	text-interactor
	Default Editing Commands
	Default Operation
	Multi-line text strings
	Extra Parameters
	Application Notification
	Normal Operation
	Useful Functions
	Examples
	Editing a particular string
	Editing an existing or new string
	Key Translation Tables
	Editing Function

	Gesture-Interactor
	Default Operation
	Rejecting Gestures
	Extra Parameters
	Application Notification
	Normal Operation
	Example - Creating new Objects
	Agate
	End-User Interface
	Programming Interface
	Gesture Demos

	Animator-Interactor
	Transcripts
	Advanced Features
	Priority Levels
	Example
	Sorted-Order Priority Levels

	Modes and Change-Active
	Modal Windows
	Change-Active

	Events
	Example of using an event

	Starting and Stopping Interactors Explicitly
	Special slots of interactors
	Example of using the special slots

	Multiple Windows
	Wait-Interaction-Complete
	Useful Procedures
	Custom Action Routines
	Menu Action Routines
	Button Action Routines
	Move-Grow Action Routines
	Two-Point Action Routines
	Angle Action Routines
	Text Action Routines
	Gesture Action Routines
	Animation Action Routines

	Debugging

	Aggregadgets, Aggrelists & Aggregraphs
	Abstract
	Aggregadgets
	Accessing Aggregadgets and Aggrelists
	Aggregadgets
	How to Use Aggregadgets
	Named Components
	Destroying Aggregadgets
	Constants and Aggregadgets
	Implementation of Aggregadgets
	Dependencies Among Components
	Multi-level Aggregadgets
	Nested Part Expressions for Aggregadgets
	Creating a Part with a Function
	Creating All of the Parts with a Function

	Interactors in Aggregadgets
	Instances of Aggregadgets
	Default Instances of Aggregadgets
	Overriding Slots and Structure
	Simulated Multiple Inheritance
	Instance Examples
	More Syntax: Extending an Aggregadget

	Aggrelists
	How to Use Aggrelists
	Itemized Aggrelists
	The :item-prototype Slot
	The :items Slot
	Aggrelist Components
	Constants and Aggrelists
	A Simple Aggrelist Example
	An Aggrelist with an Interactor
	An Aggrelist with a Part-Generating Function
	Non-Itemized Aggrelists

	Instances of Aggrelists
	Overriding the Item Prototype Object

	Manipulating Gadgets Procedurally
	Copying Gadgets
	Aggregadget Manipulation
	Add-Component
	Remove Component
	Add-Interactor
	Remove-Interactor
	Take-Default-Component
	Itemized Aggrelist Manipulation
	Add-Item
	Remove-Item
	Remove-Nth-Item
	Change-Item
	Replace-Item-Prototype-Object
	Ordinary Aggrelist Manipulation
	Add-Component
	Remove-Component
	Remove-Nth-Component
	Local Modification

	Reading and Writing Aggregadgets and Aggrelists
	Write-Gadget
	Avoiding Deeply Nested Parts Slots
	More Details
	Writing to Streams
	References to External Objects
	References to Graphic Qualities
	Saving References From Within Formulas

	More Examples
	A Customizable Check-Box
	Hierarchical Implementation of a Customizable Check-Box
	Menu Aggregadget with built-in interactor, using Aggrelists

	Aggregraphs
	Using Aggregraphs
	Accessing Aggregraphs
	Overview
	Aggregraph Nodes
	A Simple Example
	An Example With an Interactor

	Aggregraph
	Scalable Aggregraph
	Scalable Aggregraph Image
	Customizing the :layout-graph Function

	Garnet Gadgets
	Abstract
	Introduction
	Current Gadgets
	Customization
	Using Gadget Objects
	Application Interface
	The :value slot
	The :selection-function slot
	The :items slot
	Item functions
	Adding and removing items

	Constants with the Gadgets
	Accessing the Gadgets
	Gadgets Modules
	Loading the Gadgets
	Gadget Files
	Gadget Demos
	The Standard Gadget Objects
	Scroll Bars
	Sliders
	Trill Device
	Gauge
	Buttons
	Text Buttons
	X Buttons
	Radio Buttons

	Option Button
	Popup-Menu-Button
	Menu
	Scrolling Menu
	Scroll Bar Control
	Menu Control

	Menubar
	Item Selection Functions
	Programming the Menubar in the Traditional Garnet Way
	An example
	Adding items to the menubar
	Removing items from the menubar
	Programming the Menubar with Components
	An example
	Creating components of the menubar
	Adding components to the menubar
	Removing components from the menubar
	Finding Components of the Menubar
	Enabling and Disabling Components
	Other Menubar Functions

	Labeled Box
	Scrolling-Input-String
	Scrolling-Labeled-Box
	Graphics-Selection
	Multi-Graphics-Selection
	Programming Interface
	End User Operation

	Scrolling-Windows
	Arrow-line and Double-Arrow-Line
	Arrow-Line
	Double-Arrow-Line

	Browser Gadget
	User Interface
	Programming Interface
	Overview
	An example
	Generating Functions for Items and Strings
	Other Browser-Gadget Slots
	The Additional Selection
	Manipulating the browser-gadget

	Polyline-Creator
	Creating New Polylines
	Editing Existing Polylines
	Some Useful Functions

	Error-Gadget
	Programming Interface
	Error-Checking and Careful Evaluation
	Careful-Eval
	Careful-Read-From-String
	Careful-String-Eval
	Careful-Eval-Formula-Lambda

	Query-Gadget
	[Save Gadget]
	Programming Interface
	Adding more gadgets to the save gadget
	Hacking the Save Gadget
	The Save-File-If-Wanted function

	[Load Gadget]
	Property Sheets
	User Interface
	Prop-Sheet
	Prop-Sheet-For-Obj
	Useful Functions
	Prop-Sheet-With-OK
	Prop-Sheet-For-Obj-With-OK
	Useful Functions
	Useful Gadgets
	Horiz-Choice-List
	Pop-Up-From-Icon
	Property Sheet Examples

	Mouseline
	MouseLine gadget
	MouseLinePopup gadget

	Standard Edit
	General Operation
	The Standard-Edit Objects
	Standard Editing Routines
	Utility Procedures

	The Motif Gadget Objects
	Useful Motif Objects
	Motif Colors and Filling Styles
	Motif-Background
	Motif-Tab-Inter

	Motif Scroll Bars
	Motif Slider
	Motif-Trill-Device
	Motif Gauge
	Motif Buttons
	Motif Text Buttons
	Motif Check Buttons
	Motif Radio Buttons

	[Motif Option Button]
	Motif Menu
	Programming Interface
	The Motif-Menu Accelerator Interactor
	Adding Items to the Motif-Menu

	[Motif Scrolling Menu]
	Motif-Menubar
	Selection Functions
	Accelerators
	Decorative Bars
	Programming the Motif-Menubar the Traditional Garnet Way
	An Example
	Adding Items to the Motif-Menubar
	Removing Items from the Motif-Menubar
	Programming the Motif-Menubar with Components
	An Example
	Creating Components of the Motif-Menubar
	Adding Components to the Motif-Menubar
	Removing Components from the Menubar
	Methods Shared with the Regular Menubar

	Motif-Scrolling-Labeled-Box
	Motif-Error-Gadget
	Motif-Query-Gadget
	[Motif Save Gadget]
	[Motif Load Gadget]
	Motif Property Sheets
	Motif-Prop-Sheet-With-OK
	Motif-Prop-Sheet-For-Obj-With-OK

	Motif-Prop-Sheet-For-Obj-With-Done
	Motif Scrolling Window
	Using the Gadgets: Examples
	Using the :value Slot
	Using the :selection-function Slot
	Using Functions in the :items Slot
	Selecting Buttons
	The :item-to-string-function Slot

	Debugging Tools for Garnet Reference chapter
	Abstract
	Introduction
	Notation in this Chapter
	Loading and Using Debugging Tools
	Inspecting Objects
	Inspector
	Invoking the Inspector
	Schema View
	Object View
	Formula Dependencies View
	Summary of Commands

	PS -- Print Schema
	Look, What, and Kids
	Is-A-Tree
	Finding Graphical Objects
	Inspecting Constraints
	Choosing Constant Slots
	Suggest-Constants

	Explain-Formulas and Find-Formulas
	Count-Formulas and Why-Not-Constant
	Noticing when Slots are Set
	Opal Update Failures
	Inspecting Interactors
	Tracing
	Describing Interactors
	Sizes of Objects

	Demonstration Programs for Garnet
	Abstract
	Introduction
	Loading and Compiling Demos
	Running Demo Programs
	Double-Buffered Windows
	Best Examples
	GarnetDraw
	Demo-Editor
	Demo-Arith
	Demo-Grow
	Multifont and Multi-Line Text Input
	Demo-Multifont
	Creating New Objects
	Angles
	Aggregraphs
	Scroll Bars
	Menus
	Animation
	Garnet-Calculator
	Browsers
	Demo-Virtual-Agg
	Demo-Pixmap
	Demo-Gesture
	Demo-Unidraw
	Gadget Demos
	Real-Time Constraints and Performance

	Old Demos
	Moving and Growing Objects
	Menus

	Demos of Advanced Features
	Using Multiple Windows
	Modes
	Using Start-Interactor

	A Sample Garnet Program
	Abstract
	Introduction
	Loading the Editor
	User Interface
	Overview of How the Code Works
	The Code

	Gilt Reference: A Simple Interface Builder for Garnet
	Abstract
	Introduction
	Loading Gilt
	User Interface
	Gadget Palettes
	Placing Gadgets
	Selecting and Editing Gadgets

	Editing Strings
	Commands
	To-Top and To-Bottom
	Copying Objects
	Aligning Objects
	Deleting Objects
	Properties
	Saving to a file
	Reading from a file
	Value and Enable Control

	Run Mode
	Hacking Objects
	Using Gilt-Created Dialog Boxes
	Pop-up dialog box

	Using Gilt-Created Objects in Windows
	Hacking Gilt-Created Files

	C32 Reference: A Constraint Editor
	Abstract
	Overview of C32
	Loading C32
	The Spreadsheet Window
	Editing Formulas
	The Commands Window
	[Point To Object]
	[Showing references to other slots]
	[Deleting, hiding, and showing slots]
	[Copy Formula]
	[Quit]
	C32 Internals

	Lapidary Reference
	Abstract
	Getting Started
	Object Creation
	Selecting Objects
	Mouse-Based Commands
	Editor Menu Commands
	File
	Edit
	Properties
	Arrange
	Constraints
	Other
	Test and Build Radio Buttons
	Creating Constraints
	Box Constraints
	Line Constraints
	Custom Constraints
	The Constraint Gadget
	Programming Interface
	Slots of the Constraint Gadget
	Exported Functions
	Programming with Links
	Custom Constraints
	Feedback

	Interactors
	Action Buttons
	Events
	:Start Where
	Formulas
	Specific Interactors
	Choice Interactor
	Move/Grow Interactor
	Two Point Interactor
	Text Interactor
	Angle Interactor

	Getting Applications to Run

	Hints on Making Garnet Programs Run Faster
	Abstract
	Introduction
	General
	Making your Garnet Code Faster
	Making your Binaries Smaller

	Gem: Low-level Graphics Library
	Creating New Graphics Backends
	Using the module directly
	Function Reference
	Font Handling
	Internal slots in graphical objects
	:update-slots
	:drawable
	:display-info
	:x-tiles
	:x-draw-function

	Methods on all graphical objects
	Draw Methods

	GNU General Public License
	Function Index
	Variable Index
	Keyword Index
	Type Index
	Concept Index

